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Abstract This paper describes in a non-technical manner the concept of

cointegration and its implications in the modelling of climate data. It illus-

trates a number of inference procedures appropriate in integrated-cointegrated

vector autoregressive processes (VARs). Particular attention is paid to the

properties of VARs, to the modelling of deterministic terms, to the determi-

nation of the number of cointegration vectors, and to testing hypotheses on

long-run relation and short-run adjustment. The analysis is illustrated by an

empirical analysis of sea and land temperatures in the period 1500-2000 and

how the long-run movements in these temperatures have been in
uenced by

solar radiation, greenhouse gasses and volcanic erruptions.
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1 Introduction

The aim of this paper is to introduce climatologists to some fairly re-
cent methods in time series analysis, dubbed multivariate cointegration.
The methods were originally developed to provide adequate tools for
empirical analysis of economic time series. The recognition that eco-
nomic time series are non-stationary profoundly altered the technol-
ogy of econometrics, introducing the concepts and tools associated with
integrated-cointegrated data. Even though the procedures so far have
mostly been used in the analysis of economic data, their applicability is
by no means restricted to such data. Unit root processes (variables con-
taining a stochastic trend) can be found in many other �elds, for example
in climate data. Cointegration analyses of such data have also been re-
ported in the literature (see, Kaufman and Stern, 2002 and references
therein), but still in a very limited scale. We are convinced there exists
a much larger potential for analyzing climate data with the cointegrated
VAR model.
Why is it important to use cointegration methods rather than the

usual regression methods when there are unit roots in the data? The
simple answer is that standard regression estimates are derived under the
assumption of stationarity, implying that the variables are not trending,
or if they are, that the trend is a deterministic time trend. A simple
example illustrates. Assume for simplicity that annual temperature Ct
follows a random walk:

Ct=Ct�1 + "t; t =1,...T:
= "t(1 + L+ L

2 + :::+ Lt) + C0;

=
Pt

i=1 "i + C0

(1)

where "t � N(0; �2) is the temperature change from t � 1 to t; so that
�Ct = "t; C0 is the initial value, and L is the lag operator such that
Lmxt = xt�m. By assuming that the temperature changes have a zero
mean we have from the outset stated that temperature cannot have a
deterministic trend, but as long as the coe�cient to Ct�1 is equal to
1:0; it will have a stochastic trend, de�ned by the cumulated changes
("i): This is the reason why a variable containing a stochastic trend,
de�ned as the cumulated sum of Independent Normal errors, in short, "t
distributed as IN(0; �2") is often called a unit root process, in short I(1).
A stochastic variable, similarly generated from IN(0; �2") errors, but with
a coe�cient less then 1.0 in absolute value is then called an I(0) process1.
Regressing I(1) variables on each other has the unfortunate consequence
that the usual �2; F; and t distributions are no longer valid. This means,

1For a mathematically precise de�nition, see Johansen (1996).
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for example, that the t ratios in such regression models are no longer
distributed as Student't statistics and one does not know whether a
coe�cient is signi�cant or not.
However, the very rich structure of the cointegrated VAR model is

the main reason why it is likely to be enormously useful for the analysis
of climate data. As the subsequent analysis demonstrates, it is possible
to analyze long-run co-movements between trending variables, as well
as short-run dynamic adjustment and feed-back e�ects within the same
model. Furthermore, the model allows us to investigate which climate
shocks (temperature changes) had a long-run permanent e�ect on the
variables of the system, and which had just a temporary e�ect. In this
sense, the analysis may potentially provide results on causal mechanisms
in the long run and in the short run.
The mathematics of the cointegrated VAR model may easily have

an intidimating e�ect on a non-mathematician. The derivation of the
asymptotic distributions in Johansen (1996) provides a good illustra-
tion. In order not to scare away any potential user, the discussion here
is kept on a non-technical level. Thus, the idea at this stage is to pro-
vide an intuition for the analysis, to illustrate questions that can be
easily addressed, and to show how the result can be interpreted. In
so doing, I shall introduce the concepts and the interpretations using
just one, empirically rich, data set. It consists of annual land and sea
temperatures over the period 1500-2000 from Stendel, Mogensen, and
Christensen (2005) and of the following forcing variables: solar radia-
tion, three greenhouse gasses, and volcanic erruptions from Robertson
et.al. (2001)2.
The organization is built up based on similar principles as in my

recent book, Juselius (2006). But, contrary to the book, I shall here
leave out almost all formal econometrics and, instead, refer to the chapter
where it can be found. All empirical results are obtained by applying
the software package CATS in RATS (Dennis et. al. 2006). The graphs
are produced with the package GiveWin (Doornik and Hendry, 2006).
Finally, I should stress that the data have been analyzed purely from

a statistical/econometric point of view. My prior knowledge of climato-
logical models is close to zero, something I consider an advantage at this
stage. It means I have approached the data without having any prior
ideas of what to �nd, which signs of coe�cients, etc. Thus, if the analy-
sis provides interesting results it can be seen as evidence of the strength
of the methods.
The organization of the paper is as follows: Section 2 introduces the

data and Section 3 the concept of cointegration in a bivariate model

2The data base was kindly given to me by Peter Thejll.
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setting applied to land and sea temperatures and provides some �rst,
still tentative, results. Section 4 discusses how to check the statistical
adequacy of the model, how to account for outlier observations in the
data analysis, and how to calculate the characteristic roots of the model.
Section 5 discusses how to determine the cointegration rank (the number
of cointegration relations in the data) using all available information.
Section 6 reports some preliminary results on the common trends and
how they have a�ected the data. Section 7 test the model for parameter
constancy and discusses how to interpret some recursive tests. Section
8 adds the forcing variables to the model and reports a more realistic
analysis of the Robertson climate data. The concept of exogeneity is
discussed at some length. Section 9 provides a complete analysis of
the pulling and pushing forces in this climate model and Section 10
concludes.

2 Introducing the data

The variables of interest, the model determined land and sea tempera-
tures from Stendel et.al. (2005), will �rst be analyzed without consid-
ering the impact of the forcing variables from Robertson et.al. (2001).
Even though the empirical results from this analysis are interesting as
such, the main advantage of this is to introduce the concepts in a very
simple context. Nonetheless, the long-run impact of the forcing variables
is what climatologists usually care most about and the last part of the
paper is concerned with this question.
Being a time-series econometrician, I always begin by taking logs of

the data as a matter of routine. This is because the results are often
easier to interpret in relative changes (percentages), but also because the
parameters of a VectorAutoRegressive (hereafter VAR) model in logs are
usually more constant than in absolute values. However, I recognize that
climate models are based on physical laws that that might suggest other
transformations. In this case, there is an argument in favor of relating
asolute temperatures to the log of CO2. I have done the analyses of this
paper for (1) absolute values of all variables, (2) log values of all variables
(except for volcanic erruptions as this variable contains numerous zero
observations), and (3) absolute values of temperatures and solar radia-
tion, but log values of the greenhouse gasses. Since all basic conclusions
are essentially unchanged for the three cases, I continue with case (2).
Figure 1, left hand side, shows the movements of land and sea tempera-
tures, as well as solar radiation in log levels and right hand side the �rst
di�erences over the period 1500-2000. We note that the mean values of
the log level of land temperature, denoted Cl;t; and sea temperature, de-
noted Cs;t; seem to vary over time in a non-deterministic manner typical
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Figure 1: The graphs of land temperature, sea temperature, and solar
radiation in log levels (left hand side) and log di�erences (right hand
side).

of a non-stationary series. More interestingly, they seem to follow a com-
mon long-run path prompting the question whether the long-run trend
is actually the same in the two temperatures. This is one of one of the
basic questions one can answer with cointegration analysis. If the an-
swer is yes, we say that the two temperatures share a common stochastic
trend implying that they are cointegrated. Cointegration between the
two temperature variables would then imply that both of them had been
similarly a�ected by permanent temperature changes over time. Thus,
a linear combination of the two temperatures would be stationary (i.e.
do not exhibit any trending behavior) despite each of them evolving in
a non-stationary manner. In this case, the common stochastic trend
would be measured by (a linear combination of) cumulated tempera-
ture changes at land and sea over the sample period. Understanding
what have caused these temperature changes would, of course, be the
ultimate interest of the empirical analysis. To obtain some answers to
this question the last part of the paper will add a number of potential
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Figure 2: The graphs of GHG1, GHG2, GHG3, and volcanic erruptions
in log levels (left hand side) and di�erences (right hand side).

driving variables, such as solar radiation, several greenhouse gasses, and
volcanic emissions of aerosol, to the analysis.
In case the two temperature variables are not cointegrated, imply-

ing that the long-run stochastic path is not exactly the same, a linear
combination between the two temperatures would still exhibit trending
behavior. The interesting hypothesis would then be whether this left-
out trend could be associated with any of the forcing variables, so that
a linear combination of the two temperatures and the forcing variables
produces a stationary variable. In this case, the forcing variables would
have a di�erent long-run impact on the land and sea temperature.
The bottom panels of Figure 1 show the graphs of solar radiation

in log levels and di�erences and Figure 2 some potential forcing vari-
ables, here the greenhouse gasses GHG1 (CO2), GHG2 (CH4) and GHG3
(N2O), and emissions of aerosol from volcanic erruptions.
The next section will introduce the concept of cointegration using

exclusively land and sea temperatures. Sections 3-7 will introduce the
relevant statistical concepts needed for a complete cointegration analysis
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using the temperature data as an illustration. Sections 8-9 will extend
the analysis with the main forcing variables.

3 Introducing cointegration

This section introduces the basic concepts of cointegration using a �rst
tentative analysis of the two temperature variables. At this stage all
formal analysis will be avoided in order to slowly build up the intuition
for what cointegration analysis is.
First it is important to realize that cointegration, as such, does not

say anything about causality only about an association between vari-
ables. In this sense cointegration can be compared to a simple corre-
lation coe�cient (or a regression coe�cient), which does not say any-
thing about causal links. However, a correlation coe�cient is a measure
of a bivariate relation and it requires stationarity to be interpretable,
whereas cointegration is de�ned for two or more variables and can be
interpretable as a measure of association when data are non-stationary.
Thus, a correlation coe�cient (associating two stationary variables) can
often be thought of as describing a short-run relationship, whereas a
cointegration relation describes a relationship that holds over the long
run. For example, the short-run relationship between changes in the
land and sea temperature (which are stationary) can be completely dif-
ferent from the long-run relationship between temperature levels. In the
present data set, the short-run association between changes in land and
sea temperatures is 1 to 0.83 (obtained by regression analysis) whereas
the long-run association between levels of temperature is 1 to 4.2 (ob-
tained by cointegration analysis).
However, the cointegrated VAR model is not just modelling coin-

tegration relations, it also involves the analysis of short-run adjustment
e�ects in a system of equations. The latter are more informative on ques-
tions of causal links. For example, sea temperature could have changed
and then caused a change in the land temperature. In this case we would
�nd a signi�cant adjustment coe�cient in the equation for land temper-
ature, but no such adjustment in the equation for the sea temperature.
We say that sea temperature is exogenous to the land temperature. Or,
it would have been the other way around and land temperature would
have been exogenous to the sea temperature. In most cases, there is ad-
justment in both equations and we cannot statistically postulate which
variable drives the other. We say that both variables exhibit feed-back
e�ects as a consequence of some third forcing variable having pushed the
system away from the equilibrium state.
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3.1 A simple VAR formulation

Thus, to fully comprehend how to properly formulate a cointegrated
VAR model, one has to understand that it contains two fundamentally
di�erent but interrelated analyses:

1. The analysis of long-run relations de�ned as stationary linear com-
binations between nonstationary variables. This implies that the
cointegrated variables are co-moving in a stationary long-run rela-
tionship. When they are pushed apart some adjustment forces will
be activated to bring them back toward the long-run equilibrium
level.

2. The analysis of the equations which de�ne how the short-run ad-
justment takes place that bring the variables back to the equilib-
rium level.

Thus, cointegration analysis is inherently multivariate both in the
sense of �nding cointegration relations between variables and learning
about how the system react to exogenous shocks. All this can be ana-
lyzed at the same time in one model, the vector autoregressive (VAR)
model, where each variable is `explained' by its own lagged values, and
the lagged values of all other variables in the system. A VAR(2) model
(with two lags) would look like follows:

xt = �1xt�1 +�2xt�2 + �+ "t (2)

where "t is assumed IN2[0;
"], and 
" is the (positive-de�nite, symmet-
ric) covariance matrix of the error process. Writing it out for the land
and temperature variables it becomes:�

Cl;t
Cs;t

�
=

�
�1:11 �1:12
�1:21 �1:22

� �
Cl;t�1
Cs;t�1

�
+

�
�1:11 �1:12
�1:21 �1:22

� �
Cl;t�2
Cs;t�2

�
+

�
�1
�2

�
+

�
"1;t
"2;t

�
The VAR model (2) can be given di�erent parametrizations without
imposing any binding restrictions on the parameters of the model (i.e.,
without changing the value of the likelihood function). When the aim
is to discriminate between short-run adjustment e�ects and long-run
relations, the following equilibrium error correction form (VecEcm) is
the most useful one:

�xt = �1�xt�1 +�xt�1 + �+ "t (3)
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with � = Ip � �1 � �2 and �1 = ��2. Writing it out gives:

�
�Cl;t
�Cs;t

�
=

�

11 
12

21 
22

� �
�Cl;t�1
�Cs;t�1

�
+

�
�11 �12
�21 �22

� �
Cl;t�2
Cs;t�2

�
+ (4)

+

�
�1
�2

�
+

�
"1;t
"2;t

�
; (5)

The explanatory part of model (4) is now formulated so that one can
directly discriminate between short-run transitory e�ects of changes in
the lagged di�erences (�1�xt�1) and long-run e�ects between the lagged
levels (�xt�1) and how they have a�ected temperature changes. How-
ever, the estimated coe�cients (and their p-values) can vary considerably
between (2) and (4), despite being identical in terms of errors f"tg and,
hence, explanatory power3.
The above VARmodels are at this stage formulated without consider-

ing the order of integration of the variables and can be estimated by OLS.
However, some inference is not standard (�2;; F; t) unless xt � I(0): This
is, in particular the case with the � matrix, the estimated coe�cients of
which are not distributed as Student's t when xt is non-stationary. This
is exactly where cointegration o�ers a solution. When xt � I(1); the �
matrix has reduced rank, r:

� = ��0 (6)

where � is a p � r matrix of adjustment coe�cients describing which
equations adjust and which do not, and � is a p�r matrix of coe�cients
describing r long-run relations �0xt. To show which questions can be
asked within this cointegrated VAR, we insert (6) in the VecEcm model
for the two temperature variables Cl;t and Cs;t:�

�Cl;t
�Cs;t

�
=

�

11 
12

21 
22

� �
�Cl;t�1
�Cs;t�1

�
+

�
�11
�21

�
[Cl � b1Cs]t�1

+

�
�1
�2

�
+

�
"1;t
"2;t

�
; (7)

where �0 = [1; b1] so that �
0xt�1 = [Cl � b1Cs]t�1 : Based on the cointe-

grated VAR model in (7), we could explain the two temperature changes
from period t� 1 (previous year) to t (this year) as a result of:

3This illustrates the increased di�culty of interpreting coe�cients in dynamic
models relative to static regression models: many signi�cant coe�cients need not
imply high explanatory power, but could result from the parameterization of the
model.
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(i) an adjustment to previous temperature changes, with impacts 
ij
for the jth lagged change in the ith equation;

(ii) an adjustment to previous disequilibria between land and sea tem-
peratures, (Cl;t � b1Cs;t), with impacts �i1 in the ith equation;

(iv) a constant term �i; and

(v) random shocks, "i;t:

When the temperature variables are I(1), and land and sea temper-
ature are cointegrated, the changes in temperatures as well as (Cl;t �
!1Cs;t) are I(0). Thus, treating (Cl;t � b1Cs;t) as a variable measuring
the disequilibrium error (temperature imbalance) at each point in time,
means that the VecEcm model is now formulated in stationary variables
and standard inference applies. Figure 3, upper panel, shows that the
trending behavior of the two temperatures evolve in a very similar man-
ner when adjusted for mean and range. The lower panel shows that
the linear combination, Cl;t � 4:2Cs;t; annihilates the trend, which sug-
gests that the stochastic long-run trend is indeed the same in the two
temperature variables.
A constant term is not usually of great interest. However, in the

cointegrated VAR model the constant term has a di�erent interpreta-
tion if it is part of the equations or the cointegration relations. As a
matter of fact, understanding the above distinction between equations
and relations is crucial in order to understand the role of all determinis-
tic components (trends, dummy variables as well as the constant term)
in the cointegrated VAR model. This is a fairly complicated issue which
will not be covered in any detail in this paper. For a more detailed ac-
count the reader is referred to Johansen et.al. (2000) and Juselius (2006,
Chapter 6).
At this stage we shall only discuss how to specify the constant term

or the trend in the model. To start with we need to decide whether
the variables contain a deterministic linear time trend or not. This is
essentially the question of whether the temperature changes have a mean
which is di�erent from zero or not. In the former case, the temperature
has grown signi�cantly over the sample period with an average growth
rate equal to the average of the temperature change and we need to
allow for a linear time trend in the model. In the latter case it has not
grown deterministically and we should allow for a constant term, but no
linear trend, in the model. The table below shows that the temperature
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Figure 3: The graphs of land and sea temperatures adjusted for mean
and range (upper panel) and of a stationary cointegration relation be-
tween the two (lower panel).

changes over this sample period are not signi�cantly di�erent from zero.

�Cl;t �Cs;t
Sample mean 0.00056 0.00012
Sample standard deviation 0.0210 0.0031

Thus our model needs a constant term, but no linear time trend. The
constant term has to be restricted to exclusively enter the cointegration
relations, as a constant term in the equations (de�ned for temperature
changes) has the role of a linear growth rate. This means that the
constant term will measure an intercept in the cointegration relations.

3.2 Some preliminary estimates

As already mentioned, the existence of cointegration by itself does not
imply which temperatures `equilibrium adjust' and which do not; nor
does it entail whether any adjustment is fast or slow. Information about
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such features can be provided by the �ij coe�cients. To discuss the full
model we reproduce some �rst estimates of (7):

�
�Cl;t
�Cs;t

�
=

�
�0:26 1:08
�0:02�0:18

� �
�Cl;t�1
�Cs;t�1

�
+

+

�
�0:39
0:03

�
[Cl � 4:20Cs + 9:90]t�1 +

�
"1;t
"2;t

�
: (8)

First we notice that �11 = �0:39[7:5]4 whereas �12 = 0:03[3:2]; i.e.
both temperatures adjust signi�cantly to any `deviant' behavior in land
and sea temperatures, but the land temperature adjusts more quickly.
When the product �1i�i < 0; we say that the variables are equilibrium
error correcting. As the product �0:39 � 1:0 < 0 and 0:03 � (�4:2) < 0;
both temperatures are equilibrium error correcting. This is the same as
saying that the two variables adjust in a manner restoring an imbalance
between land and sea temperatures once they have been pushed o� the
equilibrium state. However, the adjustment is not immediate, unless the
product is -1.0. The smaller the coe�cient the longer it takes.
Assume now that �12 = 0: In this case, the sea temperature is not

exhibiting any feed-back e�ects from `deviant' behavior in land and sea
temperatures, whereas land temperature is. In that case, one would be
inclined to say that sea temperature has in
uenced land temperature,
but not the other way around. This would certainly be the case if the
residual correlation between land and sea temperatures were zero, i.e.
the matrix 
" were diagonal, so there were no contemporaneous links.
In our example, the correlation coe�cient is 0.41 and one would have
to be more careful about such `causal' interpretations. The interpreta-
tion of the parameter estimates is generally more straightforward when

" is diagonal, but unfortunately this is seldom the case; temperature
shocks are often correlated, sometimes indicating an un-modeled causal
link. For example, if an increase in land temperature a�ects the sea
temperature within a few months (say), then this would show up as a
residual correlation. The latter could then be accounted for by including
the current change of the land temperature in the equation of the sea
temperature .

4 The statistical adequacy of a VAR model

The cointegrated VARmodel discussed here is based on the full-information
maximum likelihood (FIML) approach. To derive FIML estimators and

4t values in brackets.
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tests requires an explicit probability formulation of the model which ac-
cording to (2) is the multivariate normality of the errors assumed to
be uncorrelated and identically distributed. Suppose we estimate the
model, and �nd that the residuals are not normally distributed, the
residual variance is heteroscedastic instead of homoscedastic, or resid-
uals exhibit signi�cant autocorrelation, etc. The parameter estimates
(based in this case on an incorrectly derived estimator) may not have
any meaning, and since we do not know their `true' properties, inference
is likely to be hazardous. Therefore, to claim that conclusions are based
on FIML inference is to claim that the empirical model is capable of
accounting for all the systematic and random information in the data in
a satisfactory way.
Thus, to understand when a VAR is an adequate description of re-

ality, it is important to know the limitations as well as the possibilities
of that model. The purpose of this section is, therefore, to demon-
strate that a VAR model can be a convenient way of summarizing the
information given by the autocovariances of the data under certain as-
sumptions about the Data Generating Process (see Juselius, 2006, for
details). However, the required assumptions may not hold in any given
instance, so the �rst step in any empirical analysis of a VAR is to test if
these assumptions are indeed appropriate.
There are essentially three crucial assumptions that need to be checked.

1. The stochastic properties given by "t � INp [0;
"] ;

2. The order of integration of xt;

3. The constancy of the parameters, �1; �; �

These conditions provide the model builder with testable hypotheses on
the assumptions needed to justify the VAR.

4.1 Checking the stochastic speci�cation

Unfortunately, the multivariate normality assumption is often not com-
pletely satis�ed. This is potentially a serious problem, since, as already
said, the statistical inference is only valid to the extent that the as-
sumptions of the underlying model are correct. An important question
is, therefore, whether it is possible to modify the standard VAR model
to make it statistically more adequate when the assumptions fail. Sim-
ulation studies have demonstrated that statistical inference might be
sensitive to the validity of some of the assumptions, such as parameter
non-constancy, serially-correlated residuals and residual skewness (the
more the worse), while moderately robust to others, such as excess kur-
tosis (fat-tailed distributions) and residual heteroscedasticity. Thus, it
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seems advisable to ensure that the �rst three are roughly valid. As a
�rst check, it is often useful to calculate descriptive statistics combined
with a graphical inspection of the residuals and then undertake formal
mis-speci�cation tests of each key assumption. Once the reason why a
model fails to satisfy the assumption is understood, one can often mod-
ify it to end with a well-speci�ed model. This will be illustrated below
for the land-sea climate data.
The IN distributional assumption implies that all information about

land and sea temperatures should have been modeled by the conditional
mean, in the sense that the deviation between the actual outcome xt
and the model expectation Et�1[xtjX0

t�1] is a white-noise residual, not
explicable by the past of the process and X0

t�1 contains all relevant past
information. By way of contrast, a VAR with autocorrelated residuals
would describe a model which has not used all information in the data as
e�ciently as possible. This is because we could do better by including the
systematic variation left in the residuals, thereby improving the accuracy
of the model's predictions about the temperature change. Checking the
assumptions of the model, (i.e., checking the white-noise requirement
of the residuals, and so on), is not only crucial for correct statistical
inference, but also for the interpretation of the model as an adequate
description of climate change.
As already mentioned, the white-noise assumption is often rejected

for the �rst, tentatively estimated, model and one has to modify the
speci�cation of the VAR model accordingly. This can be done, for ex-
ample, by:

� investigating parameter constancy (e.g., `is there a structural shift
in the model parameters'?);

� increasing the information set by adding new variables;

� changing the temporal or spacial aggregation;

� increasing the lag length;

� changing the sample period;

� adding dummies to account for signi�cant meteorological events,
volcanic erruptions, etc.;

� conditioning on weakly or strongly exogenous variables (forcing
variables);

� checking the adequacy of the measurements of the chosen variables.
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Table 1: Misspeci�cation tests of the �rst VAR model

Multivariate normality test: �2(4) = 3:49[0:48]�)

Multivariate ARCH(1) test: �2(9) = 44:01[0:00]
Multivariate autocorrelation LM(1) test: �2(4) = 31:04[0:00]
Univariate tests:

Skew: Kurt: Norm: ARCH R2

�Cl;t -0.14 2.98 1.58[0.54] 14.24[0.00] 0.30
�Cs;t -0.10 3.47 5.61[0.06] 6.68[0.04] 0.09
�) p-values in brackets

� transforming the data, for example into logs.

Table 1 reports a number of mis-speci�cation tests (for a detailed
discussion see Juselius, 2006, Chapter 4) that can be used to assess the
assumption that "t � INp [0;
"] : The multivariate normality assumption
seems fully acceptable, whereas the presence of multivariate ARCH (Au-
toRegressive Conditional Heteroscedasticity), cannot be rejected. More
seriously, the model rejects that the errors are uncorrelated, a fairly im-
portant condition, as all �2; F; and t tests are based on the assumption
of independent normal errors. However, when the sample is long even
tiny deviations from the null hypothesis can become signi�cant. As the
model's inference is likely to be fairly robust to the presence of tiny
autocorrelations, it is often useful also to check the magnitude of these
coe�cients. Figures 4 and 5 illustrate. A few things stick out: �rst the
autocorrelations are generally small, despite signi�cant. However, for sea
temperature they seem uncorrelated at smaller lags, but become signi�-
cant after a very long lag of roughly 70 years. Thus, the sea temperature
seems to have a built-in long time dependence. Second, even though the
residual seem normally distributed, there are a few outliers sticking out:
one in 1767 that a�ects both land and sea temperature, one in 1815
a�ecting the land and the sea temperature followed by another one in
1816 primarily a�ecting land temperature. The latter outliers coincide
with a volcanic erruption and will no longer be an outlying residual when
this variable is included as a forcing variable in Section 8. The e�ect of
the 1767 outlier can also be seen in the cointegration relation in Figure
3 where the trained eye can detect a slight change in the mean of the
cointegration relation. In the next subsection I'll discuss how to account
for these e�ects.
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Figure 4: A graph of the land temperature residuals from model (7)
(lower left hand side panel), the residual autocorrelogram (upper right
hand panel) and the residual normality plot (lower right hand side
panel).

4.2 Accounting for outlier observations

The above extraordinary events need to be properly accounted for as
the model otherwise will su�er from speci�cation failure. As mentioned
in Section 3, to do it correctly it is crucial to understand how they
a�ect the equations (de�ned in terms of di�erenced variables) and the
cointegration relations, i.e. the equilibrium errors (de�ned in terms of
the levels of the variables). For example, a large `blip' outlier in the
residuals corresponds to an extraordinary large change in the equations,

Table 2: Estimates of the outlier e�ects
impulse dummies step dummy
1767 1815 1816 1767

�Cl;t: 0:02
[1:4]

5 �0:07
[�4:0]

�0:07
[�4:3]

�0xt: �0:01
[�5:7]

�Cs;t: 0:01
[3:4]

�0:01
[�3:9]

�0:01
[�2:9]
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Figure 5: A graph of the sea temperature residuals from model (7) (lower
left hand side panel), the residual autocorrelogram (upper right hand
panel) and the residual normality plot (lower right hand side panel).

whereas it corresponds to a large shift in the level of the variables (see
Juselius, 2006 Chapter 6, for a detailed discussion) which may or may
not cancel in the cointegration relations. A large `blip' outlier among the
temperature changes is best accounted for by a blip (impulse) dummy
(Dp;t = � � � ;0,0,0,1,0,0,� � � ) and a level shift in the cointegration relations
by a shift (step) dummy (Ds;t = � � � ;0,0,0,1,1,1,� � � ): Including these
e�ects in the present model means that we can test whether they are
signi�cant or not. It turned out that the volcanic erruption in 1815 did
not change the equilibrium level signi�cantly, whereas the one in 1767
did. Table 2 reports the estimates and shows that the 1767 event was
causing a signi�cant increase particularly in the sea temperature, which
subsequently changed the relationship between land and sea temperature
in the following way:

Cl;t = 3:93Cs;t + 0:01Ds1767 + const:

The volcanic erruption in 1815 caused both the land and sea temper-
ature to drop with an additional e�ect in the next year which was more
signi�cant for the land temperature than for the sea temperature.

17



Roots of the  Companion M atrix

­1.0 ­0.5 0.0 0.5 1.0

­1.0

­0.5

0.0

0.5

1.0 Rank (PI)=2

Figure 6: The roots of the model with dummies

One can ask whether it is important to take care of these e�ects?
Adding the dummies has clearly improved the statistical model speci-
�cation: the LM(1) test of autocorrelated errors is now reasonably ac-
ceptable with a test value of �2(4) = 7:16[0:13]6 (the long dependence
in sea temperature is, however, still there); the test for ARCH is also
acceptable with a test value of �2(9) = 12:5[0:19]; the test for normality
is improved with a test value of �2(4) = 2:84[0:58]: In this sense the
reliability of the statistical inferences is now improved. In terms of the
estimated coe�cients, most results were very robust, for example, the
estimated coe�cient in the cointegration relationship changed from 4.20
to 3.93 which does not seem much. It is important that the statistical
model is correctly speci�ed, as the subsequent analyses are based on this
model.

4.3 Stability and unit-root properties

Up to this point, I have discussed the VAR model discussed as if it were
stationary, i.e., without considering unit roots.7 The dynamic stability

6p-values in the brackets.
7One can always estimate the unrestricted VAR with OLS, but if there are unit

roots in the data, some inferences are no longer standard, as discussed in Hendry

18



of the process in (2) can be investigated by calculating the roots of:�
Ip � �1L� �2L2

�
xt = �(L)xt;

where Lixt = xt�i: De�ne the characteristic polynomial:

�(z) =
�
Ip ��1z ��2z

2
�
:

The roots of j� (z)j = 0 contain all necessary information about the
stability of the process and, therefore, whether it is stationary or non-
stationary. In econometrics, it is more usual to discuss stability in terms
of the companion matrix of the system, obtained by stacking the vari-
ables such that a �rst-order system results. Ignoring deterministic terms,
we have: �

xt
xt�1

�
=

�
�1�2
Ip 0

��
xt�1
xt�2

�
+

�
"t
0

�
; (9)

where the �rst row is the original VAR model, and the second merely
an identity for xt�1. Now, stability depends on the eigenvalues of the
coe�cient matrix in (9), and these are precisely the roots of j�(z�1)j =
0. For a p-dimensional VAR with 2 lags, there are 2p eigenvalues. The
following results apply:

(a) if all the eigenvalues of the companion matrix are inside the unit
circle, then fxtg is stationary;

(b) if all the eigenvalues are inside or on the unit circle, then fxtg is
non-stationary;

(c) if any of the eigenvalues are outside the unit circle, then fxtg is
explosive.

For the bivariate land-sea temperature VAR(2) model, we have 2 �
2 = 4 roots, the moduli of which are:

1:0; 0:64; 0:32; 0:32

Figure 6 illustrates these in the unit circle.
We note that the system is stable (no explosive roots), that there is

one unit root suggesting the presence of one common stochastic (unit
root) trend, and three fairly small roots two of which come as a pair of
complex roots.

and Juselius (1999).

19



5 Determining cointegration rank

Since there is one root on the unit circle, xt � I(1). The �rst condition,
needed to ensure that the data are cointegrated, is that � has reduced
rank r < p, so can be written as:

� = ��0 (10)

where � and � are p� r matrices, both of rank r. Substituting (10) into
(3) delivers the cointegrated VAR model:

�xt = ��xt�1 + � (�
0xt�1) + �+ "t: (11)

We have the following cases:

1. If r = p, then xt is stationary, so standard inference (based on t; F;
and �2) applies.

2. If r = 0, then �xt is stationary. Each xt has its own stochastic
trend and it is not possible to obtain stationary relations between
the levels of the variables by linear combinations. Such variables
do not have any cointegration relations, and hence, cannot move
together in the long run. In this case (11) becomes a VAR model in
di�erences but, since �xt � I(0), standard inference still applies.

3. If p > r > 0, then xt � I(1) and there exist r directions in which
the process can be made stationary by linear combinations, �0xt.

To �nd the value of b� that maximizes this likelihood function one has
to solve an eigenvalue problem (Johansen, 1988). The solution delivers
p eigenvalues �i where 0 � �i � 1:

�
0
= (�1; �2; : : : ; �p) ; (12)

which are ordered such that �1 � �2 � � � � � �p. Each �i is associated
with an eigenvector which gives the estimates of the cointegration rela-
tion �i: Furthermore, each �i can be interpreted as the squared canon-
ical correlation between a linear combination of the variables in levels,
�0ixt�1, and a linear combination of the di�erenced variables, '

0
i�xt . In

this sense, the magnitude of �i is an indication of how strongly the linear
combination �0ixt�1 is correlated with the stationary part of the process
'0i�xt: If �i � 0, the linear combination �0ixt�1 is not at all correlated
with the stationary part of the process and, hence, is non-stationary. If
�i = 1:0; the corresponding �ixt is perfectly correlated with the station-
ary part of the model, and hence has to be stationary.
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Table 3: Rank determination
Rank determination The two largest roots Adjustment
�i r p� r Tracei Q95 (r = 2) (r = 1) t�1: t�2:
0.22 0 2 126.4 26.5 0.99 1.00 �Cl;t 9.7 1.3
0.01 1 1 5.2 12.9 0.54 0.54 �Cs;t 2.4 2.2

rel
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Figure 7: The estimated cointegration relations between land and sea
temperature

Table 3 shows that �2 is essentially zero, implying that the second
relation �02xt is a nonstationary process, whereas �1 is larger (

p
0:22 '

0:47) implying that the correlation of �01xt with the stationary part of
the process is 0.47. This is illustrated in Figure 7 where we have graphed
the two relations. Obviously, the �rst relation is stationary whereas the
second one is not. Thus, the �rst one can be interpreted as a stationary
equilibrium error, �01xt = et; in the following relationship:

Cl;t = 3:93Cs;t + 0:01Ds1767 + const+ et

The equilibrium error (i.e. the cointegration relation) in the upper panel
is then:

et = Cl;t � 3:93Cs;t � 0:01Ds1767� const = �01xt:
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A correct choice of the cointegration rank is crucial for the analysis,
but unfortunately often di�cult in practice. The following information
is often useful when deciding on the choice of cointegration rank:

1. the trace test for cointegration rank;

2. the characteristic roots of the model: if the rth + 1 cointegration
vector is non-stationary and is wrongly included in the model, then
the largest characteristic root will be close to the unit circle;

3. the t-values of the �-coe�cients for the rth+1 cointegration vector;
if these are all small, say less than 3.0, then one would not gain
much by including that vector as a cointegrating relation in the
model;

4. the graphs of the cointegrating relations: if the graphs reveal dis-
tinctly non-stationary behavior of a cointegration relation, which
is supposedly stationary, one should reconsider the choice of r; or
�nd out if the model speci�cation is in fact incorrect;

5. the interpretability of the results.

5.1 The trace test

The likelihood ratio test, called the trace test (see Johansen, 1996, or
Juselius, Chapter 8, for its derivation) is used to distinguish between
those �i which corresponds to stationary relations (the cointegration re-
lations) and those which corresponds to nonstationary relations. It has
a nonstandard distribution which has been tabulated by simulations.
However, there is not just one table to consult as the asymptotic dis-
tributions depend on whether there is a constant and/or a trend in the
model; and whether these are restricted to the cointegration relations.
Also other deterministic components, such as dummy variables, are likely
to in
uence the shape of the test distributions. In particular, care should
be taken when a deterministic component generates trending behavior
in the levels of the data. A shift dummy (� � � ;0,0,0,1,1,1,� � � ) restricted
to the cointegration relations (as in our example) will also change the
asymptotic distributions. In this case the asymptotic distributions need
to be simulated for each case as they depend on the number and po-
sitions of the shift dummies in the model (see Johansen et.al. 2000 or
Juselius, 2006 Chapter 8.3). Thus, before applying the trace test it is
important to make sure that the empirical model is well-speci�ed.
In the present example, the sample period is fairly long and the

asymptotic distributions are likely to be very precise. But, when the
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size of the sample is small the tabulated asymptotic distributions can be
rather poor approximations as has been demonstrated in many papers
(Johansen, 2002). Another reason for concern is that when using correct
small-sample distributions for the trace test, the size of the test is correct,
but the power can be low, sometimes even of the same magnitude as the
size when a stationary root is close to the unit circle. In such cases, a
5% test procedure will reject a unit root incorrectly 5% of the time, but
accept a unit root incorrectly 95% of the time!
In our example, the trace test should be able to discriminate between

the following alternatives: no unit roots, one unit root, or two unit roots.
The �rst case corresponds to temperatures being stationary, the second
to them being I(1) with one stationary cointegration relation, and the
last case to them being I(1) but with no cointegrating relation between
them. The trace test procedure starts from the top of the table and
moves down until Tracei � Q95:
The �rst trace test statistics in Table 3 is larger than the 95% quantile

(126.4 > 26.5), so �1 has to be considered di�erent from zero, suggesting
that there exists at least one stationary relation between the tempera-
tures. The second trace statistics is smaller than the 95% quantile (5.2
< 12.9), so �2 cannot be considered di�erent from zero. This tells us
we cannot reject the presence of one unit root, and hence we accept one
common stochastic trend and one cointegration relation. Thus, the trace
test is consistent with the information in the graphs.

5.2 Other criteria

The roots of the characteristic polynomial (see Juselius, 2006, Chap-
ter 3.6) shows that the choice of r = 2 would leave a very large root
(0.99) in the model. This would make the statistical inference highly
unreliable as standard �2; F; and t tests are derived for stationary data.
For the choice of r = 1; the largest root in the model is 0.548 which is
fully acceptable. Thus the characteristic roots also point to the choice
of r = 1: Finally the t values of the adjustment coe�cients � shows that
for r = 1 there is very signi�cant adjustment in the land temperature
equation (and less signi�cant in the sea temperature equation), whereas
for r = 2 the t values are not large enough. This is because when the sec-
ond relation is nonstationary we should not use Student's t values, but
something like Dickey-Fuller � values (which are higher, see Dickey and
Fuller, 1979). Thus, also in this case the information points to r = 1:
The interpretation of the results is that land temperature is primar-
ily adjusting and that changes in sea temperatures have been pushing.

8Note that, the last relation, �02xt; which is now classi�ed as unit root non-
stationary, will not be included in the model when r = 1:
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However, this conclusion is without taking account of the current corre-
lation coe�cient of 0.39. Furthermore, the results are interpreted under
the usual ceteris paribus (everything else constant) assumption. Adding
new relevant variables might, of course, change the interpretation of the
results to some extent. Sections 8-9 will discuss the results for a model
with a number of forcing variables included.
Altogether, we were fortunate in this case, as the choice of rank was

completely straightforward. This is far from always the case. In doubtful
cases it is always advicable to do some sensitivity analyses to �nd out
if important information is lost by leaving out the rth + 1 cointegration
vector, or if anything is gained by including it.

6 The VAR model in moving-average form

For the initial values of the process, x0, we can express xt as:

xt = C
tX
i=1

"i +C
�(L)"t + x0 + determ.comp. (13)

In (13), xt is decomposed into a stochastic trend, C
Pt

i=1 "i; and a sta-
tionary stochastic component, C�(L)"t.

9 See Johansen (1996) or Juselius
(2006, Chapters 5 and 6).
An important feature of `reduced rank' matrices like � and � is that

they have orthogonal complements, which we denote by �? and �?:
i.e., �? and �? are p � (p� r) matrices orthogonal to � and � (so
�0?� = 0 and �0?� = 0), where the p � p matrices (� �?) and (� �?)
both have full rank p. These orthogonal matrices play a crucial role
in understanding the relationship between cointegration and `common
trends' as we explain below (a simple algorithm for constructing �? and
�? from � and � is given in Hendry, 1995).
There are (p� r) linear combinations between the cumulated resid-

uals, �0?
Pt

i=1b"i which de�ne the common stochastic trends that a�ect
the variables xt with weights B = �?(�

0
?��?)

�1 so that C = B�0?.
In this sense, there exists a beautiful duality between cointegration and
common trends. The following example illustrates.

9It can be shown that:

C = �?(�
0
?(I � �1)�?)�1�0?; (14)

so the C matrix can be calculated from estimates of �; �; and �1 see e.g., Johansen
(1992). Letting B = �?(�

0
?(I��1)�?)�1; then C = B�0?; so the common stochastic

trends have a reduced-rank representation similar to the stationary cointegration
relations.

24



Assume that there exists one common trend between the two tem-
perature series, and hence one cointegration relation. Then, r = 1 and
p � r = 1, and we can write the moving-average (common-trends) rep-
resentation as: �

Cl;t
Cs;t

�
=

�
2:72
0:69

�
| {z }

B

tX
i=1

ûi + C
�(L)

�
"1;t
"2;t

�
; (15)

where B0 = (b11; b21) are the weights of the estimated common trend
given by bui = �0?b"i = "s;i + 0:04"l;i:Thus, the common stochastic trend
seems primarily to derive from permanent sea temperature shocks (changes)
over this period. The signi�cance of the two shocks in the expression for
�0?b"i can be measured by their t ratio, which are 2.4 and 15.8 for land
and sea temperature, respectively.

7 Parameter constancy

Constancy of the model parameters is fundamental for inference, theory,
and simulations. Many tests exist for that hypothesis, focussing on dif-
ferent aspects of the model (see, for example, Hendry 1996). To check
the present model for parameter constancy, I have applied the various
tests in Hansen and Johansen (1999) (described in Juselius, 2006, Chap-
ter 9 and implemented in CATS for RATS) developed speci�cally for the
cointegrated VAR model.
Ideally, the recursive tests help to diagnose problems in the model

that can be remedied. In other cases the recursive tests continue to sig-
nal non-constancies in the model. In the latter case, it might still be
useful to continue the empirical analysis, albeit keeping in mind that
the estimated parameters measure average e�ects. In particular, it is
important to remember that applied tests might produce unreliable re-
sults as the underlying assumptions of the model are not satis�ed. One
useful way of thinking of the recursive tests is that they can provide a
general assessment of the con�dence we place on the conclusions from
the model.
All the recursively calculated tests in CATS for RATS start from a

baseline model estimated for a sub-sample period, 1; :::; T1; where T1 <
T; and then recursively extending the end point of the recursive sample,
t1; until the full sample is covered, i.e. t1 = T1; T1 + 1; :::; T .
As it would be excessive to present all available tests here, I'll focus

on the recursively calculated Max loglikelihood function and the recur-
sively calculated coe�cient between land and sea temperature as well
as the adjustment coe�cients in respective equations. They summarize
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Figure 8: The recursively calculated likelihood function divided by the
95% quantile.

the essential information on the stability (and the lack thereof) of the
parameters of the model.
The `Max likelihood function' test measures the overall constancy of

the model and can be compared with the Chow tests of parameter con-
stancy (Chow, 1960) in the single regression model. The recursive graph
in Figure 8, upper panel is based on the sample 1500-2000 (T = 500);
starting from the baseline sample 1500-1550 (T1 = 50): The test statistic
has been divided by the 95% quantile so that constancy is rejected at
the 5% level when the graph is above the unit line.
It appears that the model shows some evidence of instability in the

�rst period. To check whether the model is more stable in 1767-2000
(which is the sample period to be used in the last part of this paper),
the same function was calculated for the latter part and reported in the
lower panel of Figure 8. Here the sample period is 1770-2000 (T = 230)
with baseline sample 1770-1800 (T1 = 30): No failure of model constancy
can be detected in the second part of the sample period.
Figure 9 shows a similar picture. The � coe�cient was reasonably

stable (roughly 2.8) until approximately 1650, after which it increased
and stayed at a new level (roughly 3.2) until 1750, after which it returned
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Figure 9: The graphs of the recursively calculated � coe�cient between
land and sea temperature (upper panel) and the adjustment coe�cients,
�, in the land temperature equation (middle panel) and the sea temper-
ature equation (lower panel).

to the previous level. From the beginning of twentieth century the co-
e�cient has started to increase again, ending a the full sample value
of roughly 4.0. Similar results can be seen for the � coe�cients. The
�11 coe�cient (middle panel) shows that the adjustment in land tem-
perature became faster in the period 1650-1750, but has declined since
then. The �12 coe�cient (middle panel) shows that the adjustment in
sea temperature was not di�erent from zero in the period 1650-1900, but
has gradually become so ending with the full sample estimate of roughly
0.02 (still very tiny).
How should we interpret the �nding that the model parameters are

not completely stable? First a word of caution: after the �rst rejection
of constancy, all subsequent tests may cease to have a meaning. This is
because the tests are derived under the null of constant parameters up to
time T1+ t1: If there is a structural break at T1+ t1; then the remaining
tests are derived under an incorrect null hypothesis. In practice, it is not
uncommon to see a rejection of constancy for a short period, for example
in connection with a special event or a new regime (cycle), but then the
graphs return back to the acceptance region. This is more or less what
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seems to be the case here. One way of interpreting the results is that
there are some long cycles in the land and sea temperatures during which
the relationships changes to some extent. However, there might also be
a new cycle at the end of the sample, the magnitude and length of which
would of course be of extreme interest.
To summarize: The recursive analysis suggests that the basic rela-

tionships are relatively robust, but it also suggests that there is some
need for �ne-tuning the VAR model to properly account for long cycli-
cal variations. This, however, is outside the aim of this paper. I will,
however, continue the analysis focussing on the period after 1767 as this
seemed to be more stable than the full period.

8 The VAR model with forcing variables

In the last part of the paper I'll include a number of forcing variables
in model with the aim of investigating which (if any) can be associated
with the stochastic long-run trend in land and sea temperatures. The
forcing variables introduced in Section 2 and graphed in Figures 1 and
2 consist of solar radiation, three greenhouse gasses (CO2, CH4, and
N20), and aerosols from volcanic erruptions.
Among these variables only solar radiation can potentially qualify as

a stochastic I(1) variable as its �rst di�erence looks reasonably close to
a stationary variable with �xed mean and constant variance. However,
this is the case only from the middle of the 1700 century. As we already
found evidence of a structural break in 1767 in the mean of the coin-
tegration relation between land and sea temperature in Section 4.2 as
well as of parameters nonconstancy in the period after 1767, I decided
to restrict the analysis to the sample 1767-2000. For this period, the
stochastic variation of the changes in solar radiation looks almost nor-
mally distributed and the VAR model was able to describe its variation
with acceptable precision. For this reason I decided to include solar ra-
diation in the VAR as a system variable. The advantage is that one can
then test whether it is a proper forcing variable instead of just assum-
ing it. For example, if we �nd that the sea and land temperature are
causing solar radiation, it would imply that either the VAR model is not
appropriate for analyzing climate data or that some important variables
are missing. In this sense including solar radiation as a VAR variable in
its own right is a way of validating the results.
The greenhouse gasses, on the other hand, are too far from being

normally distributed variables to qualify as a VAR variable in their own
right. This means that they have to enter the VAR model in a similar
manner as a time trend. Thus, the forcing variables should be allowed to
enter the cointegration relations, and their di�erences should be allowed
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to enter the equations as explained below. The aerosols from volcanic
erruptions exhibit no trending behavior over time and look similar to
a series of impulse dummies. From a statistical point of view, such a
series would best be treated as a dummy variable with the erruptions as
extraordinary impulses.10 In the present analysis they will have the role
of a (series of) dummy variable(s).

8.1 Speci�cation and rank determination

The extended VAR model is now speci�ed as:

�x1;t = A�x2;t + �1�xt�1 + ��
0xt�1 + ��0 + �Vt + "t (16)

where x0t = [x
0
1;t; x

0
2;t]; x

0
1;t = [Cl;t;Cs;t;Srt]; x

0
2;t = [G1t; G2t; G3t]; and Srt

measures solar radiation, G1t; G2t; G3t measure greenhouse gasses; G1t
is CO2, G2t is CH4, G3t is N2O, and Vt measures aerosoles from volcanic
erruptions. A �rst general test of signi�cance of the forcing variables
showed that CO2 was individually long-run excludable with a p-value of
0.40, CH4, with a p-value of 0.25 and N2O with a p-value of 0.56. The
joint test of the long-run exclusion of CO2 and N2O was also accepted
with a p-value of 0.69, but the joint exclusion of CH4 with the other
gasses was rejected. Exactly the same result (but with slightly lower
p-values) was obtained when relating absolute temperature values to
log transformed greenhouse gasses. We continue the analysis with CH4
as the only greenhouse gas in the model. Solar radiation was strongly
rejected as long-run excludable and, thus, is kept as a system variable
in the VAR.
The model, reformulated with x2;t = G2t; is reasonably well speci-

�ed: the multivariate LM(1) test of autocorrelated residuals suggested
independent errors based on �2(9) = 12:66[0:18]; the multivariate nor-
mality test was borderline rejected based on �2(6) = 13:66[0:03] as was
the ARCH LM(1) test based on �2(36) = 60:93[0:01]: However, as Table
4 shows, the borderline rejection was exclusively due to the equation for
solar radiation, both normality and ARCH were fully acceptable (with
high p-values) in the equations for land and sea temperatures. As solar
radiation subsequently will be shown to be a forcing variable, this mi-
nor deviation from the assumptions should be of no importance. It was
notable that the long time dependence in the residuals of the sea tem-
perature evident in Figure 5 was no longer visible. Thus, it seems likely

10If, on the other hand one would like to test the hypothesis that volcanic outbreaks
have had a signi�cant long-run e�ect on the climate, one would �rst have to cumulate
the volcanic aerosols over time, and then allow them to enter as a forcing variable in
the cointegration relations.
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Table 4: Speci�cation tests

Rank determination The three largest roots Speci�cation tests
�i r p� r Tracei r = 2 r = 3 t�̂3: ARCH Norm:
0.35 0 3 145:8

[0:00]
1.00 0.83 �Cl;t: -0.7 0:88

[0:64]
1:05
[0:59]

0.12 1 2 46:1
[0:00]

0.78 0.76 �Cs;t: 0.2 2:35
[0:31]

2:11
[0:35]

0.07 2 1 16:4
[0:01]

0.36 0.54 �Srt: -4.1 10:72
[0:00]

10:55
[0:01

]

that the long dependence in the sea temperature is some way related to
solar radiation.
The smallest eigenvalue in the �rst column of Table 4, 0.07, indicates

that the third cointegration relation is only weakly correlated with the
stationary process. Nonetheless, it is signi�cantly di�erent from a unit
root process based on a p-value of 0.01 (implying that the largest unre-
stricted characteristic root, 0.83, for r = 3; is signi�cantly di�erent from
one). Why does the trace test �nd that the small value of �3 = 0:07 is
still signi�cantly di�erent from zero? The simple explanation is that the
sample size is quite large, 221 annual observations. Because the trace
test is calculated as T ln(1��); even a small deviation from zero can be
found to be signi�cant when T is large enough. However, when there is
a near unit root in the model, inference is much closer to the so called
Dicky{Fuller distributions than to standard t-, F-, and �2-distributions.
Hence, to make inference more robust, it is often a good idea to ap-
proximate a near unit root by a unit root even when it is found to be
statistically di�erent from one (see Hendry and Juselius, 1999).
Before �nally deciding about the rank, we �rst check the interpretabil-

ity of the third cointegration relation to see if it contains valuable infor-
mation for the analysis. It appears from Table 4, the column of t�̂3:; that
the land and sea temperatures do not adjust signi�cantly to the third �
relation, only solar radiation does. Also, solar radiation does not adjust
to the �rst two � relations (the t values of the third � row are -0.8, -0.5,
-4.1). Thus the third relation, probably a spurious relation between solar
radiation and CH4, is only relevant in the equation for solar radiation.
Thus, the choice of r = 2 will include all relevant information on how
land and sea temperatures have adjusted to the forcing variables and we
shall continue with this choice.

8.2 Weak exogeneity and partial models

Based on the �rst two cointegration relations, it is relevant to test
whether solar radiation is a weakly exogenous variable in this system.
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The hypothesis of weak exogeneity is that a variable (solar radiation) is
in
uencing the long-run development of the other variables of the system
(land and sea temperatures), but is not in
uenced by them through the
long-run relations. If, in addition, a weakly exogenous variable is not
a�ected in the short run by the other variables it is called a strongly
exogenous variable. The latter is the statistical counterpart of a forcing
variable. Weak exogeneity is often called the hypothesis of `no levels
feedback', or long-run weak exogeneity: It can be formulated as the fol-
lowing hypothesis on �:

H�(r) : � = Ae� (17)

where � is p � r; A is a p � s matrix, e� is an s � r matrix of nonzero
�-coe�cients and s � r: The condition s � r implies that the number of
non-zero rows in � must not be greater than r: This is because a variable
that has a zero row in � is not adjusting to the long-run relations and,
hence, its cumulated errors can be considered as a driving trend in the
system, i.e., as a common stochastic trend. Since there can at most be
(p� r) common trends, the number of zero-row restrictions can at most
be equal to (p� r) : In our case it means that at least two of the � rows
have to be nonzero, or equivalently, at most one of the � rows can be
zero.
The hypothesis (17) can be expressed as:�

�1
�2

�
=

�e�
0

�
:

where �1 contains the nonzero � rows, and �2 the zero rows. The weak
exogeneity hypothesis can be tested with a LR test procedure described
in Johansen and Juselius (1990) or in Juselius (2006, Chapter 11). It is
asymptotically distributed as �2 with the degrees of freedom � = s� r;
i.e., equal to the number of zero restrictions on the �-coe�cients.
Because p = 3 and r = 2 in our model, there can at most be one

weakly exogenous variable. The hypothesis that the � row of solar radi-
ation is zero was accepted with a p-value of 0.75. Thus, solar radiation
has been shown to be a proper forcing variable in this model. A di�er-
ent result would of course have raised serious doubts about the model's
ability to adequately explain climate data.
When a zero-row restriction on � is accepted, we can partition the

three variables into two variables (land and sea temperature) which ex-
hibit long-run feedback, and one variable (solar radiation) with does not.
Because an exogenous variable does not contain information about the
long-run � parameters, we can obtain fully-e�cient estimates of � from
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the two adjustment equations, conditional on the marginal models of
the weakly-exogenous variable (see Engle, Hendry and Richard, 1983,
Johansen and Juselius, 1992, and Juselius 2006, Chapter 11.2). This
gives the condition for when partial models can be used to estimate �
without losing information. Note that we did not test this condition for
the greenhouse gasses as it would not have been possible to obtain a
well-speci�ed model for these variables.
In order not to loose any information (short-run as well as long-run)

in a partial system, the conditioning variable(s) needs to be strongly
exogenous. For example, weak exogeneity of solar radiation does not, as
such, exclude the possibility that changes in land and sea temperatures
have had a short-run impact on solar radiation, though such a result
would be physically impossible. The estimates of the parameters in (16)
are given in (18) where coe�cients with a t-value > 2.0 are in bold face.
The last row of �1 matrix shows that there are no such signi�cant e�ects.
Thus, solar radiation is a valid forcing variable, theoretically as well as
empirically.

26664
�Cl;t

�Cs;t

�St

37775=
26664
�0:03
[�0:5]

0:93
[2:7]

�12:3
[�1:3]

�0:71
[�0:5]

0:01
[0:8]

�0:15
[�2:4]

1:00
[0:6]

�0:11
[�0:4]

�0:0
[�0:8]

�:00
[�0:1]

0:46
[7:6]

�0:01
[�0:8]
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�1

2664
�Cl;t�1
�Cs;t�1
�St�1
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26664
�0:04
[�0:0]
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�0:04
[�0:1]

0:00
[6:4]

0:01
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�0:00
[�0:8]

37775
| {z }

A+�

�
�G2t
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�

+

26664
�0:79
[�10:3]

1:09
[3:5]

11:36
[6:6]

0:13
[7:7]

�84:3
[�7:0]

�0:02
[�1:64]

�0:23
[�4:01]

2:02
[6:5]

0:02
[6:4]

�14:0
[�6:5]

0:00
[0:9]

�0:00
[�0:7]

�0:00
[�0:1]

0:00
[�0:2]

0:01
[0:2]

37775
| {z }

�=��0

266664
Cl;t�1
Cs;t�1
St�1
G2t�1
const

377775
t�1

+

24"1;t"2;t
"3;t

35 ; (18)

Most of the coe�cients in �1 are insigni�cant. The only exception is
the lagged change in sea temperature, for which the coe�cients in the
land and sea temperature equations are signi�cant. Thus, the statistical
analysis tell us that there is both an immediate and delayed e�ect on
land temperature from a change in the sea temperature. The coe�cients
in the last column of �1 and the �rst column of the matrix A are all
insigni�cant, implying that there are no strong immediate and lagged
e�ects from changes in the methane gasses. Thus they only seem to have
a long-run impact on the temperature. The coe�cients in the matrix
� measuring the impact from volcanic erruptions, shows a negative and
highly signi�cant e�ect on land and sea temperature.

32



Finally, the coe�cients of the matrix � = ��0 are interesting as they
measure the implicit long-run relation for land and sea temperature as
a weighted average of the two cointegration relations. So why do we not
present the � and the � estimates separately? Though the unrestricted
� is uniquely determined based on the chosen normalization, they are
not necessarily meaningful without (over-) identifying restrictions. The
discussion of how to impose (over)identifying restrictions on � will be
estimated and discussed in the next section. As � = ��0 is a unique
representation of the combined long-run e�ects I prefer to discuss them
at this stage.
The �rst row is interpreted as a relation between the land tempera-

ture and the other variables. It is useful to present it in the following
form:

�0:79fCl;t � 1:4Cs;t � 14:4St � 0:16G2t + 106:8g
which tells us that land temperature adjusts fairly quickly (with an ad-
justment coe�cient of -0.79) to a deviation from the equilibrium value.
The latter is given by:

Cl;t = 1:4Cs;t + 14:4St + 0:16G2t � 106:8 (19)

We note that the coe�cient to sea temperature is smaller when allowing
for the e�ect of the forcing variables. I'll return to this result in the next
section.
The second row in the � matrix will be interpreted as a relation

between sea temperature and the other variables. We express it similarly
as:

�0:23fCs;t + 0:08Cl;t � 9:6St � 0:08G2t + 61:0g
and note that sea temperature adjusts more sluggishly to a deviation
from the equilibrium value:

Cs;t = �0:08Cl;t + 9:6St + 0:08G2t � 61:0: (20)

We note that the negative coe�cient to land temperature is insigni�-
cant. Thus, the result suggests that land temperature is signi�cantly
a�ected by the sea temperature and the adjustment is fast, whereas sea
temperature is not adjusting to land temperature, but quite strongly to
the forcing variables. In the next section, I'll use this information to
impose identifying restrictions on the two � relations.
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9 Identi�cation of the pulling and pushing forces in

the climate model

An important part of a long-run cointegration analysis is to impose
(over)identifying restrictions on � to improve interpretability. Given
the choice of cointegration rank (here r = 2); the Maximum Likelihood
procedure gives the maximum likelihood estimates of the unrestricted
cointegrating relations �0xt: However, it is always possible to impose
r�1 restrictions (here one) on each cointegration relation without chang-
ing the value of the likelihood function{ no testing is involved for such
`restrictions'. See Juselius (2006, Chapter 12). Additional restrictions
change the value and, thus, are testable.

9.1 The pulling forces

Hypotheses on the cointegration vectors can be formulated in the fol-
lowing way by specifying the si free parameters in each � vector,:

� = (H1�1; :::;Hr�r);

where � is (p1 � r); �i are (si � 1) coe�cient vectors, and Hi are (p1 �
si) design matrices where p1 is the dimension of xt�1 in (16). Thus,
we use the design matrices to determine the si free parameters in each
cointegration vector. Note that mi = p1 � si is the number of imposed
restrictions. Identifying and non-identifying restrictions can be tested by
a likelihood-ratio procedure described in detail in Johansen and Juselius
(1994) or Juselius (2006, Chapters 10, 12).
Our climate model has only two cointegration relations, so the num-

ber of interesting hypotheses to test is limited. Here, I shall test the
hypothesis that sea temperature is a function exclusively of the forcing
variables and that land temperature is a function exclusively of sea tem-
perature (i.e. the latter is the same relation that already was found to
be stationary in the �rst part of the paper11). The two design matrices
are as follows

H1 =

0BBBB@
1 0 0
0 1 0
0 0 0
0 0 0
0 0 1

1CCCCA ; �1=
0@�11�12
�13

1A ; H2 =

0BBBB@
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1CCCCA �2=

0BB@
�21
�22
�23
�24

1CCA
Thus, the �rst relation contains three parameters (of which the �rst one
will be used for normalization). The second relation contains four pa-
rameters (of which the �rst will be used for normalization). Thus we

11Note that the cointegration property is invariant to changes in the information
set.
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Figure 10: The graphs of the two identi�ed cointegration relations

have imposed two restrictions on the �rst relation corresponding to the
zero coe�cients to the forcing variables, and one on the second relation,
corresponding to a zero restriction on the land temperature. The hy-
pothesis is tested by the LR test procedure described in Johansen and
Juselius (1994). The test statistic value was 0.10, distributed as �2(1);
and hence accepted with a p-value of 0.75. The two restricted cointegra-
tion relations and their adjustment coe�cients are graphed in Figure 10
and reported in Table 5.
The �rst � relation is similar to the one being estimated in the �rst

Table 5: An identi�ed system

Cl;t Cs;t St G2t const
�01 1:0 �3:97

[�24:5]
0 0 9:24

[19:9]

�02 0 1:0
[]

�5:81
[�4:8]

�0:06
[16:2]

39:5
[4:5]

�Cl;t �Cs;t �St
a01;i �0:79

[�10:3]
�0:02
[�1:7]

0:00
[1:0]

a02;i �2:07
[7:6]

�0:31
[�6:4]

0:00
[0:1]
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Table 6: The estimated common trends representation

"Cl "Cs "S
�0?;1 0:00

[0:9]
�0:00
[�0:4]

1:0

B01 42:51
[8:5]

11:94
[8:5]

1:82
[8:5]

The estimated C matrix
Cl;t Cs;t St

Cl;t 0:03
[0:9]

�0:12
[�0:4]

42:51
[8:5]

Cs;t 0:01
[0:9]

�0:03
[�0:4]

11:94
[8:5]

St 0:00
[0:9]

�0:01
[�0:4]

1:82
[8:5]

part of this paper. There is a very signi�cant adjustment (-0.79) in
land temperature, but no signi�cant adjustment in the sea temperature,
nor in the solar radiation. The second relation shows that sea temper-
ature is signi�cantly related to solar radiation and methane. There is a
very signi�cant adjustment to this relation in land and sea temperature,
whereas not in solar radiation. As the graphs in Figure 10 shows, the
two cointegration relations are de�nitely stationary. Of course, if they
were not it would be hard to interpret them as equilibrium errors. The
fact that land temperature adjusts to both relations explains why the
combined relation in the � matrix (19) was di�erent from the identi�ed
�1:: The �rst row in the � matrix is given by the linear combination of
the two � relations, �0:79�01 � 2:07�02: The coe�cients in (19) can be
interpreted to mean that the long-run movements in land temperature
are directly associated with the long-run movements of solar radiation
and methane through its dependence on the sea temperature. The fact
that the coe�cient to land temperature is insigni�cant in (20), but the
coe�cient to sea temperature is signi�cant in (19) suggests that solar
radiation is �rst a�ecting sea temperatures, which is then a�ecting land
temperatures. The combined e�ects in (19) suggests that some of the
long-run movements in land temperature are indirectly related to solar
radiation and methane, whereas some of it are directly related to the sea
temperature.

9.2 The pushing forces

Based on the estimates on � and � it is possible to derive the estimates
of the common trends matrices B, �?; and C; de�ned in Section 6. They
are reported in Table 6:
Consistent with the weak exogeneity results, only the cumulated
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shocks to solar radiation explain signi�cantly the long-run movements
in land and sea temperatures. The total e�ect on land temperature is,
however, larger than on sea temperature. As the variables are in log-
arithmic form, this is potentially quite interesting. In addition to the
solar radiation, methane also acts as a forcing variable in this system.
Because the fairly insigni�cant e�ects of short-run changes in methane
on this system I shall, at this stage, refrain from providing some common
trends e�ect of this variable.

10 Conclusions

This paper has tried to demonstrate that the cointegrated VAR approach
can potentially be a useful method for the analysis of climate data. It
is a rich model: the �ij coe�cients characterize long-run relationships
between levels of variables; the �ij coe�cients describe changes that
help restore an equilibrium position; the 
ij coe�cients describe short-
term changes resulting from previous temperature changes; �i; describe
extraordinary events, like a volcano erruption. Here I have analyzed
the properties of this model in every detail, demonstrated the changes
needed to validate inference procedures, and illustrated the powerful new
modeling procedures based on land and sea temperature series and some
of the most important forcing variables.
The results of the analysis suggested that sea temperatures drive land

temperatures; the long-run trend in sea temperatures is strongly asso-
ciated with solar radiation and to some extent to the level of methane.
It was not possible to obtain signi�cant e�ects from CO2 and nitrous
oxide gasses. Whether these �ndings are believable or not is for the
climatologists to discuss.
Modeling cointegrated series is di�cult because of the need to model

systems of equations in which one has to simultaneously specify the forc-
ing variables and how they enter, determine the lag length, and ensure a
well-speci�ed representation. Nevertheless, powerful software facilitates
the task for those wishing to undertake their own analyses, including the
programs CATS in RATS and PcGive that I have utilized here.
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