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The Theorem on Stability of Matter

My goal in this last lecture is to discuss stability of fermionic matter and

instability of bosonic matter.

THEOREM 1 (Stability of Matter). Matter consisting of nuclei and

fermionic electrons satisfies stability of the 2nd kind

EF
N,K > −C(N + K).

This was first proved by Dyson and Lenard. Shortly after Lieb and Lebowitz

used this to prove that the thermodynamic limit exists for ordinary matter.

Lieb and Thirring later gave a simplified proof of stability of matter using the

Lieb-Thirring inequality and Thomas-Fermi theory. In Thomas-Fermi theory

one has the celebrated No-binding theorem.

I will sketch a somewhat different proof based on a correlation inequality of

Baxter; still using the Lieb-Thirring inequality.
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Correlation estimates

THEOREM 2 (Baxter’s correlation estimate). For all z1, . . . , zM ∈ R and

x1, . . . , xM ∈ R
3.

∑

1≤i<j≤M

zizj |xi − xj |
−1 ≥

∑

i, zi<0

ziV (xi)

where

V (x) = (2 max
k

{zk} + 1) max
j:zj>0

{|x − xj |
−1}.

An improvement (and more analytic proof) of this was given by Lieb and Yau. A

simpler version was proved already by Onsager in 1939:

∑

1≤i<j≤M

zizj |xi − xj |
−1 ≥ −

M∑

i=1

z2
i max

j:zizj<0
{|xi − xj |

−1}
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A proof of stability of matter

For matter with electrons of charge -1, Baxter’s correlation inequality gives

HN,K ≥
N∑

i=1

− 1

2
∆i − V (xi)

where

V (x) = (2 max
k

{Zk} + 1) max
j:zj>0

{|x − xj |
−1}

By the Lieb Thirring inequality

EN,K ≥ −CLT

∫

Λ

V (x)5/2 − N sup
R3\Λ

V.

With an appropriate choice Λ ⊂ R
3 we find

EN+K ≥ −C(N + K).
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Instability of bosonic matter

THEOREM 3 (Dyson’s formula. Lieb-Sol. 2004 (≥), Sol. 2004(≤)).

lim
N→∞

EB
N

N7/5
= inf

{
1

2

∫
|∇φ|2 − J

∫
φ5/2 | φ ≥ 0,

∫
φ2 = 1

}

History: Dyson 1967 proved EB
N ≤ −CN7/5. Implies no stability (7/5 > 1). No

thermodynamics. Dyson conjectured above formula.

Conlon-Lieb-Yau 1988: EN ≥ −CN7/5.

A Hartree trial state φ(x1) · · ·φ(xN ) would give

EB ≤ N 1

2

∫
|∇φ|2 +




∑

1≤i<j≤N

zizj




∫
|φ(x)|2|φ(y)|2

|x − y|
dxdy

=
N

2

(∫
|∇φ|2 −

∫
|φ(x)|2|φ(y)|2

|x − y|
dxdy

)
,

i.e., linear in N , assuming that
∑

i zi = 0 and
∑

i z2
i = N .
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Heuristic derivation of Dyson’s formula

Most particles are in condensed state φ̃ with
∫

φ̃2 = 1.

The local density is ρ = Nφ̃2.

Local energy density is according to Foldy −Jρ5/4 = −JN5/4φ̃5/2. It is not

quite that simple. One again has to do a Bogolubov approximation. In this

special case the Bogolubov approximation is in fact an exact upper bound. The

local energy density is however still an approximation.

The kinetic energy of the condensate is 1

2
N

∫
|∇φ̃|2

The total energy is then

1

2
N

∫
|∇φ̃|2 − JN5/4

∫
φ̃5/2

If we set φ(x) = N−3/10φ̃(xN−1/5) then

1

2
N

∫
|∇φ̃|2 − JN5/4

∫
φ̃5/2 = N7/5

(
1

2

∫
|∇φ|2 − J

∫
φ5/2

)
.
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Conclusion

I have in these lectures discussed non-relativistic many-body quantum mechanics

and reviewed som rigorous results. Among the things I have not discussed one

can mention

• Excited states and positive temperature

• Relativistic effects and corrections

• Coupling to quantum fields, such as the electromagnetic field or other gauge

fields or coupling to the gravitational field.

• Perturbation theory
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