Dyson’s conjecture for the energy of a charged Bose gasa

Jan Philip Solovej
Institute for Advanced Study
and
Department of Mathematics, University of Copenhagen

90th Statistical Mechanics Conference,
Rutgers Sunday Dec. 14, 2003,
Celebrating the 80th birthday of Freeman Dyson

aJoint work with E.H. Lieb
List of Slides

1. The oldest problem in Quantum Mechanics
2. History (after 1927)
3. Sketching the proof of Dyson’s conjecture
4. Local energy calculation
5. The localization scheme
The oldest problem in Quantum Mechanics

The energy of a charged gas of \(N \) particles, with charges \(e_i \in \{1, -1\} \):

\[
H_N = \sum_{i=1}^{N} -\frac{1}{2} \Delta_i + \sum_{1 \leq i < j \leq N} \frac{e_i e_j}{|x_i - x_j|}, \quad \text{on } \bigotimes L^2(\mathbb{R}^3) = L^2(\mathbb{R}^{3N})
\]

\[
E(N) = \min \{ \inf \text{spec} H_N : e_i = \pm 1, \ i = 1, 2, \ldots, N \} = \inf \text{spec}_{L^2((\mathbb{R}^3 \times \{1, -1\})^N)} H_N
\]

On \(L^2((\mathbb{R}^3 \times \{1, -1\})^N) = \bigotimes^N L^2(\mathbb{R}^3 \times \{1, -1\}) \) we may restrict to fully symmetric functions. Therefore this is a \textit{charged Bose gas}.

Note that \(E(1) = 0, \ E(2) = -1/4 \) (Schrödinger 1926-27 (hydrogen)).

\textbf{Dyson’s conjecture (1967):}

\[
\lim_{N \to \infty} \frac{E(N)}{N^{7/5}} = \inf \left\{ \frac{1}{2} \int (\nabla \Phi)^2 - J \int \Phi^{5/2} : \int \Phi^2 = 1, \ \Phi \geq 0 \right\}
\]

\[
J = (2/\pi)^{3/4} \int 1 + x^4 - x^2(x^4 + 2)^{1/2} dx.
\]
History (after 1927)

THEOREM 1 (Dyson 1967 Instability of charged bose gas).

\[E(N) \leq -CN^{7/5} \]

THEOREM 2 (Dyson-Lenard 1967). \(E(N) \geq -CN^{5/3} \)

THEOREM 3 (Conlon-Lieb-Yau 1988). \(E(N) \geq -CN^{7/5} \)

THEOREM 4 (Lieb-Solovej 2003).

\[\liminf_{N \to \infty} \frac{E(N)}{N^{7/5}} \geq \inf \left\{ \int (\nabla \Phi)^2 - J \int \Phi^{5/2} : \int \Phi^2 = 1, \Phi \geq 0 \right\} \]

Remark on proof of Thm. 1: If we use a product trial function \(\prod_{i=1}^{N} \phi(x_i) \), with \(e_i = (-1)^i \) we only get \(E(N) \leq -CN \) (not instability).

Dyson uses a BCS type trial function (for \(2N \) particles):

\[
\prod_{i=1}^{2N} \phi(x_i) \sum \text{Perm.} \prod_{\sigma j=1}^{N} \left[1 - e_{\sigma(2j)} e_{\sigma(2j-1)} \sum_{\alpha} \psi_{\alpha}(x_{\sigma(2j)}) \psi_{\alpha}(x_{\sigma(2j-1)}) \right]
\]
Sketching the proof of Dyson’s conjecture

Physics: Global length scale (of ϕ) is $N^{-1/5}$, $\phi^2 \sim N^{8/5}$. Local length scales (of ψ_α) is $N^{-2/5} \ll N^{-1/5}$.

Step 1: The local (short scale) energy: Consider gas confined to box of size ℓ, with $N^{-2/5} \ll \ell \ll N^{-1/5}$ and with particle number $\nu \sim N^{8/5}\ell^3$. I.e., $\ell^{-1} \ll \nu \ll \ell^{-5}$. Use second quantization

$$H_{\text{Box}} = \sum_{p,e} \epsilon(p) a^*_p,e a_{p,e} + \frac{1}{2} \sum_{p,q,e,e'} \epsilon e' \omega_{pq;\mu\nu} a^*_p,e a^*_q,e' a_{\nu,e',\mu,e}$$

Relevant part is $\omega_{pq;00} = \omega_{00;pq} = \omega_{p0;0-q} = \omega_{0p;-q0} \sim g(p)\delta(p+q)$. Conclude energy $\sim -J\nu(\nu/\ell^3)^{1/4}$.

Step 2: The global energy:

$$\sum_{\text{n.n. boxes } i,j} \frac{1}{2} \ell^{-2} \left(\sqrt{\nu(i)} - \sqrt{\nu(j)} \right)^2 - \sum_{\text{boxes } i} J\nu(i) \left(\nu(i)/\ell^3 \right)^{1/4}.$$

A discrete approximation to $\frac{1}{2} \int (\nabla \Phi)^2 - J \int \Phi^{5/2}$, $\int \Phi^2 = N$.

3
Local energy calculation

For $p \neq 0$ let $b_{p,e}^* = a_{p,e}^* a_{0,e} / \sqrt{\nu_e}$. Then

$$b_{p,e}^* b_{p,e} \leq a_{p,e}^* a_{p,e}, \quad [b_{p,e}^*, e', b_{p,e}^*] = 0, \quad [b_{p,e}, b_{p,e}^*] \leq 1 \quad (1)$$

and $H_{\text{Box}} \geq \sum_{p \neq 0} h_p$ where h_p is

$$\frac{\epsilon(p)}{2} \sum_{e = \pm 1} (b_{p,e}^* b_{p,e} + b_{-p,e}^* b_{-p,e})$$

$$+ g(p) \sum_{e, e' = \pm 1} \sqrt{\nu_e \nu_{e'}} e e' (b_{p,e}^* b_{p,e'} + b_{-p,e}^* b_{-p,e'} + b_{*}^* b_{-p,e'} + b_{p,e} b_{-p,e'})$$

It follows from (1) (by completing squares) that

$$h_p \geq -(\epsilon(p)/2 + \nu g(p)) + \sqrt{(\epsilon(p)/2 + \nu g(p))^2 - (\nu g(p))^2}$$

After replacing sums by integrals this gives

$$H_{\text{Box}} \geq -J \nu (\nu/\ell^3)^{1/4}$$
The localization scheme

THEOREM 5 (The sliding method (Conlon-Lieb-Yau 1988)).

\(\chi_z = "\text{smooth characteristic" function of } \ell\text{-cube centered at } z \in \mathbb{R}^3. \) Then

\[
\sum_{1 \leq i < j \leq N} \frac{e_i e_j}{|x_i - x_j|} \geq \int \sum_{1 \leq i < j \leq N} \chi_z(x_i) \frac{e_i e_j}{|x_i - x_j|} \chi_z(x_j) dz - C \frac{N}{\ell}
\]

THEOREM 6 (A many body kinetic energy bound (\(\ell = 1 \))).

\(\chi_z = "\text{smooth characteristic" function of unit cube centered at } z \in \mathbb{R}^3. \)
\(a^*(z) \) creation operator of constant in cube. \(P_z = \text{projection orthogonal to constants in cube. } \Omega \subset \mathbb{R}^3. \) \(e_1, e_2, e_3 \) standard basis. For all \(0 < s < 1 \)

\[
(1 + \varepsilon(\chi, s)) \sum_{i=1}^{N} -\Delta_i \geq \int _{\Omega} \left[\sum_{i=1}^{N} P_z^{(i)} \chi_z^{(i)} \frac{(-\Delta_i)^2}{-\Delta_i + s^{-2} \chi_z^{(i)} P_z^{(i)}} + \sum_{j=1}^{3} \left(\sqrt{a_0^*(z + e_j) a_0(z + e_j) + 1/2} - \sqrt{a_0^*(z) a_0(z) + 1/2} \right)^2 \right] dz
\]

\(-3\text{vol}(\Omega), \quad \varepsilon(\chi, s) \to 0 \) as \(s \to 0.\)