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The concentration of a drug in blood
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Exponential decay

dC(t)
dt

= −µC(t)

C(t) = C(0)e−µt*
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Exponential decay with noise

dC(t) = −µC(t)dt+ σC(t)dW (t)

C(t) = C(0) exp
(−(µ+ 1

2σ
2)t+ σW (t)
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Different realizations

dC(t) = −µC(t)dt+ σC(t)dW (t)

C(t) = C(0) exp
(−(µ+ 1

2σ
2)t+ σW (t)
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Example: Population Dynamics

A simple population growth model:

dN(t)
dt

= a(t)N(t) ; N(0) = N0

N(t): size of population at time t

(e.g. size of a tumor or concentration of a drug in blood)

a(t): relative rate of growth (or decay) at time t
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If a(t) = a is constant: N(t) = N0 e
at

N((t
))
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If a(t) = a is constant: N(t) = N0 e
at
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Stochastic extension

Maybe a(t) is not completely known, but subject to some random
environmental effects:

a(t) −→ a(t) +“noise”

E.g. “noise” = σW (t),W (t) = white noise, σ constant.

If a(t) = a+ σW (t):

dN(t) = aN(t)dt+ σN(t)dW (t)
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dN(t)
dt

= a(t)N(t)

= (a+ σW (t))N(t)

= aN(t) + σN(t)W (t)

We can write

N(t) = N0 +
∫ t

0

aN(s)ds +
∫ t

0

σN(s)dW (s)︸ ︷︷ ︸
??
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Randomization of parameters

Random variation in a parameter a:

a −→ a+ σ · “noise”

for a zero mean noise process, ξ(t).

A stochastic process:

dX(t)
dt

= b(t,X(t)) + σ(t,X(t)) · ξ(t)
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Natural requirements:

• ξ(t1) and ξ(t2) are independent for t1 6= t2

• ξ(t) is a stationary process

• E[ξ(t)] = 0 for all t

This leads us to a white noise process
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dX(t)
dt

= b(t,X(t)) + σ(t,X(t)) · ξ(t)

Let 0 = t0 < t1 < · · · < tn = t. Discretization of above equation:

Xk+1 −Xk = b(tk, Xk)∆tk + σ(tk, Xk)ξk∆tk

where Xj = X(tj), ξk = ξ(tk), ∆tk = tk+1 − tk

Replace ξk∆tk by ∆Wk = W (k + 1)−W (k)

where W (t) is a suitable stochastic process.
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W (t) should have stationary, independent increments with mean 0. If
we require W (t) to be continuous it turns out that only one solution
exists: Brownian Motion B(t). Thus W (t) = B(t).
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Our discretized version becomes:

Xk = X0 +
k−1∑
j=0

b(tj , Xj)∆tj +
k−1∑
j=0

σ(tj , Xj)∆Bj

Is there a limit when ∆tj −→ 0?

If so:

X(t) = X0 +
∫ t

0

b(s,X(s))ds +
∫ t

0

σ(s,X(s))dB(s)︸ ︷︷ ︸
??
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Basic properties I

B(t) is a Gaussian process:

For all 0 ≤ t1 ≤ · · · ≤ tk the random variable Z = (B(t1), . . . , B(tk))
has a multinormal distribution, and

E[B(t)] = B0 ; Var[B(t)] = t.
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Basic properties II

B(t) has independent increments:

B(t1), B(t2)−B(t1), . . . , B(tk)−B(tk−1)

are independent for all 0 ≤ t1 ≤ · · · ≤ tk.
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Basic properties III

There exists a continuous version, so we simply assume that B(t) is
such a continuous version.
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We also call it a standard Wiener process:

W = {W (t)}t≥0,

a Gaussian process with independent increments for which

W0 = 0, E[W (t)] = 0, Var[W (t)−W (s)] = t− s

for all 0 ≤ s ≤ t.

It can be shown that any continuous time stochastic process

with independent increments and finite second moments E[X(t)2] for
all t, is a Gaussian process if X(t0) is Gaussian.
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Construction of the Itô integral

We will define ∫ T

0

f(t) dW (t)

Let us try the usual tricks from ordinary calculus:

• define the integral for a simple class of functions

• extend by some approximation procedure to a larger class of
functions
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Assume f is a step-function of the form:

f(t) =
∑
j≥0

ajI{ j
2n ,

(j+1)
2n }(t) where I{a,b}(t) =

1 if t ∈ [a, b)

0 otherwise
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Then it will be natural to define∫ T

0

f(t) dW (t) =
∑
j≥0

aj [W (tj+1)−W (tj)]

where

tj =

 j
2n if 0 ≤ j

2n ≤ T
T if j

2n > T
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Problems!!!

Example: We want to calculate∫ T

0

W (t) dW (t)

Choose two different, but reasonable approximations:

f1(t) =
∑
j≥0

W (tj) I{ j
2n ,

(j+1)
2n }(t) (Left end point)

f2(t) =
∑
j≥0

W (tj+1) I{ j
2n ,

(j+1)
2n }(t) (Right end point)
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Then

E

[∫ T

0

f1(t)dW (t)

]
=

∑
j≥0

E[W (tj)(W (tj+1)−W (tj))]

=
∑
j≥0

E[W (tj)]E[(W (tj+1)−W (tj))]

= 0

since W (t) has independent increments.
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But

E

[∫ T

0

f2(t)dW (t)

]
=

∑
j≥0

E[W (tj+1)(W (tj+1)−W (tj))]

=
∑
j≥0

E[W (tj+1)(W (tj+1)−W (tj))]−∑
j≥0

E[W (tj)(W (tj+1)−W (tj))]

=
∑
j≥0

E[(W (tj+1)−W (tj))2]

=
∑
j≥0

(tj+1 − tj)

= T
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The variations of the paths of W (t) are too big to define the integral
in the ordinary sense.

The problem is that a Wiener process W (t) is nowhere differentiable.

Worse still: the sample paths have unbounded variation on any
bounded time interval.

28



It is natural to approximate a given function f(t) by a step-function
of the form:

f(t) ≈
∑
j≥0

f(t∗j ) I{tj ,tj+1}(t)

where the points t∗j belong to the interval [tj , tj+1].

Define ∫ T

S

f(t)dW (t) = lim
n→∞

∑
j≥0

f(t∗j ) [W (tj+1)−W (tj)]
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We just saw - unlike ordinary integrals - that

it makes a difference what t∗j we choose!!!

Two useful and common choices:

• The Itô integral: t∗j = tj , the left end point.

• The Stratonovich integral: t∗j = (tj + tj+1)/2, the mid point.
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Properties of the Itô integral

Let 0 ≤ S < U < T . Then

∫ T

S

fdW =
∫ U

S

fdW +
∫ T

U

fdW∫ T

S

(cf + g)dW = c

∫ T

S

fdW +
∫ T

S

gdW, c constant

E[
∫ T

S

fdW ] = 0

E

(∫ T

S

fdW

)2
 = E

[∫ T

S

f2dt

]
(The Itô isometry)
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Some names

We call a stochastic process X(t) for:

An Itô integral if

X(t) = X0 +
∫ t

0

σ(X(t))dW (s) or dX(t) = σdW (t)

An Itô process or a stochastic integral if

X(t) = X0 +
∫ t

0

b(X(t))ds︸ ︷︷ ︸
drift

+
∫ t

0

σ(X(t))dW (s)︸ ︷︷ ︸
diffusion

or

dX(t) = b(X(t))dt︸ ︷︷ ︸
drift

+σ(X(t))dW (t)︸ ︷︷ ︸
diffusion
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The Itô formula

Let X(t) be an Itô process given by

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t)

Let g(t, x) be twice continuously differentiable on R+ ×R. Then

Yt = g(t,X(t))

is again an Itô process, and

dYt =
{
∂g

∂t
(t,X(t)) +

1
2
σ2 ∂

2g

∂x2
(t,X(t))

}
dt+

∂g

∂x
(t,X(t))dX(t)
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Example:

Calculate =
∫ t

0

W (s)dW (s)

Choose X(t) = W (t) and g(t, x) = 1
2x

2. Then

Yt = g(t,W (t)) =
1
2
W (t)2

Apply Itô’s formula:

dYt =
{
∂g

∂t
(t,X(t)) +

1
2
σ2 ∂

2g

∂x2
(t,X(t))

}
dt+

∂g

∂x
(t,X(t))dX(t)

=
{

0 +
1
2

}
dt+W (t)dW (t)
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Hence

dYt = d

(
1
2
W (t)2

)
=

1
2
dt+W (t)dW (t)

or

1
2
W (t)2 =

1
2
t+
∫ t

0

W (s)dW (s).

Finally ∫ t

0

W (s)dW (s) =
1
2
W (t)2 − 1

2
t.
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Example: the Ornstein-Uhlenbeck process

dX(t) = −β(X(t)− α)dt+ σdW (t)

Solution:

X(t) = X0e
−βt + α(1− e−βt)σ

∫ t

0

e−β(t−s)dW (s)

36



Parameter interpretation in the OU-process
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β: how ”strongly” the system reacts
to perturbations
(the ”decay-rate” or ”growth-rate”)

Also:
τ = 1/β is the time constant of the system

α: the asymptotic mean

σ: the variation or the size of the noise
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Example: population growth model

dN(t) = aN(t)dt+ σN(t)dW (t)

The Itô solution:

N(t) = N0 exp
{

(a− 1
2
σ2)t+ σW (t)

}
The Stratonovich solution:

N(t) = N0 exp {at+ σW (t)}
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Qualitative behavior of the Itô solution

N(t) = N0 exp
{

(a− 1
2
σ2)t+ σW (t)

}

• If a > 1
2σ

2 then N(t)→∞ when t→∞.

• If a < 1
2σ

2 then N(t)→ 0 when t→∞.

• If a = 1
2σ

2 then N(t) will fluctuate between arbitrary large

and arbitrary small values as t→∞.
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Whereas for the Stratonovich solution we have

N(t) = N0 exp {at+ σW (t)}

• If a > 0 then N(t)→∞ when t→∞.

• If a < 0 then N(t)→ 0 when t→∞.

... just like in the deterministic case.
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Numeric solutions

When no explicit solution is available we can approximate different
characteristics of the process by simulation. (Realizations, moments,
qualitative behavior etc)

• Different schemes (Euler, Milstein, higher order schemes...)

• Rate of convergence (Weak and strong)
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Consider the Itô stochastic differential equation

dX(t) = a(X(t)) dt+ b(X(t)) dW (t)

and a time discretization

0 = t0 < t1 < · · · < tj < · · · < tN = T

Put

∆j = tj+1 − tj
∆Wj = W (tj+1)−W (tj)

Then

∆Wj ∼ N(0,∆j)
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The Euler-Maruyama scheme

We approximate the process X(t) given by

dX(t) = a(X(t)) dt+ b(X(t)) dW (t) ; X(0) = x0

at the discrete time-points tj , 1 ≤ j ≤ N by

Ytj+1 = Ytj + a(Ytj )∆j + b(Ytj )∆Wj ; Yt0 = x0

where ∆Wj =
√

∆j · Zj , with Zj ∼ N(0, 1) for all j.
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The Euler-Maruyama scheme

Let us consider the expectation of the absolute error at the final time
instant T :

There exist constants K > 0 and δ0 > 0 such that

E(|XT − YtN |) ≤ Kδ0.5

for any time discretization with maximum step size δ ∈ (0, δ0).

We say that the approximating process Y converges in the strong
sense with order 0.5.

(Compare with the Euler scheme for an ODE which has order 1).
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The Euler-Maruyama scheme

Sometimes we do not need a close pathwise approximation, but only
some function of the value at a given final time T (e.g. E(XT ),
E(X2

T ) or generally E(g(XT ))):

There exist constants K > 0 and δ0 > 0 such that for any polynomial
g

|E(g(XT )− E(g(YtN ))| ≤ Kδ

for any time discretization with maximum step size δ ∈ (0, δ0).

We say that the approximating process Y converges in the weak sense
with order 1.

46

The Milstein scheme

We can even do better!

We approximate X(t) by

Ytj+1 = Ytj + a(Ytj )∆j + b(Ytj )∆Wj

+
1
2
b(Ytj )b′(Ytj ){(∆Wj)2 −∆j} (now Milstein...)

where the prime ′ denotes the derivative.
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The Milstein scheme

The Milstein scheme converges in the strong sense with order 1:

E(|XT − YtN |) ≤ Kδ

We could regard the Milstein scheme as the proper generalization of
the deterministic Euler-scheme.

If b(X(t)) does not depend on X(t) the Euler-Maruyama and the
Milstein scheme coincide.
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