The concentration of a drug in blood
Stochastic models

What \& Why

Susanne Ditlevsen

Department of Mathematical Sciences, University of Copenhagen
Email: susanne@math.ku.dk
Webpage: http://math.ku.dk/~susanne/

Exponential decay

2

Exponential decay with noise

Different realizations

Example: Population Dynamics

A simple population growth model:

$$
\frac{d N(t)}{d t}=a(t) N(t) ; \quad N(0)=N_{0}
$$

$N(t)$: size of population at time t
(e.g. size of a tumor or concentration of a drug in blood)
$a(t): \quad$ relative rate of growth (or decay) at time t

6

$$
\text { If } a(t)=a \text { is constant: } \quad N(t)=N_{0} e^{a t}
$$

[^0]
Stochastic extension

Maybe $a(t)$ is not completely known, but subject to some random environmental effects:

$$
a(t) \longrightarrow a(t)+\text { "noise" }
$$

E.g. "noise" $=\sigma W(t), W(t)=$ white noise, σ constant.

If $a(t)=a+\sigma W(t)$:

$$
d N(t)=a N(t) d t+\sigma N(t) d W(t)
$$

$$
\begin{aligned}
\frac{d N(t)}{d t} & =a(t) N(t) \\
& =(a+\sigma W(t)) N(t) \\
& =a N(t)+\sigma N(t) W(t)
\end{aligned}
$$

We can write

$$
N(t)=N_{0}+\int_{0}^{t} a N(s) d s+\underbrace{\int_{0}^{t} \sigma N(s) d W(s)}_{? ?}
$$

Randomization of parameters

Random variation in a parameter a :

$$
a \longrightarrow a+\sigma \cdot \text { "noise" }
$$

for a zero mean noise process, $\xi(t)$.

A stochastic process:

$$
\frac{d X(t)}{d t}=b(t, X(t))+\sigma(t, X(t)) \cdot \xi(t)
$$

Natural requirements:

- $\xi\left(t_{1}\right)$ and $\xi\left(t_{2}\right)$ are independent for $t_{1} \neq t_{2}$
- $\xi(t)$ is a stationary process
- $E[\xi(t)]=0$ for all t

This leads us to a white noise process
$W(t)$ should have stationary, independent increments with mean 0 . If we require $W(t)$ to be continuous it turns out that only one solution exists: Brownian Motion $B(t)$. Thus $W(t)=B(t)$.

$$
\frac{d X(t)}{d t}=b(t, X(t))+\sigma(t, X(t)) \cdot \xi(t)
$$

Let $0=t_{0}<t_{1}<\cdots<t_{n}=t$. Discretization of above equation:

$$
X_{k+1}-X_{k}=b\left(t_{k}, X_{k}\right) \Delta t_{k}+\sigma\left(t_{k}, X_{k}\right) \xi_{k} \Delta t_{k}
$$

where $X_{j}=X\left(t_{j}\right), \quad \xi_{k}=\xi\left(t_{k}\right), \quad \Delta t_{k}=t_{k+1}-t_{k}$

Replace $\quad \xi_{k} \Delta t_{k} \quad$ by $\quad \Delta W_{k}=W(k+1)-W(k)$
where $W(t)$ is a suitable stochastic process.

14

Our discretized version becomes:

$$
X_{k}=X_{0}+\sum_{j=0}^{k-1} b\left(t_{j}, X_{j}\right) \Delta t_{j}+\sum_{j=0}^{k-1} \sigma\left(t_{j}, X_{j}\right) \Delta B_{j}
$$

Is there a limit when $\Delta t_{j} \longrightarrow 0$?
If so:

$$
X(t)=X_{0}+\int_{0}^{t} b(s, X(s)) d s+\underbrace{\int_{0}^{t} \sigma(s, X(s)) d B(s)}_{? ?}
$$

Basic properties I

$B(t)$ is a Gaussian process:

For all $0 \leq t_{1} \leq \cdots \leq t_{k}$ the random variable $Z=\left(B\left(t_{1}\right), \ldots, B\left(t_{k}\right)\right)$ has a multinormal distribution, and
$E[B(t)]=B_{0} \quad ; \quad \operatorname{Var}[B(t)]=t$.

Basic properties III

There exists a continuous version, so we simply assume that $B(t)$ is such a continuous version.

Basic properties II

$B(t)$ has independent increments:
$B\left(t_{1}\right), B\left(t_{2}\right)-B\left(t_{1}\right), \ldots, B\left(t_{k}\right)-B\left(t_{k-1}\right)$
are independent for all $0 \leq t_{1} \leq \cdots \leq t_{k}$.

We also call it a standard Wiener process:

$$
W=\{W(t)\}_{t \geq 0},
$$

a Gaussian process with independent increments for which

$$
W_{0}=0, \quad E[W(t)]=0, \quad \operatorname{Var}[W(t)-W(s)]=t-s
$$

for all $0 \leq s \leq t$.

It can be shown that any continuous time stochastic process with independent increments and finite second moments $E\left[X(t)^{2}\right]$ for all t, is a Gaussian process if $X\left(t_{0}\right)$ is Gaussian.

Assume f is a step-function of the form:

Construction of the Itô integral

We will define

$$
\int_{0}^{T} f(t) d W(t)
$$

Let us try the usual tricks from ordinary calculus:

- define the integral for a simple class of functions
- extend by some approximation procedure to a larger class of functions

22

Problems!!!

Example: We want to calculate

$$
\int_{0}^{T} W(t) d W(t)
$$

Choose two different, but reasonable approximations:

$$
\begin{aligned}
& f_{1}(t)=\sum_{j \geq 0} W\left(t_{j}\right) I_{\left\{\frac{j}{2^{n}}, \frac{(j+1)}{2^{n}}\right\}}(t) \quad \text { (Left end point) } \\
& f_{2}(t)=\sum_{j \geq 0} W\left(t_{j+1}\right) I_{\left\{\frac{j}{2^{n}}, \frac{(j+1)}{2^{n}}\right\}}(t) \quad \text { (Right end point) }
\end{aligned}
$$

25

But

$$
\begin{aligned}
E\left[\int_{0}^{T} f_{2}(t) d W(t)\right]= & \sum_{j \geq 0} E\left[W\left(t_{j+1}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)\right] \\
= & \sum_{j \geq 0} E\left[W\left(t_{j+1}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)\right]- \\
& \sum_{j \geq 0} E\left[W\left(t_{j}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)\right] \\
= & \sum_{j \geq 0} E\left[\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)^{2}\right] \\
= & \sum_{j \geq 0}\left(t_{j+1}-t_{j}\right) \\
= & T
\end{aligned}
$$

Then

$$
\begin{aligned}
E\left[\int_{0}^{T} f_{1}(t) d W(t)\right] & =\sum_{j \geq 0} E\left[W\left(t_{j}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)\right] \\
& =\sum_{j \geq 0} E\left[W\left(t_{j}\right)\right] E\left[\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)\right] \\
& =0
\end{aligned}
$$

since $W(t)$ has independent increments.

The variations of the paths of $W(t)$ are too big to define the integral in the ordinary sense.

The problem is that a Wiener process $W(t)$ is nowhere differentiable.
Worse still: the sample paths have unbounded variation on any bounded time interval.

It is natural to approximate a given function $f(t)$ by a step-function of the form:

$$
f(t) \approx \sum_{j \geq 0} f\left(t_{j}^{*}\right) I_{\left\{t_{j}, t_{j+1}\right\}}(t)
$$

where the points t_{j}^{*} belong to the interval $\left[t_{j}, t_{j+1}\right]$.

Define

$$
\int_{S}^{T} f(t) d W(t)=\lim _{n \rightarrow \infty} \sum_{j \geq 0} f\left(t_{j}^{*}\right)\left[W\left(t_{j+1}\right)-W\left(t_{j}\right)\right]
$$

Properties of the Itô integral

Let $0 \leq S<U<T$. Then

$$
\begin{aligned}
\int_{S}^{T} f d W & =\int_{S}^{U} f d W+\int_{U}^{T} f d W \\
\int_{S}^{T}(c f+g) d W & =c \int_{S}^{T} f d W+\int_{S}^{T} g d W, c \text { constant } \\
E\left[\int_{S}^{T} f d W\right] & =0 \\
E\left[\left(\int_{S}^{T} f d W\right)^{2}\right] & =E\left[\int_{S}^{T} f^{2} d t\right] \quad \text { (The Itô isomet }
\end{aligned}
$$

We just saw - unlike ordinary integrals - that
it makes a difference what t_{j}^{*} we choose!!!

Two useful and common choices:

- The Itô integral: $t_{j}^{*}=t_{j}$, the left end point.
- The Stratonovich integral: $t_{j}^{*}=\left(t_{j}+t_{j+1}\right) / 2$, the mid point.

Some names

We call a stochastic process $X(t)$ for:
An Itô integral if

$$
X(t)=X_{0}+\int_{0}^{t} \sigma(X(t)) d W(s) \quad \text { or } \quad d X(t)=\sigma d W(t)
$$

An Itô process or a stochastic integral if

$$
\begin{aligned}
X(t) & =X_{0}+\underbrace{\int_{0}^{t} b(X(t)) d s}_{\text {drift }}+\underbrace{\int_{0}^{t} \sigma(X(t)) d W(s)}_{\text {diffusion }} \\
& \text { or } \\
d X(t) & =\underbrace{b(X(t)) d t}_{\text {drift }}+\underbrace{\sigma(X(t)) d W(t)}_{\text {diffusion }}
\end{aligned}
$$

Example:

The Itô formula

Let $X(t)$ be an Itô process given by

$$
d X(t)=b(t, X(t)) d t+\sigma(t, X(t)) d W(t)
$$

Let $g(t, x)$ be twice continuously differentiable on $\mathbf{R}_{+} \times \mathbf{R}$. Then

$$
Y_{t}=g(t, X(t))
$$

is again an Itô process, and

$$
d Y_{t}=\left\{\frac{\partial g}{\partial t}(t, X(t))+\frac{1}{2} \sigma^{2} \frac{\partial^{2} g}{\partial x^{2}}(t, X(t))\right\} d t+\frac{\partial g}{\partial x}(t, X(t)) d X(t)
$$

Hence

$$
d Y_{t}=d\left(\frac{1}{2} W(t)^{2}\right)=\frac{1}{2} d t+W(t) d W(t)
$$

or

$$
\frac{1}{2} W(t)^{2}=\frac{1}{2} t+\int_{0}^{t} W(s) d W(s)
$$

Finally

$$
\int_{0}^{t} W(s) d W(s)=\frac{1}{2} W(t)^{2}-\frac{1}{2} t
$$

$$
\text { Calculate }=\int_{0}^{t} W(s) d W(s)
$$

Choose $X(t)=W(t)$ and $g(t, x)=\frac{1}{2} x^{2}$. Then

$$
Y_{t}=g(t, W(t))=\frac{1}{2} W(t)^{2}
$$

Apply Itô's formula:

$$
\begin{aligned}
d Y_{t} & =\left\{\frac{\partial g}{\partial t}(t, X(t))+\frac{1}{2} \sigma^{2} \frac{\partial^{2} g}{\partial x^{2}}(t, X(t))\right\} d t+\frac{\partial g}{\partial x}(t, X(t)) d X(t) \\
& =\left\{0+\frac{1}{2}\right\} d t+W(t) d W(t)
\end{aligned}
$$

34

Example: the Ornstein-Uhlenbeck process

$$
d X(t)=-\beta(X(t)-\alpha) d t+\sigma d W(t)
$$

Solution:

$$
X(t)=X_{0} e^{-\beta t}+\alpha\left(1-e^{-\beta t}\right) \sigma \int_{0}^{t} e^{-\beta(t-s)} d W(s)
$$

Example: population growth model

$$
d N(t)=a N(t) d t+\sigma N(t) d W(t)
$$

The Itô solution:

$$
N(t)=N_{0} \exp \left\{\left(a-\frac{1}{2} \sigma^{2}\right) t+\sigma W(t)\right\}
$$

The Stratonovich solution:

$$
N(t)=N_{0} \exp \{a t+\sigma W(t)\}
$$

Parameter interpretation in the OU-process

β : how "strongly" the system reacts to perturbations
(the "decay-rate" or "growth-rate")
Also:
$\tau=1 / \beta$ is the time constant of the system
α : the asymptotic mean
σ : the variation or the size of the noise

Qualitative behavior of the Itô solution

$$
N(t)=N_{0} \exp \left\{\left(a-\frac{1}{2} \sigma^{2}\right) t+\sigma W(t)\right\}
$$

- If $a>\frac{1}{2} \sigma^{2}$ then $N(t) \rightarrow \infty$ when $t \rightarrow \infty$.
- If $a<\frac{1}{2} \sigma^{2}$ then $N(t) \rightarrow 0$ when $t \rightarrow \infty$.
- If $a=\frac{1}{2} \sigma^{2}$ then $N(t)$ will fluctuate between arbitrary large and arbitrary small values as $t \rightarrow \infty$.

Whereas for the Stratonovich solution we have

$$
N(t)=N_{0} \exp \{a t+\sigma W(t)\}
$$

- If $a>0$ then $N(t) \rightarrow \infty$ when $t \rightarrow \infty$.
- If $a<0$ then $N(t) \rightarrow 0$ when $t \rightarrow \infty$.
... just like in the deterministic case.

Consider the Itô stochastic differential equation

$$
d X(t)=a(X(t)) d t+b(X(t)) d W(t)
$$

and a time discretization

$$
0=t_{0}<t_{1}<\cdots<t_{j}<\cdots<t_{N}=T
$$

Put

$$
\begin{aligned}
\Delta_{j} & =t_{j+1}-t_{j} \\
\Delta W_{j} & =W\left(t_{j+1}\right)-W\left(t_{j}\right)
\end{aligned}
$$

Then

$$
\Delta W_{j} \sim N\left(0, \Delta_{j}\right)
$$

Numeric solutions

When no explicit solution is available we can approximate different characteristics of the process by simulation. (Realizations, moments, qualitative behavior etc)

- Different schemes (Euler, Milstein, higher order schemes...)
- Rate of convergence (Weak and strong)

42

The Euler-Maruyama scheme

We approximate the process $X(t)$ given by

$$
d X(t)=a(X(t)) d t+b(X(t)) d W(t) ; \quad X(0)=x_{0}
$$

at the discrete time-points $t_{j}, 1 \leq j \leq N$ by

$$
Y_{t_{j+1}}=Y_{t_{j}}+a\left(Y_{t_{j}}\right) \Delta_{j}+b\left(Y_{t_{j}}\right) \Delta W_{j} ; Y_{t_{0}}=x_{0}
$$

where $\Delta W_{j}=\sqrt{\Delta_{j}} \cdot Z_{j}$, with $Z_{j} \sim N(0,1)$ for all j.

The Euler-Maruyama scheme

Let us consider the expectation of the absolute error at the final time instant T :
There exist constants $K>0$ and $\delta_{0}>0$ such that

$$
E\left(\left|X_{T}-Y_{t_{N}}\right|\right) \leq K \delta^{0.5}
$$

for any time discretization with maximum step size $\delta \in\left(0, \delta_{0}\right)$.
We say that the approximating process Y converges in the strong sense with order 0.5.
(Compare with the Euler scheme for an ODE which has order 1).

The Milstein scheme

We can even do better!

We approximate $X(t)$ by

$$
\begin{aligned}
Y_{t_{j+1}}= & Y_{t_{j}}+a\left(Y_{t_{j}}\right) \Delta_{j}+b\left(Y_{t_{j}}\right) \Delta W_{j} \\
& +\frac{1}{2} b\left(Y_{t_{j}}\right) b^{\prime}\left(Y_{t_{j}}\right)\left\{\left(\Delta W_{j}\right)^{2}-\Delta_{j}\right\} \quad \text { (now Milstein...) }
\end{aligned}
$$

where the prime ' denotes the derivative.

The Euler-Maruyama scheme

Sometimes we do not need a close pathwise approximation, but only some function of the value at a given final time T (e.g. $E\left(X_{T}\right)$, $E\left(X_{T}^{2}\right)$ or generally $\left.E\left(g\left(X_{T}\right)\right)\right)$:
There exist constants $K>0$ and $\delta_{0}>0$ such that for any polynomial g

$$
\mid E\left(g\left(X_{T}\right)-E\left(g\left(Y_{t_{N}}\right)\right) \mid \leq K \delta\right.
$$

for any time discretization with maximum step size $\delta \in\left(0, \delta_{0}\right)$.
We say that the approximating process Y converges in the weak sense with order 1.

46

The Milstein scheme

The Milstein scheme converges in the strong sense with order 1:

$$
E\left(\left|X_{T}-Y_{t_{N}}\right|\right) \leq K \delta
$$

We could regard the Milstein scheme as the proper generalization of the deterministic Euler-scheme.

If $b(X(t))$ does not depend on $X(t)$ the Euler-Maruyama and the Milstein scheme coincide.

[^0]:
 \qquad

