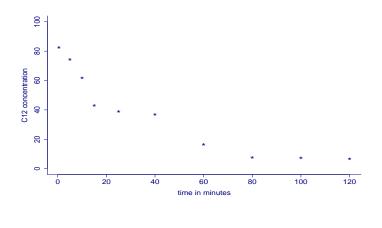
The concentration of a drug in blood

Stochastic models

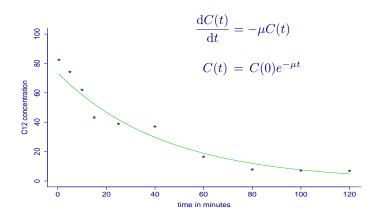
What & Why

Susanne Ditlevsen Department of Mathematical Sciences, University of Copenhagen Email: susanne@math.ku.dk Webpage: http://math.ku.dk/~susanne/



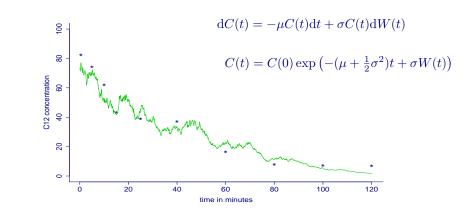
Exponential decay

1

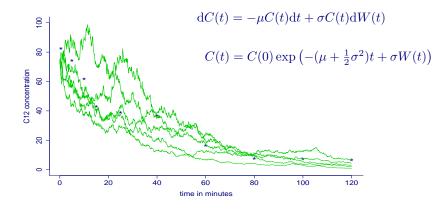


Exponential decay with noise

 $\mathbf{2}$



Different realizations



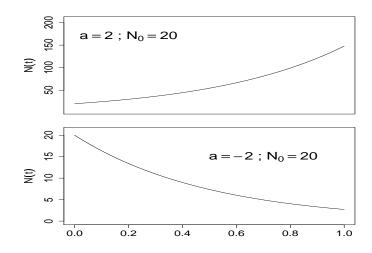
Example: Population Dynamics

A simple population growth model:

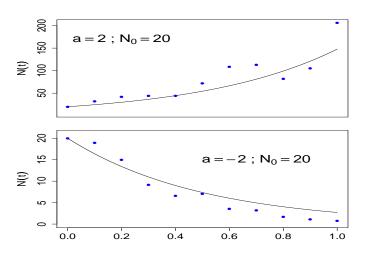
$$\frac{dN(t)}{dt} = a(t)N(t) ; N(0) = N_0$$

 $\begin{array}{lll} N(t) & \text{size of population at time } t & \\ & (\text{e.g. size of a tumor or concentration of a drug in blood}) \\ a(t) & \text{relative rate of growth (or decay) at time } t & \end{array}$

 $\mathbf{5}$



6



7

Stochastic extension

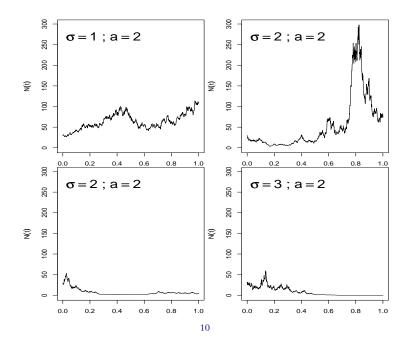
Maybe a(t) is not completely known, but subject to some random environmental effects:

$$a(t) \longrightarrow a(t) +$$
 "noise"

E.g. "noise" = $\sigma W(t), W(t)$ = white noise, σ constant. If $a(t) = a + \sigma W(t)$:

$$dN(t) = aN(t)dt + \sigma N(t)dW(t)$$

9



$$\frac{dN(t)}{dt} = a(t)N(t)$$
$$= (a + \sigma W(t))N(t)$$
$$= aN(t) + \sigma N(t)W(t)$$

We can write

$$N(t) = N_0 + \int_0^t aN(s)ds + \underbrace{\int_0^t \sigma N(s)dW(s)}_{??}$$

Randomization of parameters

Random variation in a parameter a:

$$a \longrightarrow a + \sigma \cdot$$
 "noise"

for a zero mean noise process, $\xi(t)$.

A stochastic process:

$$\frac{dX(t)}{dt} = b(t, X(t)) + \sigma(t, X(t)) \cdot \xi(t)$$

$\frac{dX(t)}{dt} = b(t, X(t)) + \sigma(t, X(t)) \cdot \xi(t)$

Let $0 = t_0 < t_1 < \cdots < t_n = t$. Discretization of above equation:

$$X_{k+1} - X_k = b(t_k, X_k) \Delta t_k + \sigma(t_k, X_k) \xi_k \Delta t_k$$

where
$$X_j = X(t_j), \ \xi_k = \xi(t_k), \ \Delta t_k = t_{k+1} - t_k$$

Replace $\xi_k \Delta t_k$ by $\Delta W_k = W(k+1) - W(k)$ where W(t) is a suitable stochastic process.

14

Our discretized version becomes:

$$X_{k} = X_{0} + \sum_{j=0}^{k-1} b(t_{j}, X_{j}) \Delta t_{j} + \sum_{j=0}^{k-1} \sigma(t_{j}, X_{j}) \Delta B_{j}$$

Is there a limit when $\Delta t_j \longrightarrow 0$? If so:

$$X(t) = X_0 + \int_0^t b(s, X(s)) ds + \underbrace{\int_0^t \sigma(s, X(s)) dB(s)}_{??}$$

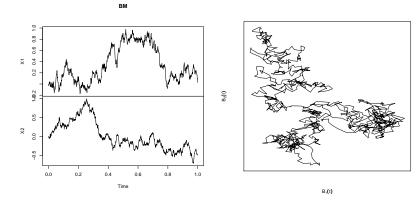
Natural requirements:

- $\xi(t_1)$ and $\xi(t_2)$ are independent for $t_1 \neq t_2$
- $\xi(t)$ is a stationary process
- $E[\xi(t)] = 0$ for all t

This leads us to a *white noise process*

13

W(t) should have stationary, independent increments with mean 0. If we require W(t) to be continuous it turns out that only one solution exists: **Brownian Motion** B(t). Thus W(t) = B(t).



Basic properties I

B(t) is a Gaussian process:

For all $0 \le t_1 \le \cdots \le t_k$ the random variable $Z = (B(t_1), \ldots, B(t_k))$ has a multinormal distribution, and

 $E[B(t)] = B_0$; Var[B(t)] = t.

17

Basic properties II

B(t) has independent increments:

 $B(t_1), B(t_2) - B(t_1), \ldots, B(t_k) - B(t_{k-1})$

are independent for all $0 \le t_1 \le \cdots \le t_k$.

18

We also call it a *standard Wiener process*:

 $W = \{W(t)\}_{t \ge 0},$

a Gaussian process with independent increments for which

$$W_0 = 0$$
, $E[W(t)] = 0$, $Var[W(t) - W(s)] = t - s$

for all $0 \le s \le t$.

It can be shown that <u>any</u> continuous time stochastic process with independent increments and finite second moments $E[X(t)^2]$ for all t, is a Gaussian process if $X(t_0)$ is Gaussian.

Basic properties III

There exists a continuous version, so we simply assume that B(t) is such a continuous version. Construction of the Itô integral

We will define

$$\int_0^T f(t) \, dW(t)$$

Let us try the usual tricks from ordinary calculus:

- define the integral for a simple class of functions
- extend by some approximation procedure to a larger class of functions



Problems!!!

Example: We want to calculate

$$\int_0^T W(t) \, dW(t)$$

Choose two different, but reasonable approximations:

$$f_{1}(t) = \sum_{j \ge 0} W(t_{j}) I_{\left\{\frac{j}{2^{n}}, \frac{(j+1)}{2^{n}}\right\}}(t) \quad \text{(Left end point)}$$

$$f_{2}(t) = \sum_{j \ge 0} W(t_{j+1}) I_{\left\{\frac{j}{2^{n}}, \frac{(j+1)}{2^{n}}\right\}}(t) \quad \text{(Right end point)}$$

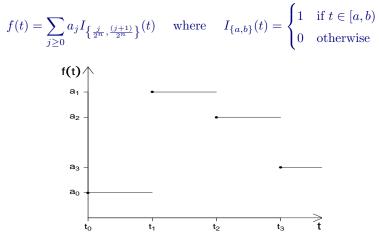
Then it will be natural to define

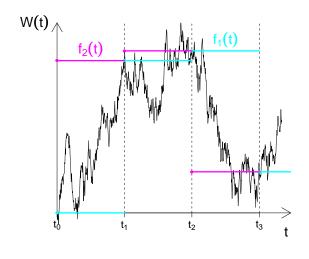
$$\int_0^T f(t) \, dW(t) = \sum_{j \ge 0} a_j [W(t_{j+1}) - W(t_j)]$$

where

$$t_j = \begin{cases} \frac{j}{2^n} & \text{if } 0 \le \frac{j}{2^n} \le T\\ T & \text{if } \frac{j}{2^n} > T \end{cases}$$

Assume f is a step-function of the form:





25

Then

$$E\left[\int_{0}^{T} f_{1}(t)dW(t)\right] = \sum_{j\geq 0} E[W(t_{j})(W(t_{j+1}) - W(t_{j}))]$$

$$= \sum_{j\geq 0} E[W(t_{j})]E[(W(t_{j+1}) - W(t_{j}))]$$

$$= 0$$

since W(t) has independent increments.

But

$$E\left[\int_{0}^{T} f_{2}(t)dW(t)\right] = \sum_{j\geq 0} E[W(t_{j+1})(W(t_{j+1}) - W(t_{j}))]$$

$$= \sum_{j\geq 0} E[W(t_{j+1})(W(t_{j+1}) - W(t_{j}))] - \sum_{j\geq 0} E[W(t_{j})(W(t_{j+1}) - W(t_{j}))]$$

$$= \sum_{j\geq 0} E[(W(t_{j+1}) - W(t_{j}))^{2}]$$

$$= \sum_{j\geq 0} (t_{j+1} - t_{j})$$

$$= T$$

26

The variations of the paths of W(t) are too big to define the integral in the ordinary sense.

The problem is that a Wiener process W(t) is nowhere differentiable.

Worse still: the sample paths have unbounded variation on any bounded time interval.

It is natural to approximate a given function f(t) by a step-function of the form:

$$f(t) \approx \sum_{j \ge 0} f(t_j^*) I_{\{t_j, t_{j+1}\}}(t)$$

where the points t_j^* belong to the interval $[t_j, t_{j+1}]$.

Define

$$\int_{S}^{T} f(t) dW(t) = \lim_{n \to \infty} \sum_{j \ge 0} f(t_{j}^{*}) \left[W(t_{j+1}) - W(t_{j}) \right]$$

We just saw - unlike ordinary integrals - that

it makes a difference what t_j^\ast we choose !!!

Two useful and common choices:

- The Itô integral: $t_j^* = t_j$, the left end point.
- The Stratonovich integral: $t_j^* = (t_j + t_{j+1})/2$, the mid point.

30

Some names

We call a stochastic process X(t) for:

An Itô integral if

$$X(t) = X_0 + \int_0^t \sigma(X(t)) dW(s) \quad \text{or} \quad dX(t) = \sigma dW(t)$$

An Itô process or a stochastic integral if

$$X(t) = X_0 + \underbrace{\int_0^t b(X(t))ds}_{\text{drift}} + \underbrace{\int_0^t \sigma(X(t))dW(s)}_{\text{diffusion}}$$

or
$$dX(t) = \underbrace{b(X(t))dt}_{\text{drift}} + \underbrace{\sigma(X(t))dW(t)}_{\text{diffusion}}$$

Properties of the Itô integral

 $\mathbf{29}$

Let $0 \leq S < U < T$. Then

$$\int_{S}^{T} f dW = \int_{S}^{U} f dW + \int_{U}^{T} f dW$$
$$\int_{S}^{T} (cf+g) dW = c \int_{S}^{T} f dW + \int_{S}^{T} g dW, c \text{ constant}$$
$$E[\int_{S}^{T} f dW] = 0$$
$$E\left[\left(\int_{S}^{T} f dW\right)^{2}\right] = E\left[\int_{S}^{T} f^{2} dt\right] \quad \text{(The Itô isometry)}$$

Example:

The Itô formula

Let X(t) be an Itô process given by

 $dX(t) = b(t, X(t))dt + \sigma(t, X(t))dW(t)$

Let g(t, x) be twice continuously differentiable on $\mathbf{R}_+ \times \mathbf{R}$. Then

$$Y_t = g(t, X(t))$$

is again an Itô process, and

$$dY_t = \left\{ \frac{\partial g}{\partial t}(t, X(t)) + \frac{1}{2}\sigma^2 \frac{\partial^2 g}{\partial x^2}(t, X(t)) \right\} dt + \frac{\partial g}{\partial x}(t, X(t)) dX(t)$$

33

Calculate =
$$\int_0^t W(s) dW(s)$$

Choose
$$X(t) = W(t)$$
 and $g(t, x) = \frac{1}{2}x^2$. Then

$$Y_t = g(t, W(t)) = \frac{1}{2}W(t)^2$$

Apply Itô's formula:

$$dY_t = \left\{ \frac{\partial g}{\partial t}(t, X(t)) + \frac{1}{2}\sigma^2 \frac{\partial^2 g}{\partial x^2}(t, X(t)) \right\} dt + \frac{\partial g}{\partial x}(t, X(t)) dX(t)$$
$$= \left\{ 0 + \frac{1}{2} \right\} dt + W(t) dW(t)$$

34

Hence

$$dY_t = d\left(\frac{1}{2}W(t)^2\right) = \frac{1}{2}dt + W(t)dW(t)$$

or

$$\frac{1}{2}W(t)^2 = \frac{1}{2}t + \int_0^t W(s)dW(s).$$

Finally

$$\int_0^t W(s)dW(s) = \frac{1}{2}W(t)^2 - \frac{1}{2}t.$$

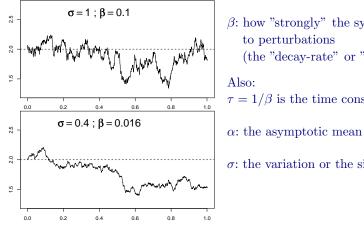
Example: the Ornstein-Uhlenbeck process

$$dX(t) = -\beta(X(t) - \alpha)dt + \sigma dW(t)$$

Solution:

$$X(t) = X_0 e^{-\beta t} + \alpha (1 - e^{-\beta t}) \sigma \int_0^t e^{-\beta (t-s)} dW(s)$$

Parameter interpretation in the OU-process



 β : how "strongly" the system reacts (the "decay-rate" or "growth-rate") $\tau=1/\beta$ is the time constant of the system

 σ : the variation or the size of the noise

Example: population growth model

$$dN(t) = aN(t)dt + \sigma N(t)dW(t)$$

The Itô solution:

$$N(t) = N_0 \exp\left\{(a - \frac{1}{2}\sigma^2)t + \sigma W(t)\right\}$$

The Stratonovich solution:

$$N(t) = N_0 \exp\left\{at + \sigma W(t)\right\}$$

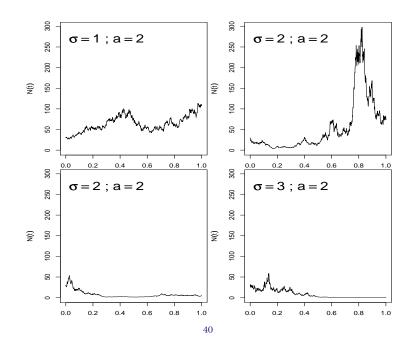
 $\mathbf{38}$

37

Qualitative behavior of the Itô solution

$$N(t) = N_0 \exp\left\{(a - \frac{1}{2}\sigma^2)t + \sigma W(t)\right\}$$

- If $a > \frac{1}{2}\sigma^2$ then $N(t) \to \infty$ when $t \to \infty$.
- If $a < \frac{1}{2}\sigma^2$ then $N(t) \to 0$ when $t \to \infty$. ٠
- If $a = \frac{1}{2}\sigma^2$ then N(t) will fluctuate between arbitrary large ٠ and arbitrary small values as $t \to \infty$.



Whereas for the Stratonovich solution we have

$$N(t) = N_0 \exp\left\{at + \sigma W(t)\right\}$$

- If a > 0 then $N(t) \to \infty$ when $t \to \infty$.
- If a < 0 then $N(t) \to 0$ when $t \to \infty$.

... just like in the deterministic case.

Numeric solutions

When no explicit solution is available we can approximate different characteristics of the process by simulation. (Realizations, moments, qualitative behavior etc)

- Different schemes (Euler, Milstein, higher order schemes...)
- Rate of convergence (Weak and strong)

41

Consider the Itô stochastic differential equation

$$dX(t) = a(X(t)) dt + b(X(t)) dW(t)$$

and a time discretization

$$0 = t_0 < t_1 < \dots < t_j < \dots < t_N = T$$

Put

$$\Delta_j = t_{j+1} - t_j$$

$$\Delta W_j = W(t_{j+1}) - W(t_j)$$

Then

$$\Delta W_j \sim N(0, \Delta_j)$$

The Euler-Maruyama scheme

42

We approximate the process X(t) given by

$$dX(t) = a(X(t)) dt + b(X(t)) dW(t) ; X(0) = x_0$$

at the discrete time-points $t_j, 1 \leq j \leq N$ by

$$Y_{t_{j+1}} = Y_{t_j} + a(Y_{t_j})\Delta_j + b(Y_{t_j})\Delta W_j \; ; \; Y_{t_0} = x_0$$

where $\Delta W_j = \sqrt{\Delta_j} \cdot Z_j$, with $Z_j \sim N(0,1)$ for all j.

The Euler-Maruyama scheme

Let us consider the expectation of the absolute error at the final time instant T:

There exist constants K > 0 and $\delta_0 > 0$ such that

$$E(|X_T - Y_{t_N}|) \leq K\delta^{0.5}$$

for any time discretization with maximum step size $\delta \in (0, \delta_0)$.

We say that the approximating process Y converges in the strong sense with order 0.5.

(Compare with the Euler scheme for an ODE which has order 1).

45

The Milstein scheme

We can even do better!

We approximate X(t) by

$$Y_{t_{j+1}} = Y_{t_j} + a(Y_{t_j})\Delta_j + b(Y_{t_j})\Delta W_j + \frac{1}{2}b(Y_{t_j})b'(Y_{t_j})\{(\Delta W_j)^2 - \Delta_j\} \text{ (now Milstein...)}$$

where the prime $^\prime$ denotes the derivative.

The Euler-Maruyama scheme

Sometimes we do not need a close *pathwise* approximation, but only some function of the value at a given final time T (e.g. $E(X_T)$, $E(X_T^2)$ or generally $E(g(X_T))$):

There exist constants K>0 and $\delta_0>0$ such that for any polynomial g

$$|E(g(X_T) - E(g(Y_{t_N}))| \leq K\delta$$

for any time discretization with maximum step size $\delta \in (0, \delta_0)$.

We say that the approximating process Y converges in the weak sense with order 1.

46

The Milstein scheme

The Milstein scheme converges in the strong sense with order 1:

 $E(|X_T - Y_{t_N}|) \leq K\delta$

We could regard the Milstein scheme as the proper generalization of the deterministic Euler-scheme.

If b(X(t)) does not depend on X(t) the Euler-Maruyama and the Milstein scheme coincide.