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Let a sample xj,..., xy from some distribution be given and consider two dif-
ferent probability density models fy(x;a;,...,a,) with parameters ay,...,a,,
and fi(x; B1,..., Bn) with parameters f,...,,, n = m, as possible distribution
models for the sample. Then the first observation x; can be considered as
drawn from the mixture p fo(x; ay,..., @) + (1 — p) fi(x; B1,..., Bn), where p is
the probability that x; comes from the first distribution. However, all the fol-
lowing observations are not drawn independently from the mixture, but inde-
pendently from the distribution selected by the first observation. To keep track
of this we introduce the indicator random variable I for which P(I =0) = p and
P(I=1)=1- p. Thus we have the conditional likelihood functions
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L(ay,...,am! I=0) =[] folxi;a1,..., am) 1)
i=1
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LB1,.... BulI=1) =[] i(xi; B1,..., Bn) 2)
i=1

The total likelihood function is then

L(pyal;---yam»ﬁlw--;ﬁn):pL(al;u-;amlI:O)+(1_p)L(,B1»---»,Bn|I: 1)
3)

The total likelihood is maximal at the parameter values where each of the two
conditional likelihoods are maximal. If the two maximal values are equal, then
p is undetermined in the interval [0, 1]. If the first likelihood is larger than the
second, then total maximum is for p = 1, otherwise for p = 0.

However, it is not reasonable to let the a-parameters and the B-parameters
vary independently of each other. A natural requirement is that the moments
up to some order should be the same for the two distributions. Given that
there is a one-one relation between the first m moments and the parameters
ai,...,a, and also between the first m moments and m of the parameters
B1,..., Bn, we can shape the problem such that (a;,..., @) = (B1,..., Bm). This
restriction changes the total likelihood (3) to

L(p;al;---;am;ﬂm+l,---yﬁn)
:PL(al;---;am|I:0)+(1—P)L(afl;---;am»,Bm+1r---),Bn|I:1) (4)



Maximum is obtained for
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i=1,...m;j=m+1,...,n

given that there is a solution for p between 0 and 1. If p = 0 or p =1 the first
equation (5) will not be satisfied.

Instead of looking for maximum likelihood estimates let us consider the
posterior distribution of the Bayesian random variable P (corresponding to p)
in the case of the likelihood function (4) and with the prior distribution be given
as the probability density

fP,A,B,prior(p; dly..., Ay, ,Bm+1y .. ,,Bn)
= prrior(p)fA,prior(al; ceey am)fB,prior(,BnHl» ceny ﬁn) 8)

using evident notation. Then
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= pEaprior[L(A| I = 0)] + (1 — p) EaB,prior[L(A,B| I = 1)] 9)

(x means “is proportional to") with the normalizing factor C given by
1
E = EP,prior[P]EA,prior [L(A| I= 0)] + (1 - EP,prior[P])EA,B,prior[L(A;B | I= 1)] (10)

Thus the posterior density of P is a trapez, implying that the largest posterior
density is for p = 1 if Ep prior[L(A|I = 0)] > Ep B prior[L(A,B|I =1)] and for p =0,
otherwise, except if the two expectations are equal.

Letus study what happens if the priors of A and B are chosen as non-informative
priors. For this purpose it sufficient to study the situation for m =1 and n = 2,
and adopt a uniform prior over the interval [-a/2, a/2] for A; and a uniform
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prior over the interval [-b/2, b/2] for B,. Correspondingly assume that we have
the regular case Jo = [° L(a|I=0)da <oo, J1 = [%, [o L(a, fI I =1)dadf <
oo such that the non-informative priors are allowable in the limit as a — oo,
b — oco. Then

plo+(1-p)il/b
EP,prior[P]]O +(1- EP,prior[P])]l/b

fP,posterior(p) = fP,prior(p) (11)
asymptotically as b — oo. Thus the posterior density depends on the arbitrary
choice of b, and in the limit b — co we get

fP,posterior (p) = fP,prior (p) (12)

_r
EP,prior[P ]
i.e., a posterior density that only depends on the prior density of P and not on
the sample. Obviously this result is unreasonable. This non-informative prior
problem is not present if m = n, that is, if the parameters are the same in the
two distribution models. Then (11) reads

pl+0-p)J
EP,prior[P]]O + _EP,prior[P])]l

fP,posterior(p) = fP,prior(P) (13)

where Jo = [% L(a|I =1)da, J1 = [o L(a|I = 0)da. In particular taking fpprior(p) =
1 gives
2[pJo+ 1 -p)Ji]

osterior = 14
frposterior (P) ot (14)

The maximal posterior density is obtained for p =1 if Jo/J; > 1, and for p =0
if Jo/J1 < 1. If Jo/J; = 1 the posterior distribution of P is uniform, and the two
models may be stated to fit the data equally well.



