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1. AN EXAMPLE: SEA LEVEL AND TEMPERATURE 1881-1995
Data in levels and differences
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1.Data : 1881:01 to 1995:01, Hansen, J. et al J. Geophys. Res. Atmos. 106 23947
(2001)



2. A SIMPLE EXAMPLE AND SOME LITERATURE

The mathematical formulation of cointegration by a simple example.
Take two stochastic processes which have a stochastic trend (random walk)

t
X = &251@' + E9p N~ [(1)
1=1

t
Xop = bZeu + Egp ~ [(1)
1=1
let — CLXQt = bggt — Q&3 ~~ ](O)

1. X(t) is nonstationary and A X, is stationary: X;is I(1)
2. 3' X, is stationary with 3 = (b, —a)’
3. The common stochastic trend is >°!_, ¢y



The cointegrated vector autoregressive model

k—1
AX; = af' X1+ Z DAX i + &
1=1
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3. THE VECTOR AUTOREGRESSIVE MODEL AND ITS SOLUTION
Error correction formulation of the vector autoregressive model

k—1
AXy = af' X1+ ) TiDXi i +e

1=1
k-1

(z) = (1—2),— af'z— Z(l — 2)2'T;
i=1
detT1(1) = detaf’ =0= 2z =1lis aroot of detIl(z) =0

Question: If the VAR has unit roots and the other roots larger than one, what is the
moving average representation and what are the properties of the process?

I(1) condition : det(Il(z)) =0 = z=1or|z| > 1 and

k-1

[=1,—> T, det(aI'3,)+#0

1=1



k—1
aff X1+ Z LAX 4 &
i=1

>
e
[

k—1

M(z) = (1—2)I,— af'z— Z(l — 2)2'Ty

i=1
THEOREM If det(Il(z2)) =0 == z=1o0r |z| > 1 and det(a/,I'3 ) # 0, then

1 gy
Mz = C + E C'z
i=0

1 —z

t 00

X =C)Y g+) Clei+A FA=0
1=1 1=0

C = B.(a/ TB,) ]

1. X, is nonstationary, AX; is stationary: X, is called (1)
2. 3'X, is stationary: X; is cointegrating (r relations)
3. The common trends are o/, S__ &; (p — r trends)



Example
1

AXy = _Z(Xlt—l — Xor1) + €1t
1
AXqy = Z(Xlt—l — Xo1 1) + ey

1 :
A(Xlt — XZt) — _§(X1t—1 — XQt—l) + &1 — €9 —> Xlt — th statlonary (: yt)

A(Xy + Xot) = e + e9r = X1 + Xy nonstationary random walk (= S)

Granger Representation Theorem
1
Xy = 5(575 + Y)

1
Xop = §(St — Yt

1. X, is nonstationary, AX; is stationary
2. 3' X, is stationary with cointegration vector 5 = (1, —1)’
3. 3! (e1; + €2;) is a common trend



Two applications of the Granger Representation Theorem
1. The role of deterministic terms
k—1
AXy = af' X1+ Y TiAXi i+ p+eg
1=1

t 00
X; = OZ(&'—FM)—FZCE(&_@'—FM)%—A
1=1 1=0

t
X, = C Z e; + C'ut + stationary process
1=1
Thus
1. Linear trend in general
2.1fCpu=3,(c/, T3,) o/, ;u =0 (or o/, u = 0) : only constant term
Other deterministics.
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2. Asymptotics

t
Xy =C Z e; + C'ut + stationary process
1=1

X1 B CZQ] Ei L @ N stationary process
VT vT T VT
ld | P
CW(u) 0

The process X|r,) is proportional to 7" in the direction C'y., but orthogonal to this direc-
tion it behaves like T'/2,



12
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2.The process X, = [SealLevel;, T;] is pushed along the attractor set by the common
trends and pulled towards the attractor set by the adjustment coefficients



4. HYPOTHESES OF INTEREST IN THE I(1) MODEL
1. Hypotheses on the rank

Hr : AXt — aﬂ’Xt_1 + FlﬁXt_l + (I)Dt + &¢,
HO C ...CHrC...CHp

2. Hypotheses on the long run relations [
3. Hypotheses on «

Apxr, /BpXT
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5. THE STATISTICAL ANALYSIS
Test for misspecification of the VAR
k—1
AXy =T1X;1 + Y TiAX;; + D; + &
1=1
The VAR model assumes
1. Linear conditional mean explained by the past observations and deterministic terms

(Check for unmodelled systematic variation, the choice of lag length, choice of infor-
mation set (data), possible outliers, nonlinearity, constant parameters)

2. Constant conditional variance
(Check for ARCH effects, but also for regime shifts in the variance)

3. Independent Normal errors, mean zero, variance ()
(Check for lack of autocorrelation, distributional form)
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Estimation of the I(1) model
k—1
Mo AXy=af' X, + > TAX i+ PD; + &,
1=1
where ¢, i.i.d. N,(0,Q2) and aand 3 are (p x r).
Maximum likelihood is calculated by reduced rank regression of AX; on X;_; corrected
for

AXt—la s 7AX15—/<3+17 Dt

(T. W. Anderson, 1951). The estimate of 5 are the r linear combinations of the data
which have the largest empirical correlation with the stationary process AX;. (Canoni-
cal variates and canonical correlations)

If \;, are the squared canonical correlations, then

L-2T(H,) o |9 o H (1—2X;), —2logLR(H,|H,) =T Z log(1 — \;)



6. THE ANALYSIS OF THE DATA
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DLEVEL

3.Residual analysis: Plot of ASealLevel;, and fitted value, normalized residuals, auto-
correlations function of residuals and histogram
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4.Residual analysis: Plot of AT emperature;, and fitted value, normalized residuals,
autocorrelations function of residuals and histogram
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(t=—7.37)
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Rank determination for temperature and sea level data.
Rank r = 0 is rejected and rank r = 1 is accepted
p—r r EigVal —2log LR(H,|H,) 95%Fract p-val

2 0 0.168 20.76 15.41 0.005

1 1 0.003 0.36 3.84 0.54

The fitted ECM model for temperature and sea level data

Ahy = 4.15 (Ti_y — 0.0031 hy—1) — 0.2805 Ahy_1 + 3.04 ATj_; + 2.22
(t=0.86) (t=—7.37) (t=—3.11) (t=0.60) (t=3.55)

ATy = —0.40 (Ty_1 — 0.0031 hy—_1) — 0.0024 Ah;_; — 0.053 ATy — 0.023

(t=—4.26) (t=—"7.37) (t=—1.40) (t=—0.54) (t=—1.91)

Note h; weakly and strongly exogenous because the coefficients 4.15 to (Tt_1—(0-09?§%ht_1)
t=—1.

and 3.04 to AT;_; are insignificant.
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A partial model for (7}, h;) conditional on the forcing (weakly exogenous) variables
Wmgg (CO2 and Methan) and Aerosols (Sulphate)

T
A ( ht ) = a (T + v h + v, Wmgg + v3Aerosol), |+ +¢&
t

Cointegrating relation

B'X, =T, — 0.0065 hy — 0.768 Wmgg, — 1.478 Aerosol;
(t=—3.52) (t=4.68) (t=3.51)
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7. ASYMPTOTIC ANALYSIS

Asymptotic properties of the process X; and its product moments for model without
deterministic terms.
Three basic results

T2 Xy = CT V2 e o T125°% Oy ;S CW (u)
_ d
T2 X X 5 [ W ()W (u) du

T X e S [T wdwy

where WV is Brownian motion with variance ().
Test for rank

1
—2log LR(H,|H,) ——TZlogl— ; —>tr{/ (dB)B (/ BB’)
0

1=r+1

—1

/0 1 B(dB)

where B is standard Brownian motion. Limit invariant to distribution of i.i.d. (0, 2) errors
but depends on the choice of deterministic terms
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4. ASYMPTOTIC DISTRIBUTION OF 6
Consider the model with no deterministic terms, » = 2, and [ identified by

B=(h1+ Hi ¢ ,hs+ Hy ).

px1l  pXmim;x1 px1  pXmomyx1

THEOREM If ¢, i.i.d. (0,9), then

T 1
Ty S CW =G, and T8y, = T2 > wiaw LNV / WW'duC' = G
0

t=1

T ( ©1 ) LR (,011H{QH1 p1oH1G Hy )1 Hj fol G(dV1)
o por H3GHy pog HYG Ho H, fol G(dVy) |’
where p;; = oz;-Q_lozj, and V = o/Q7 W = (1, 1h).
Note that V' = o/Q 'V is independent of CW = 3, (o, 8,) '/, W. Hence limit is mixed

Gaussian. The estimators of the remaining parameters are asymptotically Gaussian
and asymptotically independent of ¢ and £.
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Example
The simplest example is a cointegrating regression

T1p = Oxgr1 + €1, and Axg = eo
where ¢; are i.i.d. Gaussian and {¢y;} and {e4;} are independent. Then
T(é—ﬁ) _ lzt 1 L2t—1€1¢ d fo WadW
TQZtletl fo W3 (u)du
For given {xo,t =1,...,T}

~ Mixed Gaussian

o1

ZT Qf% 1 Zth 11 2|{l‘2t} < )
t=1"2t—

This implies that the marginal distributions satisfy

é‘{x%} ~ N(@, and

A

0— 0 | 0—0

T
not Gaussian and () a3,,)"*is Gaussian

t=1

01

Var(0)
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The mixed Gaussian distribution.
A simple simulation of the model

AXyy = (X1 — v Xo—1) + e and AXy = ey

where ¢, are i.i.d. Ny(0,diag(c%,03)). DGP (ay = —1,v = 1,0] = 05 = 1) : Xy; =
Xoi_1 + €14, AX; = e9¢. MLE by regression:

AXy =6 X1+ 86Xy +en, o= élaﬁ/ = —52/51

Asymptotic results for testing using the Wald test

T 22\1/2
1 A A d 1+ .
A—(Z<X1t—1 — A4 X9-1)%) / (&g — 1) — N(0,1); or ( 7 ) Tl/Q( — )
01 1 01
|071‘ _ d o ! 2 1/2 d
U7X )V = ) S N0, or S8 Wa(w)da) PTG - ) 4 N0, D),
02 1 02 Jo

We need the distribution of 4, and the joint distribution of 4, 723", X2, | to conduct
inference.
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7 .From the model Al’lt = Oz(iElt_l — ’)/1'275_1> + €1¢,

Estimate of gamma against information per observation

ﬁﬂ%@m%@@ 0% ® B 0 g BBy p @ ™ o

0 100 200 300 400
Information per observation
Estimate of alpha against information per observation
I I I
0 100 200 300 400
Information per observation
Estimate of alpha against information per observation
] [m]
] [m)
— a
[m]
N o O
o
I I I I
36 4.8 6.0 7.2 8.4 9.6

Information per observation

AZEt = E9¢, T = 100, SIM = 400
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&. CONCLUSION

When modelling stochastically trending variables, the usual regression methods need
to be modified, in order to guarantee valid inference.

The vector autoregressive model allowing for /(1) variables and cointegration has been
analysed in detail, and the challenge is to apply it to nonstationary climate data, in order
to avoid the fallacies involved in spurious correlation and regression.





