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1 The min-max theorem

Let q be a closed semi-bounded quadratic form on a dense domain Q in a
Hilbert space H. Let A be the self-adjoint operator corresponding to Q. The
discrete points in the spectrum of A are eigenvalues of A. The discrete spec-
trum of A is the set of discrete points in the spectrum which are eigenvalues
of finite multiplicity:

σd(A) = {λ ∈ R | λ is a discrete eigenvalue of finite multiplicity}.

The discrete spectrum is a relatively open set in the spectrum and hence its
complement the essential spectrum

σess(A) = σ(A) \ σd(A)

is a closed set. We define the bottom of the essential spectrum

Σ(A) = inf σess(A).

If σess(A) = ∅ we understand this as Σ(A) = ∞. Note that Σ(A) > −∞
since A is a semibounded operator and hence the spectrum of A is contained
in a half line. An operator for which Σ(A) = ∞ is said to have compact
resolvent. We want to characterize the part of the spectrum below Σ(A). It
will consist entirely of eigenvalues and they may be calculated as what we
call the min-max values of q.

Definition 1 (The min-max values). The min-max values of q are

µn = inf
{

max{q(φ) | ‖φ‖ = 1, φ ∈M}
∣∣∣ M ⊆ Q subspace, dim(M) = n

}
.

Note that the max is really a max and not just a sup, since we are taking
the max of a continuous function q over the unit ball in a finite dimensional
normed vector space M , where the unit ball is compact.

Lemma 1. The min-max values form a non-decreasing (finite if H is finite
dimensional) sequence, i.e.,

−∞ < µ1 ≤ µ2 ≤ · · · .

If D ⊆ Q is a subspace which is dense in Q in the q-norm ‖φ‖q = (q(φ) +
(1− γ)‖φ‖2)1/2 (where γ is the lower bound on q) then

µn = inf
{

max{q(φ) | ‖φ‖ = 1, φ ∈M}
∣∣∣ M ⊆ D subspace, dim(M) = n

}
.
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Proof. Since q is bounded below it is clear that −µ1 > −∞. Assume that
H has dimension at least n + 1 (otherwise there are at most n min-max
values). We will show that µn ≤ µn+1. Given ε > 0 it is enough to show
that µn ≤ µn+1 + ε. From the definition of the min-max values we may find
a space M ⊆ Q of dimension n+ 1 such that

µn+1 ≥ max{q(φ) | ‖φ‖ = 1, φ ∈M} − ε.

Let M ′ be a subspace of M of dimension n. Hence

µn+1 + ε ≥ max{q(φ) | ‖φ‖ = 1, φ ∈M}
≥ max{q(φ) | ‖φ‖ = 1, φ ∈M ′} ≥ µn.

To prove the second half of the lemma let us denote

µ′n = inf
{

max{q(φ) | ‖φ‖ = 1, φ ∈M}
∣∣∣ M ⊆ D subspace, dim(M) = n

}
.

Since a subspace of D is also a subspace of Q we immediately see that
µn ≤ µ′n. To prove the opposite inequality given 0 < ε < 1 choose an
n-dimensional M ⊆ Q such that

µn ≥ max{q(φ) | ‖φ‖ = 1, φ ∈M} − ε.

Let φ1, . . . φn be an orthonormal basis for M . Then we can find φ′1, . . . , φ
′
n ∈

D such that ‖φj − φ′j‖ ≤ ε for j = 1, 2, . . . , n. Then since

〈φ, ψ〉q = q(φ, ψ) + (1− γ)〈φ, ψ〉

and ‖φ‖ ≤ ‖φ‖q for all φ, ψ ∈ Q we obtain

|q(φ′i, φ′j)− q(φi, φj)| ≤ |〈φ′j, φ′i〉q − 〈φj, φi〉q|+ |1− γ||〈φ′j, φ′i〉 − 〈φj, φi〉|
≤ ‖φ′j − φj‖q‖φ′i‖q + ‖φ′i − φi‖q‖φj‖q

+|1− γ|(‖φ′j − φj‖‖φ′i‖+ ‖φ′i − φi‖‖φj‖)
≤ 2(1 + |1− γ|)(1 + ε)ε ≤ Cε

for C = 4(1 + |1− γ|). Hence

|q(
n∑

j=1

αjφ
′
j)− q(

n∑
j=1

αjφj)| ≤ C

n∑
j=1

n∑
i=1

|αiαj|ε ≤ Cnε

n∑
j=1

|αi|2,



JPS— MatPhys2, 2011 3

by the Cauchy-Schwarz inequality. It follows from this that

µ′n ≤ max{q(φ) | ‖φ‖ = 1, φ ∈M ′}
≤ max{q(φ) | ‖φ‖ = 1, φ ∈M}+ Cnε ≤ µn + (Cn+ 1)ε.

Since this is true for all ε > 0 we conclude that µ′n ≤ µn.

In particular, if A0 is a semi-bounded symmetric operator on the domain
D(A0) then the form corresponding to A0 may be closed to a quadratic form
q and its min-max values may be calculated directly from the information
about A0

µn = inf
{

max{〈φ,A0φ〉 | ‖φ‖ = 1, φ ∈M}
∣∣∣ M ⊆ D(A0) subspace,

dim(M) = n
}
.

We will therefore also refer to the min-max values as the min-max values
of A0. This holds in particular if A is the self-adjoint operator connected
to a closed quadratic form. We shall use this in the proof of the min-max
Theorem below. In particular, we point out that the min-max values of a
semi-bounded symmetric operator are the same as the min-max values of its
Friedrichs extension.

Theorem 1 (The min-max Theorem). Let A be the self-adjoint operator
corresponding to a closed semi-bounded quadratic form. The min-max values
of q satisfy µn ≤ Σ(A). If µn < Σ(A) then µn is the n-th eigenvalue of A
counted with multiplicity from the lowest value. If µn = Σ(A) then A has at
most n− 1 eigenvalues counted with multiplicity below Σ(A).

Proof. If Σ(A) < ∞ and ε > 0 then by the Spectral Theorem the spectral
subspace

1[Σ(A),Σ(A)+ε)(H)

is infinite dimensional (otherwise Σ(A) would be a discrete eigenvalue of finite
multiplicity). We can thus find a subspace M of this space of arbitrarily
high dimension. For all normalized φ ∈ M we have (again by the Spectral
Theorem)

q(φ) = 〈φ,Aφ〉 ≤ Σ(A) + ε.

It follows that for all n, µn ≤ Σ(A) + ε. Since this is true for all ε > 0 we
conclude that µn ≤ Σ(A).
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Assume that A has at least n eigenvalues counted with multiplicity below
Σ(A). Let λ1 ≤ λ2 ≤ · · · ≤ λn < Σ(A) denote the n lowest eigenvalues
and let the corresponding orthonormal family of eigenvectors be φ1, . . . , φn ∈
D(A) ⊆ Q. Consider the n-dimensional space M = span{φ1, . . . , φn}. Then,
if φ ∈M is normalized we have

q(φ) = 〈φ,Aφ〉 =
n∑

j=1

λj|〈φj, φ〉|2 ≤ λn.

We of course have equality above if φ = φn. Hence

max{q(φ) | ‖φ‖ = 1, φ ∈M} = λn.

Thus µn ≤ λn. It follows that if µn ≥ Σ(A) then A cannot have n eigenvalues
below Σ(A).

If on the other hand µn < Σ(A) we will now show that µn ≥ λn. Given
ε > 0 it is enough to show that µn ≥ λn − ε. Choose M ⊆ D(A) with
dimM = n such that

µn ≥ max{q(φ) | ‖φ‖ = 1, φ ∈M} − ε

The projection of span{φ1, . . . , φn−1} onto M is an at most n−1-dimensional
subspace. Hence we can find a normalized φ ∈M such that

φ ⊥ span{φ1, . . . , φn−1}.

It then follows by the Spectral Theorem that

q(φ) = 〈φ,Aφ〉 ≥ λn.

We conclude that µn ≥ λn − ε.

If K is a bounded operator we can also define the max-min values

νn = sup
{

min{q(φ) | ‖φ‖ = 1, φ ∈M}
∣∣∣ M ⊆ Q subspace, dim(M) = n

}
.

We of course have a corresponding max-min Theorem. We leave it to the
reader to formulate this.

Definition 2 (Compact, trace class and Hilbert Schmidt operators). If K
is a bounded operator such that limn→∞ νn(K∗K) = 0 then K is said to be
compact. We have the following two subclasses of the compact operators.
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• If
∑∞

n=0 νn(K∗K)1/2 <∞ then K is said to be trace class.

• If
∑∞

n=0 νn(K∗K) <∞ then K is said to be Hilbert-Schmidt.

One can prove that the sets of compact, trace class, and Hilbert-Schmidt
operators are subspaces.


