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1 Introduction and methodology

The phenomenon that non-stationary processes can have linear combinations that
are stationary was called cointegration by Granger (1983), who used it for modelling
long-run economic relations. The paper by Engle and Granger (1987), which showed
the equivalence of the error correction formulation and the phenomenon of cointe-
gration, started a rapid development of the statistical and probabilistic analysis of
the ideas.
There are now three different ways of modelling the cointegration idea in a statis-

tical framework. To illustrate the ideas we formulate these in the simplest possible
case, leaving out deterministic terms.

1.1 The regression formulation

The multivariate process xt = (x01t, x
0
2t)

0 of dimension p = p1 + p2 is given by the
regression equations

x1t = β0x2t + u1t,

∆x2t = u2t,

where we assume that ut is a linear invertible process defined by i.i.d. errors εt with
mean zero and finite variance. The assumptions behind the model imply that x2t is
non-stationary and not cointegrating, and hence that the cointegrating rank, p1, is
known so that the models for different ranks are not nested. The first estimation
method used in this model is least squares regression, see Engle and Granger (1987),
which gives superconsistent estimators as shown by Stock (1987) and which gives
rise to residual based tests for cointegration. It was shown by Phillips and Hansen
(1990) and Park (1992) that a modification of the regression, involving a correction
using the long-run variance of the process ut, would give useful inference for the
coefficients of the cointegrating relations, see also Phillips (1991).

1.2 The autoregressive formulation

In this case the process xt is given by the equations

∆xt = αβ0xt−1 + εt,

where εt are i.i.d. errors with mean zero and finite variance, and α and β are
p× r matrices. The formulation allows modelling of both the long-run relations and
the adjustment, or feedback, towards the attractor set {β0x = 0} defined by the
long-run relations, and this is the model we shall focus upon in this chapter. The
models for different cointegrating ranks are nested and the rank can be analysed by
likelihood ratio tests. The methods usually applied for the analysis are derived from
the Gaussian likelihood function, (Johansen 1996), which we shall discuss here, see
also Ahn and Reinsel (1990) and Reinsel and Ahn (1992).
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1.3 The unobserved component formulation

Let xt be given by

xt = ξη0
tX
i=1

εi + ut

where ut is a linear process, typically independent of the process εt, which is i.i.d.
with mean zero and finite variance.
In this formulation too, the hypotheses of different ranks are nested. The para-

meter are linked to the autoregressive formulation by ξ = β⊥ and η = α⊥, where for
any p× r matrix a of rank r ≤ p, we define a⊥ as a p× (p− r) matrix of rank p− r,
for which a0a⊥ = 0. Thus both adjustment and cointegration can be discussed in
this formulation. Rather than testing for unit roots one tests for stationarity, which
is sometimes a more natural formulation. The estimation is usually performed by
the Kalman filter, and the asymptotic theory of the rank tests has been worked out
by Nyblom and Harvey (2000).

1.4 The statistical methodology for the analysis of cointe-
gration

In this chapter we analyse cointegration as modelled by the vector autoregressive
model

∆xt = αβ0xt−1 +
k−1X
i=1

Γi∆xt−i + Φdt + εt, (1)

where εt are i.i.d. with mean zero and variance Ω, and dt are deterministic terms,
like constant, trend, seasonals or intervention dummies. Under suitable conditions,
see section 2, the process (β0xt,∆xt) stationary around its mean, and subtracting
the mean from (1) we find

∆xt −E(∆xt) = α(β0xt−1 −Eβ0xt−1) +
k−1X
i=1

Γi(∆xt−i −E(∆xt−i)) + εt.

This shows how the changes of the process reacts to feedback from the disequilibrium
errors β0xt−1−E(β0xt−1) and ∆xt−i−E(∆xt−i), i = 1, . . . , k− 1, via the short-run
adjustment coefficients α and Γi, i = 1, . . . , k−1. The equation β0xt−E(β0xt) = 0
defines the long-run relations between the variables.
By working throughout with a statistical model we ensure that we get a coherent

framework for formulating and testing economic hypotheses. Thus our understand-
ing of the dynamic behavior of the economic processes is expressed by the model.
The application of the likelihood methods gives a set of methods for conducting

inference without having to derive properties of estimators and tests since they
have been derived once and for all. Thus one can focus on applying the methods,
using the now standard software available, provided the questions of interest can be
formulated in the framework of the model.
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The price paid for all this, is that one has to be reasonably sure that the frame-
work one is working in, the vector error correction model, is in fact a good description
of the data. This implies that one should always ask the fundamental question

W ?

That means that one should carefully check that the basic assumptions are satisfied,
and, if they are not, one should be prepared to change the model or find out what
are the implications of deviations in the underlying assumptions for the properties
of the procedures employed.
The statistical methodology employed is to analyze the Gaussian likelihood func-

tion with the purpose of deriving estimators and test statistics. Once derived under
the ideal Gaussian assumptions one derives the properties of the estimators and test
statistics under more general assumptions.
The rest of this chapter deals with the following topics. In section 2 we give the

definitions of integration and cointegration and the basic properties of the vector
autoregressive I(1) process as formulated in the Granger Representation Theorem,
which is then used to discuss the role of the deterministic terms and the interpreta-
tion of cointegrating coefficients. In section 3 we show how various hypotheses can
be formulated in the cointegrated model and discuss briefly the impulse response
function. Then in section 4 we give the likelihood theory and discuss the calculation
of maximum likelihood estimators under various restrictions on the parameters. Sec-
tion 5 has a brief discussion of the asymptotics, including the different Dickey-Fuller
distributions for the determination of rank and the mixed Gaussian distribution for
the asymptotic distribution of β̂, which leads to asymptotic χ2 inference. We briefly
mention the small sample improvements.
In section 6, we give some further topics that involve cointegration, like the impli-

cation of rational expectations for the cointegration model and models for seasonal
cointegration, explosive roots, the model for I(2) variables, non-linear cointegration
and a few comments on models for panel data cointegration. These topics are still
to be developed in detail and thus offer scope for a lot more research.
There are many surveys of the theory of cointegration, see for instance Watson

(1994), and the topic has become part of most text book in econometrics, see among
others Lütkepohl (1991), Banerjee, Dolado, Galbraith and Hendry (1993), Hamilton
(1994), and Hendry (1995). It is not possible to mention all the papers that have
contributed to the theory and we shall use as a general reference the monograph
by Johansen (1996), where many earlier references can be found. The purpose of
this survey is to explain some basic ideas, and show how they have been extended
since 1996 for the analysis of new problems in the autoregressive model, and for
the analysis of some new models. The theory of cointegration is an interesting
econometric technique, but the main interest and usefulness of the methods lies
in the applications in macroeconomic problems. We do not deal with the many
applications of the cointegration techniques, but refer to the monograph by Juselius
(2004) for a detailed treatment of the macroeconomic applications.
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2 The vector autoregressive process and Granger’s
Representation Theorem

In this section we formulate first the well known conditions for stationarity of an
autoregressive process and then show how these results generalize to integrated
variables of order 1. The solution of the equations, the Granger Representation
Theorem, is applied to discuss the role of the deterministic terms, the interpretation
of the cointegrating coefficients, and in section 5, the asymptotic properties of the
process.

2.1 The stationary vector autoregressive process and the
definition of integration and cointegration

The vector autoregressive model for the p−dimensional process xt

∆xt = Πxt−1 +
k−1X
i=1

Γi∆xt−i + Φdt + εt (2)

is a dynamic stochastic model for all the variables xt. The model is discussed in detail
in Chapter 5.We assume that εt is i.i.d. with mean zero and variance Ω. By recursive
substitution the equations define xt as function of initial values, x0, . . . , x−k+1, errors
ε1, . . . , εt, deterministic terms d1, . . . , dt, and the parameters (Π,Γ1, . . . ,Γk−1,Φ,Ω).
The deterministic terms are constants, linear terms, seasonals, or intervention dum-
mies. The properties of xt are studied through the characteristic polynomial

Π(z) = (1− z)Ip −Πz − (1− z)
k−1X
i=1

Γiz
i

with determinant det(Π(z)) = |Π(z)| of degree at most kp. Let ρ−1i be the roots of
|Π(z)| = 0. Then det(Π(z)) =Qkp

i=1(1− zρi) and the inverse matrix is given by

C(z) = Π−1(z) =
adj(Π(z))
det(Π(z))

, z 6= ρ−1i

We mention the well known result, see Chapter 5,

Theorem 1 If |ρi| < 1, the coefficients of Π−1(z) = C(1) =
P∞

i=0Ciz
i are exponen-

tially decreasing. Let μt =
P∞

i=0CiΦdt−i. Then the initial values of xt can be given
a distribution so that xt−μt is stationary. The moving average representation of xt
is

xt =
∞X
i=0

Ci(εt−i + Φdt−i). (3)
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Thus the exponentially decreasing coefficients are found by simply inverting the
characteristic polynomial if the roots are outside the unit disk. If this condition
fails, the equations will generate non-stationary processes of various types and the
coefficients will not be exponentially decreasing. The process (3) is called a linear
process and will form the basis for the definitions of integration and cointegration.

Definition 2 We say that the process xt is integrated of order 1, I(1), if ∆xt is a
linear process, with C(1) =

P∞
i=0Ci 6= 0. If there is a vector β 6= 0 so that β0xt is

stationary, then xt is cointegrated with cointegrating vector β. The number of linearly
independent cointegrating vectors is the cointegrating rank.

Example 3 A bivariate cointegrated process given by the moving average represen-
tation

x1t = a
Pt

i=1 ε1i + ε2t
x2t = b

Pt
i=1 ε1i + ε3t

is a cointegrated I(1) process with β = (b,−a)0 because ∆x1t = aε1t +∆ε2t,∆x2t =
bε1t +∆ε3t and bx1t − ax2t = bε2t − aε3t are stationary.

Example 4 A bivariate process given by the vector autoregressive model allowing
for adjustment is

∆x1t = α1(x1t−1 − x2t−1) + ε1t,

∆x2t = α2(x1t−1 − x2t−1) + ε2t.

Subtracting the equations we find that the process yt = x1t − x2t is autoregressive
and stationary if |1 + α1 − α2| < 1. Similarly we find that St = α2x1t − α1x2t is a
random walk, so that

x1t = (St − α1yt)/(α2 − α1),

x2t = (St − α2yt)/(α2 − α1).

This shows that if |1 + α1 − α2| < 1, xt is I(1), x1t − x2t is stationary, and α2x1t −
α1x2t is a random walk, so that xt is a cointegrated I(1) process with cointegrating
vector β0 = (1,−1). We call St a common stochastic trend and α the adjustment
coefficients. Note that the properties of the processes are derived from the equations
and depend on the parameters of the model.

Example 2 presents a special case of the Granger Representation Theorem, which
we give next.

2.2 The Granger Representation Theorem

If the characteristic polynomial Π(z) has a unit root, then Π(1) = −Π is singular, of
rank r, say, and the process is not stationary. We let the r× p matrix β0 denote the
r linearly independent rows of Π, and let the p× r matrix α contain the coefficients
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that express each row of −Π as a combination of the vectors β0, so that Π = αβ0.
Equation (2) becomes

∆xt = αβ0xt−1 +
k−1X
i=1

Γi∆xt−i + Φdt + εt. (4)

This is called the error or equilibrium correction model. We next formulate a condi-
tion, the I(1) condition, which guarantees that the solution of (4) is a cointegrated
I(1) process. We define Γ = Ip −

Pk−1
i=1 Γi.

Condition 5 (The I(1) condition). We assume that det(Π(z)) = 0 implies that
|z| > 1 or z = 1 and assume that

det(α0⊥Γβ⊥) 6= 0. (5)

This condition is needed to avoid solutions which have seasonal roots or explosive
roots, and solutions which are integrated of order 2 or higher, see section 6. The
condition is equivalent to the condition that the number of roots of detΠ(z) = 0 is
p− r.

Theorem 6 (The Granger Representation Theorem) If Π(z) has unit roots and the
I(1) condition (5) is satisfied, then

(1− z)Π−1(z) = C(z) =
∞X
i=0

Ciz
i = C(1) + (1− z)C∗(z) (6)

is convergent for |z| ≤ 1 + δ for some δ > 0 and

C = C(1) = β⊥(α
0
⊥Γβ⊥)

−1α0⊥. (7)

The process xt has the moving average representation

xt = C
tX
i=1

(εi + Φdi) +
∞X
i=0

C∗i (εt−i + Φdt−i) +A, (8)

where A depends on initial values, so that β0A = 0. It follows that xt is a cointegrated
I(1) process with r cointegrating vectors β and p − r common stochastic trends
α0⊥
Pt

i=1 εi.

The result (6) rests on the observation that the singularity of Π(z) for z = 1
implies that Π(z)−1 has a pole at z = 1. Condition (5) is a condition for this pole
to be of order one. We shall not prove this here, but show how this result can be
applied to prove the representation result (8). We multiply Π(L)xt = Φdt + εt by

(1− L)Π−1(L) = C(L) = C(1) + (1− L)C∗(L)
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and find

∆xt = (1− L)Π−1(L)Π(L)xt = C(1)(εt + Φdt) +∆C∗(L)(εt + Φdt).

Now define the stationary process zt = C∗(L)εt and the deterministic function μt =
C∗(L)Φdt. Then

∆xt = C(εt + Φdt) +∆(zt + μt),

which cumulates to

xt = C
tX
i=1

(εi + Φdi) + zt + μt +A,

where A = x0− z0−μ0.We choose the distribution of x0 so that β
0x0 = β0(z0+μ0),

and hence β0A = 0. It is seen that xt is I(1), that β0xt = β0zt + β0μt, so that β
0xt

is stationary around its mean E(β0xt) = β0μt, and that ∆xt is stationary around its
mean E(∆xt) = CΦdt +∆μt.

-

6

x1t

x2t
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Figure 1: In the model∆xt = αβ0xt−1+εt, the point xt = (x1t, x2t) is moved towards
the long-run value x∞|t on the attractor set {x|β0x = 0} = sp(β⊥} by the force −α
or +α, and pushed along the attractor set by the common trends α0⊥

Pt
i=1 εi

It is easy to see that for a process with one lag we have Γ = Ip and

β0xt = (Ir + β0α)β0xt−1 + β0εt,

so that the I(1) condition is that the eigenvalues of Ir + β0α are bounded by one.
Engle and Granger (1987) show this result in the form that if ∆xt = C(L)εt with

|C(1)| = 0, then xt satisfies an (infinite order) autoregressive model. We have chosen
to start with the autoregressive formulation, which is the one estimated and which
has the coefficients that have immediate interpretations, and derive the (infinite
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order) moving average representation. Both formulations require the I(1) condition
(5). We next give three examples to illustrate the use of the Granger Representation
Theorem.

Example 7 First consider

∆x1t = −1
4
(x1t−1 − x2t−1) + ε1t,

∆x2t =
1

4
(x1t−1 − x2t−1) + ε2t,

which gives an I(1) process, with α0 = 1
4
(−1, 1), β0 = (1,−1), and |1+α0β| = 1

2
< 1.

Example 8 Next consider

∆x1t =
1

4
(x1t−1 − x2t−1) + ε1t,

∆x2t = −1
4
(x1t−1 − x2t−1) + ε2t,

for which α0 = 1
4
(1,−1),β0 = (1,−1), and |1 + α0β| = 3

2
> 1. This describes an

explosive process, and the I(1) condition is not satisfied because there are roots inside
the unit disk.

Example 9 Finally consider a strange example:

∆x1t =
1
4
(x1t−1 − x2t−1) + 9

4
∆x2t−1 + ε1t,

∆x2t = −1
4
(x1t−1 − x2t−1) + ε2t.

This process is a cointegrated I(1) process with cointegrating relation β0 = (1,−1),
because the I(1) condition is satisfied despite the fact that the adjustment coefficients
point in the wrong direction. The adjustment of the process towards equilibrium
comes through the term ∆x2t−1.

2.3 The role of the deterministic terms

We apply the result (8) to discuss the role of a deterministic term in the equations,
which could be called an ‘innovation’ term. It follows from (8) that dt is cumulated
into the trend CΦ

Pt
i=1 di.We consider some special cases. Let first Φdt = μ0+μ1t,

so that

xt = C
tX
i=1

(εi + μ0 + μ1i) +
∞X
i=0

C∗i (εt−i + μ0 + μ1(t− i)) +A,

which shows, that in general, a linear term in the equation becomes a quadratic
trend with coefficient 1

2
Ct2 in the process. We decompose μi = αρ0i + α⊥γ0i, where

ᾱ0μi = ρ0i, and ᾱ0⊥μi = γ0i. It is then seen that if γ1 = 0, so that μ1 = αρ01, or
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Model linear term restriction trend in xt E(∆xt) E(β0xt)
1 μ0 + μ1t none quadratic linear linear
2 μ0 + αρ01t ξ1 = 0 linear constant linear
3 μ0 μ1 = 0 linear constant constant
4 αρ00 μ1 = 0, ξ0 = 0 constant zero constant
5 0 μ1 = μ2 = 0 zero zero zero

Table 1: The five models defined by restrictions on the deterministics terms in the
equations. We decompose μi = αρ0i + α⊥γ0i (ᾱ

0μi = ρ0i, ᾱ
0
⊥μi = γ0i) and express the

models by restrictions on ρi and γi.

α0⊥μ1 = 0, then the quadratic term has coefficient zero, Cμ1 = Cαγ
0
1 = 0, so that

only a linear trend is present. We, therefore, distinguish five cases as shown in Table
1.
We also consider a ‘linear additive term’ defined by

xt = τ0 + τ1t+ zt,

∆zt = αβ0zt−1 +
k−1X
i=1

Γi∆zt−i + εt,

so that the deterministic part and the stochastic part are modelled independently.
We eliminate zt and find an error correction model (4) with

μ0 = −αβ0τ0 + αβ0τ 1 + Γτ1, μ1 = −αβ0τ1,
thus corresponding to case 2 in Table 1. Similarly, if we take τ 1 = 0, we get case 4,
where the constant is restricted α0⊥μ0 = 0.
Finally we consider the case of an ‘innovation dummy’. We define

dt = 1{t=t0} =
½
1, t = t0
0, t 6= t0 .

In this case the deterministic part of xt is

CΦ1{t≥t0} +
∞X
i=0

C∗i Φdt−i = (CΦ+ C
∗
t−t0Φ)1{t≥t0}.

Because C∗t−t0 → 0, for t→∞, it is seen that the effect of an innovation dummy is
that xt changes from having ‘level’ zero up to time t0 − 1 to having ‘level’ CΦ for
large t.
On the other hand, if we model an ‘additive dummy’

xt = Φdt + zt,

∆zt = αβ0zt−1 +
k−1X
i=1

Γi∆zt−i + εt,
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we get the equation for xt

∆xt = αβ0xt−1 +
k−1X
i=1

Γi∆zt−i + Φ∆dt − αβ0Φdt−1 −
k−1X
i=1

ΦΓi∆dt−i + εt,

which shows that, in the autoregressive formulation, we need the deterministics
terms ∆dt, dt−1,∆dt−1, . . . , dt−k+1, with coefficient depending on Φ,α, β,Γi. The in-
clusion of deterministic terms in the equations thus requires careful consideration of
which trending behavior or deterministic term is relevant for the data.

2.4 Interpretation of cointegrating coefficients

Usually regression coefficients in a regression like

x1t = γ2x2t + γ3x3t + εt (9)

are interpreted via a counterfactual experiment of the form: The coefficient γ2 is
the effect on x1t of a change in x2t, keeping x3t constant. It is not relevant if in fact
x3t can in reality be kept constant when x2t is changed, the experiment is purely a
counterfactual or thought experiment.
The cointegrating relations are long-run relations. This is not taken to mean

that these relations will eventually materialize if we wait long enough, but rather
that these are relations, which have been there all the time and which influence
the movement of the process xt via the adjustments α, in the sense that the more
the process β0xt deviates from Eβ0xt, the more the adjustment coefficients pull the
process back towards its mean.
It is therefore natural that the interpretation of cointegrating coefficients involves

the notion of a long-run value. From the Granger Representation Theorem (8)
applied to the model with no deterministic terms, one can find an expression for
E(xt+s|xt), which shows that

x∞|t = lim
h→∞

E(xt+h|xt, . . . , xt−k+1) = C(xt −
k−1X
i=1

Γixt−i) = C
tX
i=1

εi + x∞|0.

This limiting conditional expectation is the so-called long-run value of the process,
which is a point in the attractor set, see Figure 1, because β0x∞|t = 0. The cointe-
grating relation can be formulated as a relation between long-run values: β0x∞|t = 0.
We see that if the current value is shifted from xt to xt + h, then the long-run

value is shifted from x∞|t to x∞|t + Ch, which is still a point in the attractor set
because β0x∞|t + β0Ch = 0. If we want to achieve a given long-run change k = Cξ,
say, we add Γk to the current value, as the long-run value becomes

x∞|t + CΓk = x∞|t + CΓCξ = x∞|t + Cξ = x∞|t + k,

because CΓC = C, see (7). This idea is now used to give an interpretation of
a cointegrating coefficient in the simple case of r = 1, and where the relation is
normalized on x1

x1 = γ2x2 + γ3x3, (10)
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so that β0 = (1,−γ2,−γ3). In order to give the usual interpretation as a regression
coefficient (or elasticity if the variables are in logs), we would like to implement
a long-run change so that x2 changes by one, x1 changes by γ2, and x3 is kept
fixed. Thus the long-run change should be the vector k = (γ2, 1, 0), but this satisfies
β0k = 0, and hence k = Cξ for some ξ, so we can achieve the long-run change k by
moving the current value to xt + CΓk.
In this sense, a coefficient in an identified cointegrating relation can be inter-

preted as the effect of a long-run change to one variable on another, keeping all
others fixed. The difference with the usual interpretation of a regression coefficient
is that because the relation is a long-run relation, that is, a relation between long-
run values, the counterfactual experiment should involve a long-run change in the
variables. More details can be found in Johansen (2004a), see also Proietti (1997).

3 Interpretation of the I(1) model for cointegra-
tion

We discuss here the model H(r) defined by (1). The parameters are

(α, β, Γ1, . . . , Γk−1, Φ, Ω) .

All parameters vary freely, and α and β are p× r matrices. The models H(r) form
a nested sequence of hypotheses

H (0) ⊂ · · · ⊂ H (r) ⊂ · · · ⊂ H (p) ,
where H (p) is the unrestricted vector autoregressive model, or the I(0) model, and
H (0) corresponds to the restriction Π = 0, which is the vector autoregressive model
for the process in differences. The models in between, H (1) , . . . , H (p− 1), ensure
cointegration and are the models of primary interest to us here. Note that in order
to have nested models we allow in H(r) all processes with rank less than or equal
to r.
The formulation allows us to derive likelihood ratio tests for the hypothesis H (r)

in the unrestricted model H (p). These tests can then be applied to check if ones
prior knowledge of the number of cointegrating relations is consistent with the data,
or alternatively to construct an estimator of the cointegrating rank.
Note that when the cointegrating rank is r, the number of common trends is

p − r. Thus if one can explain the presence of r cointegrating relations one should
also explain the presence of p− r independent stochastic trends in the data.

3.1 Normalization of the parameters of the I(1) model

The parameters α and β in (1) are not uniquely identified in the sense that given
any choice of α and β and any non-singular matrix ξ (r×r) the choice αξ and βξ0−1
will give the same matrix Π = αβ0 = αξ−1(βξ0)0 and hence determine the same
probability distribution for the variables.
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If xt = (x01t, x
0
2t)

0 and β = (β01, β
0
2)
0, with |β1| 6= 0, we can solve the cointegrating

relations as
x1t = θ0x2t + ut

where ut is stationary and θ0 = −(β01)−1β02. This represents cointegration as a re-
gression equation.
A normalization of this type is sometimes convenient for estimation and cal-

culation of ‘standard errors’ of the estimate, see section 5, but many hypotheses
are invariant to a normalization of β, and thus, in a discussion of a test of such
a hypothesis, β does not require normalization. On the other hand, as seen in
the next subsection, many economic hypotheses are expressed in terms of different
restrictions, for which the regression formulation is not convenient.
Similarly, α⊥ and β⊥ are not uniquely defined, so that the common trends are

not unique. From the Granger Representation Theorem we see that common trends
contribute with the non-stationary random walk term C

Pt
i=1 εi. For any full rank

(p− r)× (p− r) matrix η, we have that ηα0⊥
Pt

i=1 εi could also be used because

C

tX
i=1

εi = β⊥(α
0
⊥Γβ⊥)

−1(α0⊥

tX
i=1

εi) = β⊥(ηα
0
⊥Γβ⊥)

−1(ηα0⊥

tX
i=1

εi).

This shows that we could have defined the common trends as ηα0⊥
Pt

i=1 εi, so that
identifying restrictions are needed in order to make sense of them.

3.2 Hypotheses on the long-run coefficients β

The main use of the concept of cointegration is as a precise definition of the economic
concept of a long-run relation or equilibrium relation. In order to illustrate these
ideas, consider the variables: mt, log real money, yt, log real income, πt = ∆ log(pt)
the inflation rate, and two interest rates: a deposit rate idt and a bond rate i

b
t . For

simplicity, we first assume that we have only one cointegrating relation between the
variables and formulate some natural hypotheses below.
The inverse money velocity is defined as mt−yt. We do not find that mt−yt = c

holds in the data, but instead interpret the statement that money velocity is constant
as the statement that the process mt− yt is stationary, or, in term of cointegration,
that β = (1,−1, 0, 0, 0)0 is a cointegrating relation. Another hypothesis of interest
is that velocity is a function of the interest rates only, which we formulate as β =
(1,−1, 0,ψ, η)0, for some parameters ψ, η.We can formulate the question of whether
the interest rate spread is stationary as the hypothesis that β = (0, 0, 0, 1,−1)0 and
finally we can investigate the question of the stationarity of the inflation rate as the
hypothesis β = (0, 0, 1, 0, 0)0.
Notice that stationarity of a variable is formulated as a question about the pa-

rameters of the model, that is, the model allows for both I(0) variables and I(1)
variables.
If the cointegrating rank is two, we have more freedom in formulating hypotheses.

In this situation we could ask if, in both relations, the coefficients to m and y add
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to zero, and that the coefficient to the inflation rate is zero. This hypothesis is
expressed as a restriction on the cointegrating relations

β = Hφ, or R0β = 0,

where

R0 =
µ
1 1 0 0 0
0 0 1 0 0

¶
,H = R⊥.

The stationarity of velocity is formulated as the existence of a cointegrating
relation of the form b0 = (1, −1, 0, 0, 0) , that is, β = (b, φ) , where b is known and
the vector φ is the remaining unrestricted cointegrating vector.
A general formulation of linear restrictions on individual cointegrating relations

is
β = (H1ϕ1, . . . , Hrϕr) , or R

0
iβi = 0, i = 1, . . . , r, (11)

where Hi = Ri⊥ is p× si and ϕi is si × 1. In this way we impose p− si restrictions
on βi. In order to identify the vector φi, we also have to normalize on one of its
coefficients. An example of (11) for the case r = 2, is given by the hypotheses
that mt and yt cointegrate and that idt cointegrates with πt. This hypothesis can be
formulated as the existence of two cointegrating vectors of the form (ϕ11, ϕ12, 0, 0, 0)
and (0, 0,ϕ21, ϕ22, 0) for some ϕ1 = (φ11,φ12)

0, and ϕ2 = (φ21,φ22). For this case we
would take

H 0
1 =

µ
1 0 0 0 0
0 1 0 0 0

¶
, H 0

2 =

µ
0 0 0 1 0
0 0 1 0 0

¶
.

The formulation (11) is the general formulation of linear restrictions on indi-
vidual equations and identification is therefore possible, provided the identification
condition is satisfied. In this particular case this means that, for instance, the first
equation is identified by R01β1 = 0, provided the rank condition is satisfied at the
true value, that is, rank(R01(β2, . . . , βr)) ≥ r − 1.
Another set of conditions, which do not involve the true value, is given by

rank(R01(Hi1 , . . . , Hik)) ≥ k,
for all 2 ≤ i1 ≤ . . . ≤ ik ≤ r, k = 1, . . . , r − 1. These ensure that, for almost all
values of the true parameter β, the rank condition is satisfied.
Finally one can, of course, impose general (cross equation) restrictions of the

form R0vec(β) = r0.

3.3 Hypotheses on the adjustment coefficients α and α⊥
There are two type of hypotheses on α that are of primary interest. The first is
the hypothesis of weak exogeneity, see Engle, Hendry and Richard (1983), of some
of the variables x2t, say. We decompose xt as (x01t, x

0
2t)

0 and the matrices similarly.
The model equations without deterministics are then

∆x1t = α1β
0xt−1 +

Pk−1
i=1 Γ1i∆xt−i + ε1t,

∆x2t = α2β
0xt−1 +

Pk−1
i=1 Γ2i∆xt−i + ε2t.
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The conditional model for ∆x1t given ∆x2t and the past variables is

∆x1t = ω∆x2t + (α1 − ωα2)β
0xt−1 +

k−1X
i=1

(Γ1i − ωΓ2i)∆xt−i + ε1t − ωε2t, (12)

where ω = Ω12Ω
−1
22 , if the errors are Gaussian. It is seen that, if α2 = 0, x2t is weakly

exogenous for α1 and β, if there are no further restrictions on the parameters. This
implies that efficient inference can be conducted on α1 and β in the conditional
model.
Another interpretation of the hypothesis of weak exogeneity is the following: if

α2 = 0 then α⊥ = (0, Ip−r)0, so that the common trends are α0⊥
Pt

i=1 εi =
Pt

i=1 ε2i.
Thus the errors in the equations for x2t cumulate in the system and give rise to the
non-stationarity. This does not mean that the process x2t cannot cointegrate, in
fact it can be stationary for specific parameter values, as the next example shows

Example 10 Consider the model

∆xt =

µ
α1
0

¶
β0xt−1 + Γ1∆xt−1 + ε1t,

where evidently x2t is weakly exogenous for the parameters α1 and β, if all parameters
are varying freely. The data generating process given by the equations

∆x1t = x2t−1 + ε1t,
∆x2t = −1

4
∆x1t−1 + ε2t,

is a special case with parameter values

α0 = (1, 0), β0 = (0, 1), Γ1 = −1
4

µ
0 0
1 0

¶
,

which satisfy the I(1) condition (5), and for which the weakly exogenous variable x2t
is stationary.

A general formulation of this type of hypothesis is

α = Aψ,

which has the interpretation that A0⊥xt is weakly exogenous for A
0α1 and β.

Another hypothesis of interest is that there are some cointegrating relations that
only appear in one equation. In this case one of the adjustment vectors is a unit
vector, a say, or equivalently α⊥ has a zero row. The interpretation of this is that the
shocks to the corresponding equation are not contributing to the common trends.
This hypothesis can be formulated as α = (a,ψ), or equivalently that α⊥ = a⊥ψ.
This is an example where a hypothesis on α⊥ is formulated as a hypothesis on α.
Another such is of course the hypothesis α⊥ = (a,ψ)which is equivalent to α = a⊥φ.
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3.4 The structural error correction model

Multiplying equation (1) by a non-singular matrix A0 gives the structural error (or
equilibrium) correction model

A0∆xt = α∗β0xt−1 +
k−1X
i=1

Γ∗i∆xt−i + Φ∗dt + ε∗t , (13)

where the ∗ indicates that the matrices have been multiplied by A0. Note that the
parameter β is the same as in (1), but that all the other coefficients have changed. In
particular, A0 is often chosen so that Ω∗ is diagonal. Usually β is identified first, by
suitable restrictions, and then the remaining parameters are identified by imposing
restrictions on

ϑ =
¡
α∗, Γ∗0, . . . , Γ

∗
k−1,Φ

∗,Ω∗
¢
. (14)

Such restrictions are, of course, well known from econometric textbooks, see Fisher
(1966), and the usual rank condition applies, as well as the formulations in connec-
tion with the identification of β.
The conclusion of this is that the presence of non-stationary variables allows two

distinct identification problems to be formulated. First, the long-run relations must
be identified uniquely in order that one can estimate and interpret them, and then
the short-run parameters ϑ must be identified uniquely in the usual way.
The cointegration analysis allows us to formulate long-run relations between vari-

ables, but the structural error correction model formulates equations for the variables
in the system. Thus if r = 1 in the example with money, income, inflation rate and
interest rates, we can think of the cointegrating relation as a money relation if we
solve it for money, but the equation for ∆mt in the structural model is a money
equation and models the dynamic adjustment of money to the past and the other
simultaneous variables in the system. The structural VAR is treated in Chapter 5,
section 7.

3.5 Shocks, changes and impulse responses

Model (1) shows that a change in εt (εt 7→ εt + c) is equivalent to a change in xt
(xt 7→ xt+ c).We shall call εt a shock and c a change. The Granger Representation
Theorem shows that the effect at time t+ h of a change c to εt (or xt) is

∂xt+h
∂εt

(c) = (C + Ch)c→ Cc, h→∞,

so that the impulse response function converges to Cc, which we shall call the long-
run (or permanent) impact of the change c.
Sometimes one can give an economic meaning to linear combinations of shocks

ei = v0iεt and therefore one may want to induce changes to one of these and keep
the remaining ones fixed. We introduce the notation

B−1 = (w1, . . . , wp), B0 = (v1, . . . , vp),
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and call ei = v0iεt the structural shock and wi its loading. We find

(C + Ch)εt =

pX
i=1

(C + Ch)wiv
0
iεt =

pX
i=1

(C + Ch)wiei.

Now a change of one unit, say, to the structural shock ei, keeping the others fixed,
gives the impulse response function

h 7→ (C + Ch)wi.

One such possibility is to choose the Cholesky decomposition, so that B is tri-
angular and so that BΩB0 = Ip.
Because the shocks α0⊥εt cumulate to the common trends, we define them as

permanent shocks. It is natural to define transitory shocks as independent of the
permanent ones, that is as α0Ω−1εt. The decomposition

εt = α(α0Ω−1α)−1| {z }
loading

α0Ω−1εt| {z }
trans. shock

+ Ωα⊥(α0⊥Ωα⊥)
−1| {z }

loading

α0⊥εt|{z}
perm. shock

is a decomposition of the shocks εt into the transitory shocks and the permanent
shocks. Note that the transitory shock has a loading proportional to α, so that
the long-run effect of a transitory shock is zero. Note also that the loadings of the
permanent shocks are suitable combinations of columns of Ω. Such loadings are used
in the so-called generalized impulse response analysis, see Koop, Pesaran and Potter
(1996).

4 Likelihood analysis of the I(1) model

This section contains first some comments on what aspects are important for check-
ing for model misspecification, and then introduces a notation for the calculations of
reduced rank regression, introduced by Anderson (1951). We then discuss how re-
duced rank regression and modifications thereof are used to estimate the parameters
of the I(1) model (1) and various submodels.

4.1 Checking the specifications of the model

In order to apply the Gaussian maximum likelihood methods one has to check the
assumptions behind the model carefully, so that one is convinced that the statistical
model one has chosen contains the density that describes the data. If this is not
the case, the asymptotic results available from the Gaussian analysis need not hold.
The methods for checking the VAR model are outlined in Chapter 5, including the
choice of lag length, the test for normality and tests for autocorrelation and het-
eroscedasticity in the errors. The asymptotic results for estimators and tests derived
from the Gaussian likelihood turns out to be robust to some types of deviations from
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the above assumptions. Thus the limit results hold for i.i.d. errors with finite vari-
ance, and not just for Gaussian errors. It turns out that heteroscedasticity does not
influence the limit distributions, see Rahbek, Hansen, and Dennis (2002), whereas
autocorrelated error terms will influence limit results, so this has to be checked care-
fully. Finally and perhaps most importantly, the assumption of constant parameters
is crucial.
In practice it is important to model outliers by suitable dummy variables, but

it is also important to model breaks in the dynamics, breaks in the cointegrating
properties, breaks in the stationarity properties etc. The papers by Seo (1998)
and Hansen and Johansen (1999) contain a theory for recursive estimation in the
cointegrating model.

4.2 Reduced rank regression

Let Ut,Wt, and Zt be three multivariate time series of dimensions pu, pw, pz respec-
tively. We define a notation, which can be used to describe the calculations per-
formed in regression and reduced rank regression, see Anderson (1951). We consider
a regression model

Ut = ΠWt + ΓZt + εt, (15)

where εt are the errors with variance Ω. The product moments are

Suw = T
−1

TX
t=1

UtW
0
t ,

and the residuals we get by regressing Ut on Wt are

(U |W )t = Ut − SuwS−1wwWt,

so that the conditional product moments are

Suw.z = Suw − SuzS−1zz Szw = T−1
TX
t=1

(U |Z)t(W |Z)0t

Suu.w,z = T
−1

TX
t=1

(U |W,Z)t(U |W,Z)0t = Suu.w − Suz.wS−1zz.wSzu.w.

The unrestricted regression estimates are Π̂ = Suw.zS−1ww.z, Γ̂ = Suz.wS
−1
zz.w and Ω̂ =

Suu.w,z. Reduced rank regression of Ut on Wt corrected for Zt gives estimates of α,
β and Ω in (15), when we assume that Π = αβ0 and α is pu× r and β is pw × r.We
first solve the eigenvalue problem

|λSww.z − Swu.zS−1uu.zSuw.z| = 0. (16)

The eigenvalue are ordered λ̂1 ≥ . . . ≥ λ̂p, and the corresponding eigenvectors
are v̂1, . . . , v̂p. The interpretation of λ̂1, say, is as the maximal squared canonical
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correlation between U and W corrected for Z, that is,

λ̂1 = max
ξ,η

(ξ0Suw.zη)2

ξ0Suu.zξη0Sww.zη
.

The reduced rank estimates of β, α, Γ and Ω are given by

β̂ = (v̂1, . . . , v̂r),

α̂ = Suw.zβ̂(β̂
0
Sww.zβ̂)

−1,
Γ̂ = S

uz.β̂
0
w
S−1
zz.β̂

0
w
,

Ω̂ = Suu.z − Suw.zβ̂(β̂0Sww.zβ̂)−1β̂0Swu.z,

and we find |Ω̂| = |Suu.z|
Qr
i=1(1 − λ̂i). Often the eigenvectors are normalized on

v̂0iSww.zv̂j = 0, if i 6= j, and 1 if i = j. The calculations described here is called a
reduced rank regression and will be denoted by RRR(U,W |Z).

4.3 Reduced rank regression in the I(1) model and deriva-
tion of the rank test

We saw in section (2.3) that the role of a deterministic term changes when its coeffi-
cient is proportional to α. We therefore consider a model where some deterministic
terms have this property, that is, the model

∆xt = α(β0xt−1 +ΥDt) +
k−1X
i=1

Γi∆xt−i + Φdt + εt, (17)

where Dt and dt are deterministic terms. Note that the coefficients to Dt, αΥ, has
been restricted to be proportional to α.We assume for the derivations of maximum
likelihood estimators and likelihood ratio tests that εt is i.i.d. Np(0,Ω). The Gaussian
likelihood function shows that the maximum likelihood estimation can be solved by
the reduced rank regression

RRR(∆xt, (x
0
t−1, D

0
t)
0|∆xt−1, . . . ,∆xt−k+1, dt).

With the notation

R0t = (∆xt|∆xt−1, . . . ,∆xt−k+1, dt),
R1t =

¡
(x0t−1, D

0
t)
0|∆xt−1, . . . ,∆xt−k+1, dt

¢
,

Sij = T
−1

TX
t=1

RitR
0
jt,

we find that (β̂
0
, Υ̂)0 solves the eigenvalue problem

|λS11 − S10S−100 S01| = 0,
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and that the maximized likelihood is, apart from a constant, given by

L−2/Tmax = |Ω̂| = |S00|
rY
i=1

(1− λ̂i). (18)

Note that we have solved all the models H(r), r = 0, . . . , p, by the same eigen-
value calculation. The maximized likelihood is given for each r by (18) and by
dividing the maximized likelihood function for r with the corresponding expression
for r = p we get the likelihood ratio test for cointegrating rank, the so-called rank
test or trace test:

−2logLR(H(r)|H(p)) = −T
pX

i=r+1

log(1− λ̂i). (19)

The asymptotic distribution of this test statistic and the estimators will be discussed
in section 5. Next we discuss how a number of hypotheses or submodels can be
analysed by reduced rank regression.

4.4 Hypothesis testing for the long-run coefficients β

We first consider the hypothesis H0 : β = Hφ. Under H0 the equation becomes

∆xt = α

µ
φ
Υ0

¶0µ
H 0xt−1
Dt

¶
+

k−1X
i=1

Γi∆xt−i + Φdt + εt,

which is solved by

RRR(∆xt, (x
0
t−1H,D

0
t)
0|∆xt−1, . . . ,∆xt+k+1, dt).

If λ̂
∗
i denote the eigenvalues derived under H0, we find

−2 logLR (H0|H (r)) = T
rX
i=1

log{(1− λ∗i ) /(1− λ̂i)}. (20)

Similarly the hypotheses β = b and β = (b,Hφ) can be solved by reduced rank
regression, but the more general hypothesis

β = (H1ϕ1, . . . , Hrϕr) ,

cannot be solved by reduced rank regression. With α = (α1, . . . ,αr) and Υ =
(Υ0

1, . . . ,Υ
0
r)
0, the equation becomes

∆xt =
rX
j=1

αj(ϕ
0
jH

0
jxt−1 +ΥjDt) +

k−1X
i=1

Γi∆xt−i + Φdt + εt.

This is evidently a reduced rank problem, but with r reduced rank matrices
of rank one. The solution is not given by an eigenvalue problem, but there is a
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simple modification of the reduced rank algorithm, which is easy to implement and
is found to converge quite often. The algorithm has the property that the likelihood
function is maximized in each step. The algorithm switches between the reduced
rank regressions

RRR(∆xt, (x
0
t−1Hi, D

0
t)
0|(x0t−1Hjφj, D0

tΥj)
0
j 6=i,∆xt−1, . . . ,∆xt−k+1, dt).

This result can immediately be applied to calculate likelihood ratio tests for
many different restrictions on the coefficients of the cointegrating relations. Thus,
in particular, this can give a test of over-identifying restrictions.
Another useful algorithm, see Boswijk (1992), consists of noticing, that for fixed

{φj ,Υj}rj=1, the likelihood is easily maximized by regression of ∆xt on {ϕ0jH 0
jxt−1+

ΥjDt}rj=1 and lagged differences and dt. This gives estimates of {αj}rj=1, {Γi}k−1i=1 , Φ,
and Ω. For fixed values of these, however, the equations are linear in {φj,Υj}rj=1,
which can therefore be estimated by generalized least squares. By switching between
these steps until convergence one can calculate the maximum likelihood estimators.
This algorithm has the further advantage that one can impose restrictions of the
form R0vec(β) = r0, and the second step is still feasible.

4.5 Test on adjustment coefficients.

Under the hypothesis H0 : α = Aψ, in particular the hypothesis of weak exogeneity,
we have the model

∆xt = Aψ

µ
β
Υ0

¶0µ
xt−1
Dt

¶
+

k−1X
i=1

Γi∆xt−i + Φdt + εt.

Multiplying by Ā0 = (A0A)−1A0 and A0⊥ and conditioning on A
0
⊥∆xt we get the

marginal and conditional models

Ā0∆xt = ωA0⊥∆xt + ψ

µ
β
Υ0

¶0µ
xt−1
Dt

¶
+

k−1X
i=1

ΓAi∆xt−i + ΦAdt + εAt (21)

A0⊥∆xt =
k−1X
i=1

ΓA⊥i∆xt−i + ΦA⊥dt + εA⊥t. (22)

where ω = Ā0ΩA⊥(A0⊥ΩA⊥)
−1. The parameters in the marginal and the conditional

model are variation independent, and β is estimated from the first equation by

RRR(Ā0∆xt, (x0t−1, D
0
t)
0|A0⊥∆xt,∆xt−1, . . . ,∆xt−k+1, dt).

4.6 Partial systems

The usual economic distinction between endogenous and exogenous variables is not
present in the VAR formulation. If we decompose xt = (x01t, x

0
2t)

0 of dimension p1
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and p2 and the matrices similarly, we get weak exogeneity when α2 = 0. Inference
on β is efficiently conducted in the conditional model (21) with A = (Ip1 , 0). Thus
we can model the changes of the variables x1t conditional on current changes of x2t
and lagged values of both variables, under the assumption of weak exogeneity. It
is therefore tempting to use this conditional or partial model to make inference on
both the cointegrating rank and the cointegrating relations.
The partial model is estimated by reduced rank regression

RRR(∆x1t, (x
0
t−1, D

0
t)
0|∆x2t,∆xt−1, . . . ,∆xt−k+1, dt).

and tests of rank and hypotheses on β and α1 can be calculated as for the full model.
However, the assumption of weak exogeneity, without which the analysis would not
be efficient, has to be checked in the full model. If the full system is too large to
analyse by cointegration, one can determine β from the conditional model and then
test for the absence of β̂

0
xt−1 in a regression model for ∆x2t, see (22).

5 Asymptotic analysis

This section contains a brief discussion of the most important aspects of the as-
ymptotic analysis of the cointegrating model without proofs and details. We give
the result that the rank test requires a family of Dickey-Fuller type distributions,
depending on the specification of the deterministic terms of the model. The tests
for hypotheses on β are asymptotically distributed as χ2, and the asymptotic dis-
tribution of β̂ is mixed Gaussian. The asymptotic results are supplemented by a
discussion of small sample corrections of the tests.

5.1 The asymptotic distribution of the rank test

We give the asymptotic distribution of the rank test in case the deterministic term
is a polynomial of order d.

Theorem 11 In model (17) with Dt = td and dt = (1, t, . . . , td−1), the likelihood
ratio test statistic LR(H(r)|H(p)) is given in (19). Under the assumption that the
cointegrating rank is r, and εt i.i.d. (0,Ω) the asymptotic distribution is

tr{
Z 1

0

(dB)F 0(
Z 1

0

FF 0du)−1
Z 1

0

F (dB)0}, (23)

where F is defined by

F (u) =

µ
B(u)
td

¯̄̄̄
1, . . . , td−1

¶
,

and where B(u) is the p − r dimensional Brownian motion. This distribution is
tabulated by simulating the distribution of the test of no cointegration in the model
for a p− r dimensional model with one lag and the same deterministic terms.
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Note that the limit distribution does not depend on the parameters Γ1, . . . ,Γk−1,
Υ, Φ, Ω, but only on the dimension p − r, the number of common trends, and the
order of the trend d. If p = 1 the limit distribution is the squared Dickey−Fuller
distribution, see Dickey and Fuller (1981), and we therefore call the distribution
(23) the Dickey—Fuller distribution with p− r degrees of freedom, DFp−r(d).
If the deterministic terms are more complicated, they sometimes change the

asymptotic distribution. It follows from the Granger Representation Theorem that
the deterministic term dt is cumulated to CΦ

Pt
i=1 di. In deriving the asymptotics,

we normalize xt by T−1/2. If
Pt

i=1 di is bounded, this normalization implies that
the limit distribution does not depend on the precise form of

Pt
i=1 di. Thus, if we

let dt be a centered seasonal dummy, or a ‘innovation dummy’ dt = 1{t=t0}, they
do not change the asymptotic distribution. If, on the other hand, we include the
‘step dummy’ dt = 1{t≥t0}, then the cumulation of this is a broken linear trend, and
that will influence the limit distribution and requires special tables, see Johansen,
Mosconi and Nielsen (2000).
For the partial models we also need special tables, see Harbo, Johansen, Nielsen

and Rahbek (1998), or Pesaran, Shin and Smith (2000). The problem is that because
α2 = 0, the cointegrating rank has to be less than the dimension, p1, of the modelled
variables as all the ε0s from the p2 conditioning variables generate common trends.
Thus the tables depends on the indices p2 and p1−r. The general problem of including
stationary regressors in the VAR has been treated by Mosconi and Rahbek (1999).
One can also test for rank when some of the cointegrating relations are known,

see Horvath and Watson (1995) and Paruolo (2001). In that case we get new limit
distributions which are convolutions of the Dickey-Fuller distributions for rank de-
termination and χ2 distributions used for inference for β.

5.2 Determination of cointegrating rank

Consider again model (17), with Dt = td and dt = (1, . . . , td−1), where the limit
distribution is given by (23). The tables are used as follows. If r represents
prior knowledge that we want to test, we simply calculate the test statistic Qr =
−2logLR(H(r)|H(p)) and compare it with the relevant quantile. Note that the ta-
bles give the asymptotic distribution only, and that the actual distribution depends
not only on the finite value of T but also on the parameters (α, β,Γ1, . . . ,Γk−1), but
not on Φ,Υ, and Ω.

A common situation is that one has no, or very little, prior knowledge about r,
and in this case it seems more reasonable to estimate r from the data. This is done
as follows. First compare Q0 with its quantile c0, say. If Q0 < c0, we let r̂ = 0, if
Q0 ≥ c0 we calculate Q1 and compare it with c1. If now Q1 < c1 we define r̂ = 1,
and if not we compare Q2 with its quantile c2, etc. This defines an estimator r̂ :

{r̂ = r} = {Qr < cr, Qr−1 ≥ cr−1, . . . , Q0 ≥ c0},

which takes on the values 0, 1, . . . , p, and which converges in probability to the
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true value in the sense that, if 95% quantiles are used for the estimation, then

Pr(r̂ = r)→ 95% and Pr(r̂ < r)→ 0.

5.3 A small sample correction of the rank test

In Johansen (2002a, 2004c) a small sample correction for the rank test is devel-
oped under the assumption of Gaussian errors, which improves the usefulness of
the asymptotic tables for the rank test. For finite samples, the distribution of the
likelihood ratio test statistic depends on the unknown parameters under the null
hypothesis. For T → ∞ the dependence on the parameters disappears, but not
uniformly in the parameter. Usually the distribution is shifted to higher values for
finite T, and more so, the closer we are to the I(2) boundary of the parameter space.
As an illustration of the results, consider the test for π = μ1 = 0 in the model

for the univariate process xt, with k = 2s+ 1

∆xt = πxt−1 +
2sX
i=1

γi∆xt−i + μ0 + μ1t+ εt.

Under the assumption that the process is I(1), the limit distribution of the likelihood
ratio test is the (squared) Dickey-Fuller test. We can then prove that if, instead of
using −2 logLR(π = μ1 = 0), we divide by the quantity

(1 + 0.12T−1 + 4.05T−2)(1 +
1.72

T
[s+

P2s
i=1 iγ̂i

1−P2s
i=1 γ̂i

]),

then the approximation to the limit distribution is improved. Note how the correc-
tion depends on the estimated parameters, in particular on values of

Pk
i=1 γi close

to one, where the correction tends to infinity. This corresponds to the process being
almost I(2). The numerical coefficients are determined by simulation of the vari-
ous moments of a random walk for various value of T, and depend on the type of
deterministics in the model.
Another example is given by the model with one lag, and p dimensions

∆xt = Πxt−1 + μ1t+ μ0 + εt,

where we test Π = αβ0 and μ1 = αβ01, where α and β are p× 1. Under the null we
have

H0 : ∆xt = α(β0xt−1 + β01t) + μ0 + εt.

In this case the correction factor takes the form

(1 + T−1a1(p) + T−2a2(p))(1 +
1

T

k(α, β,Ω)

β0α
)

where

k = −(2 + β0α)m(p)κ+ {2(1 + β0α)(p− 1)− 2κ(4 + 3β0α)}g(p)/(p− 1)2
and where κ = 1− (β0α)2/α0Ω−1αβ0Ωβ, and the coefficients a1(p), a2(p),m(p), and
g(p) are found by simulation. Notice that again the correction, and the test, give
problems when α0β = 0, which happens close to the I(2) boundary.
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5.4 The asymptotic distribution of β

The main result here is that the estimator of β, suitably normalized, converges to a
mixed Gaussian distribution, even when estimated under continuously differentiable
restrictions. The result is taken from Johansen (1996), but see also Anderson (2002).
This result implies that likelihood ratio tests on β are asymptotically χ2 distributed.
We normalize β̂ on β̄, so that β̄0β̂ = Ir, and find

Theorem 12 In model (1) the asymptotic distribution of β̂ is given by

T β̄
0
⊥(β̂ − β)

w→
µZ 1

0

HH 0du
¶−1 Z 1

0

H(dV )0, (24)

where
H = β0⊥CW, and V = (α

0Ω−1α)−1α0Ω−1W

are independent Brownian motions. An estimator of
R 1
0
HH 0du is T−1β̂

0
⊥S11β̂⊥.

Because H and V are independent, it follows that the limiting random variable
Z, say, has a distribution given H that is Gaussian

Z|H ∼ N(p−r)×r
Ã
0, (α0Ω−1α)−1 ⊗

µZ 1

0

HH 0du
¶−1!

, (25)

or equivalentlyµZ 1

0

HH 0du
¶1/2

Z(α0Ω−1α)1/2|H ∼ N(p−r)×r (0, Ir ⊗ Ip−r) , (26)

so that

(β̂
0
⊥

TX
t=1

R1tR
0
1tβ̂⊥)

1/2β̄
0
⊥(β̂ − β)(α̂0Ω̂−1α̂)1/2 w→ N(p−r)×r (0, Ir ⊗ Ip−r) .

This implies that Wald and likelihood ratio tests on β can be conducted using the
asymptotic χ2 distribution. Note that the asymptotic distribution is not Gaussian

and that the scaling factor
³R 1

0
HH 0du

´1/2
is not an inverse standard deviation,

as we usually employ in inference for stationary processes. It is correct that the
deviation (β̂ − β) can be scaled to converge to the Gaussian distribution, but it is
not correct that this scaling is done by an estimator of the asymptotic standard
deviation.
One could say that the proper scaling is an estimator of the asymptotic condi-

tional variance, given the function H, see Johansen (1995). The available informa-
tion in the data is measured by the matrix α̂0Ω̂−1α̂⊗ β̂0⊥

PT
t=1R1tR

0
1tβ̂⊥, and if this is

very large, β̂ has a small ’standard error’, but occasionally the information is small,
and then large deviations of β̂ − β can occur. We end by giving, without proof, a
result on the test for identifying restrictions on β. We denote by {Aij} the matrix
with blocks Aij and by {Hi} a block diagonal matrix with Hi in the diagonal.



C : 25

Theorem 13 Let β be identified by the restrictions β = {hi+Hiϕi}ri=1 where Hi is
p× (si − 1) and ϕi is (si − 1)× 1. Then the asymptotic distribution of T (β̂ − β) is
mixed Gaussian with an estimate of the asymptotic conditional variance given by

Tdiag({Hi}ri=1){ρ̂ijH 0
iS11Hj}−1diag({H 0

i}ri=1),
with ρij = α0iΩ

−1αj. The asymptotic distribution of the likelihood ratio test statistic
for these restrictions is χ2 with degrees of freedom given by

Pr
i=1(p− r − si + 1).

A small sample correction for the test on β has been developed by Johansen
(2000a, 2002b), see also Omtzigt and Fachin (2001) for a discussion of this result
and a comparison with the bootstrap.
To illustrate how to conduct inference on a cointegrating coefficient, and why it

becomes asymptotic χ2 despite the asymptotic mixed Gaussian limit of β̂, we may
consider a very simple case. Let xt be a bivariate process with one lag for which
α0 = (−1, 0) and β = (1, θ)0. The equations become

x1t = θx2t−1 + ε1t, (27)

∆x2t = ε2t.

If we add the assumption, that εt is Gaussian with mean zero and variance Ω =
diag(σ21,σ

2
2), the maximum likelihood estimator satisfies

θ̂ =

PT
t=1 x1tx2t−1PT
t=1 x

2
2t−1

= θ +

PT
t=1 ε1tx2t−1PT
t=1 x

2
2t−1

.

Let us first analyse the distribution of θ̂ conditional on the process {x2t}. We find
that

θ̂|{x2t} is distributed as N(θ,σ21/
TX
t=1

x22t−1).

aIt follows that θ̂ is mixed Gaussian with mixing parameter 1/
PT

t=1 x
2
2t−1, and hence

has mean θ and variance σ21E(1/
PT

t=1 x
2
2t−1). When constructing a test for θ = θ0

we do not base our inference on the Wald test

θ̂ − θq
V ar(θ̂)

=
θ̂ − θq

E(1/
PT

t=1 x
2
2t−1)

,

but rather on theWald test which comes from an expansion of the likelihood function
and is based on the observed information:Ã

TX
t=1

x22t−1

!1/2
(θ̂ − θ), (28)

which is distributed as N(0, σ21). Thus we normalize by the observed information not
the expected information often used when analysing stationary processes. In order
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Joint distribution of Theta_ML and Observed information, SIM = 300, T = 100
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Figure 2: The joint distribution of θ̂ and the observed information (
PT

i=1 x
2
2t−1/σ̂

2)
in the model (27). Note that the larger the information, the smaller is the uncertainty
in the estimate θ̂.

to conduct inference we should therefore not consider the marginal distribution of
the estimator, but the joint distribution of the estimator, θ̂, and the information
in the data,

PT
t=1 x

2
2t−1/σ

2
1, see Figure 2. The information should be exploited

by conditioning, in order to achieve Gaussian inference, see Johansen (1995), and
because the information and the t-ratio (28) are asymptotically independent, we
can perform the conditioning (asymptotically) by simply considering the marginal
distribution of the t-ratio instead.

6 Further topics in cointegration

The basic model for I(1) variables can be applied to test economic hypotheses of
different types and extended to allow for other types of non-stationarity. We mention
here an application to test for rational expectations, and some extensions to models
that allow for seasonal roots, explosive roots, and I(2) variables, some non-linear
error correction models and some models for panel data.

6.1 Rational expectations

Many economic models operate with the concept of rational or model based expec-
tations, see Hansen and Sargent (1991). An example of such a formulation is the
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uncovered interest parity,
∆eet+1 = i

1
t − i2t , (29)

which expresses a balance between the interest rates in two countries and the ex-
pected exchange rate changes. If we have fitted a vector autoregressive model to the
data xt = (et, i1t , i

2
t )
0 of the form

∆xt = αβ0xt−1 + Γ1∆xt−1 + εt, (30)

the assumption of model based expectations, (Muth 1961), means that ∆eet+1 can
be replaced by Et∆et+1 based upon the model (30). That is

∆eet+1 = Et∆et+1 = α1β
0xt + Γ11∆xt−1.

The assumption (29) implies the identity

i1t − i2t = α1β
0xt + Γ11∆xt−1.

Hence the cointegrating relation has to have the form

β0xt−1 = i1t − i2t ,
the adjustment is α1 = 1, and finally the first row of Γ1 is zero: Γ11 = 0. Thus, the
hypothesis (29) implies a number of testable restrictions on the vector autoregressive
model. The implications of model based expectations and the cointegrated vector
autoregressive model is explored in Johansen and Swensen (1999, 2004), where it
is shown that, as in the example above, the rational expectation restrictions have
information on the cointegrating relations and the short run adjustments. It is
demonstrated how estimation under the rational expectation restrictions can be
performed by regression and reduced rank regression in certain cases. See also
Campbell and Shiller (1987) for an analysis of the expectation hypothesis in the
cointegration model.

6.2 Seasonal cointegration

The cointegration theory so far described works under the assumption that the only
unstable root of the process is z = 1. If roots are allowed at z = −1, i,−i we get
models that exhibit quarterly seasonal non-stationary variation.
This model has been analysed from the point of view of maximum likelihood

by Lee (1992), Ahn and Reinsel (1994), and Johansen and Schaumburg (1998). In
order to illustrate the concepts in a simple setting, we consider the model with roots
only at z = 1 and z = −1, where we need (1− L)(1 + L)xt = (1− L2)xt to achieve
stationarity under a condition corresponding to (5).
The error correction model, see Hylleberg, Engle, Granger, and Yoo (1990), in

this case is found by expanding the autoregressive polynomial around z = 1 and
z = −1 and a simplified version, without deterministics and lags, is

(1− L)(1 + L)xt = (1 + L)α1β01xt−1 + (1− L)α−1β0−1xt−1 + εt. (31)
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The Granger Representation Theorem can be generalized to this case and gives
the solution of the equations, or the moving average representation, under an I(1)
condition of the form (5)

xt = C1

tX
i=1

εi + C−1(−1)t
tX
i=1

(−1)iεi +A1 + (−1)tA−1 + yt,

where yt is stationary and A1 and A−1 depend on initial values and satisfy β01A1 = 0,
and β0−1A−1 = 0, and C1 and C−1 have expressions like (7). This implies that the
processes

(1− L)(1 + L)xt = C1(1 + L)εt + C−1(1− L)εt + (1 + L)(1− L)yt,
(1 + L)β01xt = β01C−1εt + (1 + L)β

0
1yt,

(1− L)β0−1xt = β0−1C1εt + (1− L)β0−1yt,
are stationary. The non-stationarity of xt is due to the processes S

(1)
t =

Pt
i=1 εi

and S(−1)t = (−1)tPt
i=1(−1)iεi, for which (1 − L)S(1)t = εt, and (1 + L)S

(−1)
t = εt.

Maximum likelihood estimation of (31) involves two reduced rank regressions and
can be performed by a switching algorithm, see also Cubadda (2001) for complex
reduced rank regression in this model. Asymptotic inference can be conducted
much along the same lines as for the usual I(1) model, and we get the same basic
results: inference on the rank requires new Dickey-Fuller distributions which can be
expressed as stochastic integrals of complex Brownian motions, and inference on the
remaining parameters is asymptotic χ2.

6.3 Models for explosive roots

If the characteristic polynomial has one real explosive root z = λ < 1 and roots at
z = 1, we get explosive processes for which (1− L)(1− λ−1L)xt is stationary under
an I(1) condition corresponding to (5). We find, by expanding around z = λ−1 and
z = 1, the error correction model

(1− L)(1− λ−1L)xt = α1β
0
1(1− λ−1L)xt−1 + αλβ

0
λ(1− L)xt−1 + εt.

The solution under the I(1) condition is

xt = C1

tX
i=1

εi + Cλλ
−t

tX
i=1

λiεi + λ−tAλ +A1 + yt,

where A1 and Aλ depend on initial values and satisfy β01A1 = 0 and β0λAλ = 0,
and yt is stationary. The matrices C1 and Cλ have expressions as given in (7). The
non-stationarity is due to S(1)t =

Pt
i=1 εi, and S

(λ)
t = λ−t

Pt
i=1 λ

iεi, which satisfies
(1 − L)S(1)t = εt and (1 − λ−1L)S(λ)t = εt. Cointegration can remove one root, the
other is removed by either (1− L) or (1− λ−1L) so that the processes

(1− L)(1− λ−1L)xt = C1(1− λ−1L)εt + Cλ(1− L)εt + (1− L)(1− λ−1L)yt,
(1− λ−1L)β01xt = β01Cλεt + (1− λ−1L)β01yt,
(1− L)β0λxt = β0λC1εt + (1− L)β0λyt,
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are stationary. The sum
Pt

i=0 λ
iεi converges for t → ∞, and the explosiveness is

due to the factor λ−t →∞. This implies that the asymptotic theory is much more
complicated as no central limit theorem can be invoked, but the limit distributions
involve the random variable

P∞
i=0 λ

iεi, see Anderson (1959). The asymptotic theory
is developed by Nielsen (2001a, 2001b, 2002). Maximum likelihood estimation of
the model involves two reduced rank regressions and an estimation of λ. This can
be performed by a suitable switching algorithm.

6.4 The I(2) model

If z = 1 is the only unstable root and α0⊥Γβ⊥ has reduced rank, see (5), then we get
integration of orders more than one. Under suitable conditions, similar to (5), we
find that we need two differences to make the process stationary. We find an error
correction model which can be parametrized as

∆2xt = α(β0xt−1 + ψ0∆xt−1) + Ωα⊥(α0⊥Ωα⊥)
−1κ0τ 0∆xt−1 + εt, β = τρ, (32)

where α and β are p× r and τ is p× (r + s), see Johansen (1997), or

∆2xt = α

µ
β
δ0

¶0µ
xt−1

τ 0⊥∆xt−1

¶
+ ζτ 0∆xt−1 + εt, (33)

see Paruolo and Rahbek (1999). Here δ = ψ0τ⊥ is of dimension r×(p−r−s). Under
suitable conditions on the parameters, the equation has a solution of the form

xt = C2

tX
i=1

iX
j=1

εj + C1

tX
i=1

εi +A1 + tA2 + yt.

The coefficient matrices satisfy

τ 0C2 = 0, β0C1 + ψ0C2 = 0, τ 0(A1, A2) = 0, β0A1 + ψ0A2 = 0,

so that the processes

∆2xt = C2εt + C1∆εt +∆2yt,
β0xt + ψ0∆xt = β0yt + ψ0C1εt + ψ0∆yt
τ 0∆xt = τ 0C1εt + τ 0∆yt,

are stationary. Thus the solution is an I(2) process, and the cointegrating relations
are given by τ 0xt (and hence β0xt = ρ0τ 0xt) is I(1), but the model also allows for
multicointegration, see Engle and Yoo (1991), that is, cointegration between the
levels and the differences: β0xt + ψ0∆xt is stationary. Equivalently one can say,
since τ 0∆xt is stationary, that β0xt + δτ 0⊥∆xt is stationary, where δ is the so-called
multicointegration parameter. Maximum likelihood estimation can be performed
by a switching algorithm using the two parametrizations given in (32) and (33).
The same techniques can be used for a number of hypotheses on the cointegrating
parameters β and τ .
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The asymptotic theory of likelihood ratio tests and maximum likelihood esti-
mators is developed by Johansen (1997), Rahbek, Kongsted, and Jørgensen (1999),
and Paruolo (1996, 2000). It is shown that the likelihood ratio test for rank in-
volves not only Brownian motion, but also integrated Brownian motion and hence
some new Dickey-Fuller type distributions that have to be simulated. The asymp-
totic distribution of the maximum likelihood estimator is quite involved as it is not
mixed Gaussian. Many different hypotheses on the parameters can be tested using
asymptotic χ2 tests, see Boswijk (2000) and Johansen (2004b).

6.5 Non-linear cointegration

There are obviously many different ways in which a linear model can be generalized
to a non-linear model. We focus here on the non-linear error correction model,
without deterministic terms, formulated as

∆xt = f(β
0xt−1) +

k−1X
i=1

Γi∆xt−i + εt, (34)

see Bec and Rahbek (2004) for a survey and recent results. For linear f(β0xt−1) =
αβ0xt−1 we get model (1), and for the choice

f(β0xt−1) =
½

α1β
0xt−1, if |β0xt−1| > λ

α2β
0xt−1, if |β0xt−1| ≤ λ

,

we get the Threshold Autoregressive (TAR) model, where the adjustment coefficients
switch between α1 and α2, depending on the regime defined by the size of the
disequilibrium error |β0xt−1|. This kind of model has been used for testing for no
cointegration, see Enders and Siklos (2001) and for testing for linear cointegration,
see Balke and Fomby (1997) and Hansen and Seo (2002). No general results exist
for inference on β, which is difficult to even calculate because of the discontinuous
function f .
If we take

f(β0xt−1) = α1 exp(−|β0xt−1|) + α2(1− exp(−|β0xt−1|))

we get a smooth transition model, see Granger and Teräsvirta (1993).
In both cases one should think of the function f as modelling that the reaction

to a disequilibrium error is different depending on the regime, but the switching is
endogenous and does not depend on any outside influence.
Another type of model is where f is allowed to depend on an outside shock.

Consider, as an example, a zero-one variable st, and a model of the form

∆xt = f(β
0xt−1, st) +

k−1X
i=1

Γi∆xt−i + εt, (35)
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with f given by
f(β0xt−1, st) = (stα1 + (1− st)α2)β0xt−1.

The distribution of st given the past and εt is given by for instance

P{st = 1|xt−1, . . . xt−k+1, εt} = (1− exp(−|β0xt−1|))/(1 + exp(−|β0xt−1|)).

In this case the adjustment coefficient switches between two states, where the prob-
ability of the two states is a smooth function of the process. Such a process is
considered by Rahbek and Shephard (2002). The Markov switching models, where
st is an independent Markov chain, were introduced in econometrics for stationary
autoregressive processes by Hamilton (1989), and have gained widespread use. Only
recently, see Douc, Moulines, and Rydén (2003), have properties of maximum like-
lihood estimators been established, but extensions of the results to the cointegrated
model are still to be developed.
In general, this kind of model is difficult to analyse because of the non-linear

reaction function. Instead of finding a linear representation of the process in terms
of the errors, one has instead to prove the properties of the process directly. One
can replace the usual notion of I(0) by the notion of ‘geometric ergodicity’, (Bec and
Rahbek 2004) or ‘near epoch dependence’, (Escribano and Mira 2002), and attempt
to define I(1) by the requirement that xt converges weakly to a Brownian motion,
but the final concepts have not been developed yet. What replaces the Granger
Representation Theorem are results about β0xt and ∆xt being I(0), whereas, under
regularity conditions, xt is not, so that the process is cointegrated. Furthermore, one
can discuss existence of moments of the process xt, which is useful for developing an
asymptotic theory for the process and eventually for the estimators. Estimation of
this model is relatively straightforward if β is known, but, as mentioned, the theory
has yet to be developed for β unknown.

6.6 Panel data cointegration.

If we follow a panel of N units (countries) each with p variables, the data comes
in the form xit, i = 1, . . . , N, t = 1, . . . , T. We stack the vectors into the Np
dimensional vector xt and want to build a statistical model for xt that reflects the
panel structure. For illustration we assume that xt satisfies the simple I(1) model

∆xt = αβ0xt−1 + εt.

The panel structure could then be formulated by the conditions that α, β and Ω are
block diagonal corresponding to no feedback from one unit to another, no cointe-
gration between units, and independent units. This model has been investigated by
Larsson, Lyhagen and Løthgren (2001) and Groen and Kleibergen (2003) for general
Ω.
For macro data, this is not a useful set of assumptions, and the problem is to

model a large dimensional vector so that there is the possibility of 1) cointegration
within a unit, 2) some cointegration between units, 3) the possibility of feedback
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from disequilibrium in other units, and finally 4) some possibility of correlation
between the shocks to different units.
An interesting solution has been proposed by Pesaran, Schuermann, Weiner

(2004), who suggest to construct for each unit a "rest of the world" index x∗it =P
j 6=iwijxjt, and model the ith unit as

∆xit = αi(β
0
ixit−1 + β∗0i x

∗
it−1) + εit.

By stacking the observations into xt and solving the models for xt they obtain a
model, that takes into account all the four requirements above.
All the models are of course submodels of the basic I(1)model but the asymptotic

theory is different, because we can let N →∞ or T →∞ or both, see Phillips and
Moon (1999).

7 Conclusion

Granger (1983) coined the term cointegration, and it was his investigations of the
relation between cointegration and error correction Engle and Granger (1987), that
brought the modelling of vector autoregressions with unit roots into the center of
attention in macro econometrics.
During the last 20 years, many have contributed to the development of the theory

and the applications of cointegration. The account given here focusses on theory,
more precisely on likelihood based theory for the vector autoregressive model and
its extensions. The reason for focussing on model based inference is that, although
we hope to derive methods with wide applicability, all methods have a limited ap-
plicability. By building a statistical model as a framework for hypothesis testing,
one has to make explicit assumptions about the model used.
Therefore it becomes a natural part of the methodology to check assumptions,

because if the assumptions are not satisfied, the same may hold for the results de-
rived. Applying a rank test to some given data, without checking that the underlying
vector autoregressive model has errors with no residual autocorrelation, and that the
parameters of the model are constant, is as wrong as applying the continuos map-
ping theorem in asymptotic analysis, without checking that the function in question
is in fact continuos.
What has been developed for the cointegrated vector autoregressive model is a

set of useful tools for the analysis of macroeconomic and financial time series. The
theory is part of many text books, and the I(1) procedures have been implemented
in many different software packages, CATS in RATS, Givewin, Eviews, Microfit,
Shazam etc. The I(2) model is less developed but a version will appear in CATS.
Many theoretical problems remain unsolved, however. Time series rely heavily

on asymptotic methods and it is often a problem to obtain long series in economics
which actually measure the same variables for the whole period. Therefore periods
which can be modelled by constant parameters are often rather short, and it is
therefore extremely important to develop methods for small sample correction of
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the asymptotic results. When these become part of the software packages, they will
be routinely applied and ensure more reliable inference.
A very interesting and promising development lies with non-linear time series

analysis, where the statistical theory is still in its beginning. There are many dif-
ferent types of non-linearities possible, and the theory has to be developed in close
contact with the applications in order to ensure that useful models and concepts are
developed.
Apart form this there is going to be a development and extension of cointegra-

tion in the area of panel data cointegration, seasonal cointegration, and the models
for explosive roots. This development should also include software for the various
models, in order that the theory can be easily applied and extended in interaction
with applications.
Most importantly, however, is a totally different development which is needed,

and that is a development of economic theory, which takes into account the findings
of the empirical analyses of non-stationary economic data.
For a long time regression analysis and correlations have been standard ways of

analysing relations between variables and cause and effect in economics. Economic
theory has incorporated regression analysis as a useful tool for checking or falsifying
economic predictions.
Similarly, empirical cointegration analysis of economic data reveals new ways of

understanding economic data, and there is a need for building an economic theory
that supports and explains these understanding.
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