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Let a sample x1, . . . , xN from some distribution be given and consider two dif-
ferent probability density models f0(x;α1, . . . ,αm) with parameters α1, . . . ,αm

and f1(x;β1, . . . ,βn) with parameters β1, . . . ,βn , n ≥ m, as possible distribution
models for the sample. Then the first observation x1 can be considered as
drawn from the mixture p f0(x;α1, . . . ,αm)+ (1− p) f1(x;β1, . . . ,βn), where p is
the probability that x1 comes from the first distribution. However, all the fol-
lowing observations are not drawn independently from the mixture, but inde-
pendently from the distribution selected by the first observation. To keep track
of this we introduce the indicator random variable I for which P (I = 0) = p and
P (I = 1) = 1−p. Thus we have the conditional likelihood functions

L(α1, . . . ,αm | I = 0) =
N∏

i=1
f0(xi ;α1, . . . ,αm) (1)

L(β1, . . . ,βn | I = 1) =
N∏

i=1
f1(xi ;β1, . . . ,βn) (2)

The total likelihood function is then

L(p,α1, . . . ,αm ,β1, . . . ,βn) = pL(α1, . . . ,αm | I = 0)+ (1−p)L(β1, . . . ,βn | I = 1)
(3)

The total likelihood is maximal at the parameter values where each of the two
conditional likelihoods are maximal. If the two maximal values are equal, then
p is undetermined in the interval [0,1]. If the first likelihood is larger than the
second, then total maximum is for p = 1, otherwise for p = 0.

However, it is not reasonable to let the α-parameters and the β-parameters
vary independently of each other. A natural requirement is that the moments
up to some order should be the same for the two distributions. Given that
there is a one-one relation between the first m moments and the parameters
α1, . . . ,αm and also between the first m moments and m of the parameters
β1, . . . ,βn , we can shape the problem such that (α1, . . . ,αm) = (β1, . . . ,βm). This
restriction changes the total likelihood (3) to

L(p,α1, . . . ,αm ,βm+1, . . . ,βn)

= pL(α1, . . . ,αm | I = 0)+ (1−p)L(α1, . . . ,αm ,βm+1, . . . ,βn | I = 1) (4)



Maximum is obtained for

L(α1, . . . ,αm | I = 0)−L(α1, . . . ,αm ,βm+1, . . . ,βn | I = 1) = 0 (5)

p
∂

∂αi
L(α1, . . . ,αm | I = 0)+ (1−p)

∂

∂αi
L(α1, . . . ,αm ,βm+1, . . . ,βn | I = 1) = 0 (6)

∂

∂β j
L(α1, . . . ,αm ,βm+1, . . . ,βn | I = 1) = 0 (7)

i = 1, . . . ,m; j = m +1, . . . ,n

given that there is a solution for p between 0 and 1. If p = 0 or p = 1 the first
equation (5) will not be satisfied.

Instead of looking for maximum likelihood estimates let us consider the
posterior distribution of the Bayesian random variable P (corresponding to p)
in the case of the likelihood function (4) and with the prior distribution be given
as the probability density

fP,A,B,prior(p,α1, . . . ,αm ,βm+1, . . . ,βn)

= fP,prior(p) fA,prior(α1, . . . ,αm) fB,prior(βm+1, . . . ,βn) (8)

using evident notation. Then

fP,posterior(p)/ fP,prior(p)

∝ p
∫ ∞

α1=−∞
· · ·

∫ ∞

αm=−∞
L(α1, . . . ,αm | I = 0) fA,prior(α1, . . . ,αm)dα1 . . . dαm

+(1−p)
∫ ∞

α1=−∞
· · ·

∫ ∞

αm=−∞

∫ ∞

βm+1=−∞
· · ·

∫ ∞

βn=−∞
L(α1, . . . ,αm ,βm+1, . . . ,βn | I = 1)

× fA,prior(α1, . . . ,αm) fB,prior(βm+1, . . . ,βn)dα1 . . . dαm dβm+1 . . . dβn

= pEA,prior[L(A | I = 0)]+ (1−p)EA,B,prior[L(A,B | I = 1)] (9)

(∝ means “is proportional to") with the normalizing factor C given by

1

C
= EP,prior[P ]EA,prior[L(A | I = 0)]+ (1−EP,prior[P ])EA,B,prior[L(A,B | I = 1)] (10)

Thus the posterior density of P is a trapez, implying that the largest posterior
density is for p = 1 if EA,prior[L(A | I = 0)] > EA,B,prior[L(A,B | I = 1)] and for p = 0,
otherwise, except if the two expectations are equal.

Let us study what happens if the priors of A and B are chosen as non-informative
priors. For this purpose it sufficient to study the situation for m = 1 and n = 2,
and adopt a uniform prior over the interval [−a/2, a/2] for A1 and a uniform
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prior over the interval [−b/2,b/2] for B2. Correspondingly assume that we have
the regular case J0 =

∫ ∞
−∞ L(α | I = 0)dα<∞, J1 =

∫ ∞
−∞

∫ ∞
−∞ L(α,β | I = 1)dαdβ<

∞ such that the non-informative priors are allowable in the limit as a → ∞,
b →∞. Then

fP,posterior(p) ≈ p J0 + (1−p)J1/b

EP,prior[P ]J0 + (1−EP,prior[P ])J1/b
fP,prior(p) (11)

asymptotically as b →∞. Thus the posterior density depends on the arbitrary
choice of b, and in the limit b →∞ we get

fP,posterior(p) ≈ p

EP,prior[P ]
fP,prior(p) (12)

i.e., a posterior density that only depends on the prior density of P and not on
the sample. Obviously this result is unreasonable. This non-informative prior
problem is not present if m = n, that is, if the parameters are the same in the
two distribution models. Then (11) reads

fP,posterior(p) = p J0 + (1−p)J1

EP,prior[P ]J0 + (1−EP,prior[P ])J1
fP,prior(p) (13)

where J0 =
∫ ∞
−∞ L(α | I = 1)dα, J1 =

∫ ∞
−∞ L(α | I = 0)dα. In particular taking fP,prior(p) =

1 gives

fP,posterior(p) = 2[p J0 + (1−p)J1]

J0 + J1
(14)

The maximal posterior density is obtained for p = 1 if J0/J1 > 1, and for p = 0
if J0/J1 < 1. If J0/J1 = 1 the posterior distribution of P is uniform, and the two
models may be stated to fit the data equally well.

3


