1 The min-max theorem

Let q be a closed semi-bounded quadratic form on a dense domain \mathcal{Q} in a Hilbert space \mathcal{H}. Let A be the self-adjoint operator corresponding to Q. The discrete points in the spectrum of A are eigenvalues of A. The discrete spectrum of A is the set of discrete points in the spectrum which are eigenvalues of finite multiplicity:

$$
\sigma_{\mathrm{d}}(A)=\{\lambda \in \mathbb{R} \mid \lambda \text { is a discrete eigenvalue of finite multiplicity }\} .
$$

The discrete spectrum is a relatively open set in the spectrum and hence its complement the essential spectrum

$$
\sigma_{\mathrm{ess}}(A)=\sigma(A) \backslash \sigma_{\mathrm{d}}(A)
$$

is a closed set. We define the bottom of the essential spectrum

$$
\Sigma(A)=\inf \sigma_{\mathrm{ess}}(A)
$$

If $\sigma_{\text {ess }}(A)=\emptyset$ we understand this as $\Sigma(A)=\infty$. Note that $\Sigma(A)>-\infty$ since A is a semibounded operator and hence the spectrum of A is contained in a half line. An operator for which $\Sigma(A)=\infty$ is said to have compact resolvent. We want to characterize the part of the spectrum below $\Sigma(A)$. It will consist entirely of eigenvalues and they may be calculated as what we call the min-max values of q.

Definition 1 (The min-max values). The min-max values of q are
$\mu_{n}=\inf \{\max \{q(\phi) \mid\|\phi\|=1, \phi \in M\} \mid M \subseteq \mathcal{Q}$ subspace, $\operatorname{dim}(M)=n\}$.
Note that the max is really a max and not just a sup, since we are taking the max of a continuous function q over the unit ball in a finite dimensional normed vector space M, where the unit ball is compact.
Lemma 1. The min-max values form a non-decreasing (finite if \mathcal{H} is finite dimensional) sequence, i.e.,

$$
-\infty<\mu_{1} \leq \mu_{2} \leq \cdots
$$

If $\mathcal{D} \subseteq \mathcal{Q}$ is a subspace which is dense in \mathcal{Q} in the q-norm $\|\phi\|_{q}=(q(\phi)+$ $\left.(1-\gamma)\|\phi\|^{2}\right)^{1 / 2}$ (where γ is the lower bound on q) then
$\mu_{n}=\inf \{\max \{q(\phi) \mid\|\phi\|=1, \phi \in M\} \mid M \subseteq \mathcal{D}$ subspace, $\operatorname{dim}(M)=n\}$.

Proof. Since q is bounded below it is clear that $-\mu_{1}>-\infty$. Assume that \mathcal{H} has dimension at least $n+1$ (otherwise there are at most n min-max values). We will show that $\mu_{n} \leq \mu_{n+1}$. Given $\varepsilon>0$ it is enough to show that $\mu_{n} \leq \mu_{n+1}+\varepsilon$. From the definition of the min-max values we may find a space $M \subseteq \mathcal{Q}$ of dimension $n+1$ such that

$$
\mu_{n+1} \geq \max \{q(\phi) \mid\|\phi\|=1, \phi \in M\}-\varepsilon
$$

Let M^{\prime} be a subspace of M of dimension n. Hence

$$
\begin{aligned}
\mu_{n+1}+\varepsilon & \geq \max \{q(\phi) \mid\|\phi\|=1, \phi \in M\} \\
& \geq \max \left\{q(\phi) \mid\|\phi\|=1, \phi \in M^{\prime}\right\} \geq \mu_{n}
\end{aligned}
$$

To prove the second half of the lemma let us denote
$\mu_{n}^{\prime}=\inf \{\max \{q(\phi) \mid\|\phi\|=1, \phi \in M\} \mid M \subseteq \mathcal{D}$ subspace, $\operatorname{dim}(M)=n\}$.
Since a subspace of \mathcal{D} is also a subspace of \mathcal{Q} we immediately see that $\mu_{n} \leq \mu_{n}^{\prime}$. To prove the opposite inequality given $0<\varepsilon<1$ choose an n-dimensional $M \subseteq \mathcal{Q}$ such that

$$
\mu_{n} \geq \max \{q(\phi) \mid\|\phi\|=1, \phi \in M\}-\varepsilon
$$

Let $\phi_{1}, \ldots \phi_{n}$ be an orthonormal basis for M. Then we can find $\phi_{1}^{\prime}, \ldots, \phi_{n}^{\prime} \in$ \mathcal{D} such that $\left\|\phi_{j}-\phi_{j}^{\prime}\right\| \leq \varepsilon$ for $j=1,2, \ldots, n$. Then since

$$
\langle\phi, \psi\rangle_{q}=q(\phi, \psi)+(1-\gamma)\langle\phi, \psi\rangle
$$

and $\|\phi\| \leq\|\phi\|_{q}$ for all $\phi, \psi \in \mathcal{Q}$ we obtain

$$
\begin{aligned}
\left|q\left(\phi_{i}^{\prime}, \phi_{j}^{\prime}\right)-q\left(\phi_{i}, \phi_{j}\right)\right| \leq & \left|\left\langle\phi_{j}^{\prime}, \phi_{i}^{\prime}\right\rangle_{q}-\left\langle\phi_{j}, \phi_{i}\right\rangle_{q}\right|+\left|1-\gamma \|\left\langle\phi_{j}^{\prime}, \phi_{i}^{\prime}\right\rangle-\left\langle\phi_{j}, \phi_{i}\right\rangle\right| \\
\leq & \left\|\phi_{j}^{\prime}-\phi_{j}\right\|_{q}\left\|\phi_{i}^{\prime}\right\|_{q}+\left\|\phi_{i}^{\prime}-\phi_{i}\right\|_{q}\left\|\phi_{j}\right\|_{q} \\
& +|1-\gamma|\left(\left\|\phi_{j}^{\prime}-\phi_{j}\right\|\left\|\phi_{i}^{\prime}\right\|+\left\|\phi_{i}^{\prime}-\phi_{i}\right\|\left\|\phi_{j}\right\|\right) \\
\leq & 2(1+|1-\gamma|)(1+\varepsilon) \varepsilon \leq C \varepsilon
\end{aligned}
$$

for $C=4(1+|1-\gamma|)$. Hence

$$
\left|q\left(\sum_{j=1}^{n} \alpha_{j} \phi_{j}^{\prime}\right)-q\left(\sum_{j=1}^{n} \alpha_{j} \phi_{j}\right)\right| \leq C \sum_{j=1}^{n} \sum_{i=1}^{n}\left|\alpha_{i} \alpha_{j}\right| \varepsilon \leq C n \varepsilon \sum_{j=1}^{n}\left|\alpha_{i}\right|^{2},
$$

by the Cauchy-Schwarz inequality. It follows from this that

$$
\begin{aligned}
\mu_{n}^{\prime} & \leq \max \left\{q(\phi) \mid\|\phi\|=1, \phi \in M^{\prime}\right\} \\
& \leq \max \{q(\phi) \mid\|\phi\|=1, \phi \in M\}+C n \varepsilon \leq \mu_{n}+(C n+1) \varepsilon
\end{aligned}
$$

Since this is true for all $\varepsilon>0$ we conclude that $\mu_{n}^{\prime} \leq \mu_{n}$.
In particular, if A_{0} is a semi-bounded symmetric operator on the domain $\mathcal{D}\left(A_{0}\right)$ then the form corresponding to A_{0} may be closed to a quadratic form q and its min-max values may be calculated directly from the information about A_{0}

$$
\left.\begin{array}{r}
\mu_{n}=\inf \left\{\max \left\{\left\langle\phi, A_{0} \phi\right\rangle \mid\|\phi\|=1, \phi \in M\right\} \mid M \subseteq \mathcal{D}\left(A_{0}\right)\right. \text { subspace, } \\
\operatorname{dim}(M)=n
\end{array}\right\} .
$$

We will therefore also refer to the min-max values as the min-max values of A_{0}. This holds in particular if A is the self-adjoint operator connected to a closed quadratic form. We shall use this in the proof of the min-max Theorem below. In particular, we point out that the min-max values of a semi-bounded symmetric operator are the same as the min-max values of its Friedrichs extension.

Theorem 1 (The min-max Theorem). Let A be the self-adjoint operator corresponding to a closed semi-bounded quadratic form. The min-max values of q satisfy $\mu_{n} \leq \Sigma(A)$. If $\mu_{n}<\Sigma(A)$ then μ_{n} is the n-th eigenvalue of A counted with multiplicity from the lowest value. If $\mu_{n}=\Sigma(A)$ then A has at most $n-1$ eigenvalues counted with multiplicity below $\Sigma(A)$.

Proof. If $\Sigma(A)<\infty$ and $\varepsilon>0$ then by the Spectral Theorem the spectral subspace

$$
\mathbf{1}_{[\Sigma(A), \Sigma(A)+\varepsilon)}(\mathcal{H})
$$

is infinite dimensional (otherwise $\Sigma(A)$ would be a discrete eigenvalue of finite multiplicity). We can thus find a subspace M of this space of arbitrarily high dimension. For all normalized $\phi \in M$ we have (again by the Spectral Theorem)

$$
q(\phi)=\langle\phi, A \phi\rangle \leq \Sigma(A)+\varepsilon .
$$

It follows that for all $n, \mu_{n} \leq \Sigma(A)+\varepsilon$. Since this is true for all $\varepsilon>0$ we conclude that $\mu_{n} \leq \Sigma(A)$.

Assume that A has at least n eigenvalues counted with multiplicity below $\Sigma(A)$. Let $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}<\Sigma(A)$ denote the n lowest eigenvalues and let the corresponding orthonormal family of eigenvectors be $\phi_{1}, \ldots, \phi_{n} \in$ $\mathcal{D}(A) \subseteq \mathcal{Q}$. Consider the n-dimensional space $M=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{n}\right\}$. Then, if $\phi \in M$ is normalized we have

$$
q(\phi)=\langle\phi, A \phi\rangle=\sum_{j=1}^{n} \lambda_{j}\left|\left\langle\phi_{j}, \phi\right\rangle\right|^{2} \leq \lambda_{n} .
$$

We of course have equality above if $\phi=\phi_{n}$. Hence

$$
\max \{q(\phi) \mid\|\phi\|=1, \phi \in M\}=\lambda_{n}
$$

Thus $\mu_{n} \leq \lambda_{n}$. It follows that if $\mu_{n} \geq \Sigma(A)$ then A cannot have n eigenvalues below $\Sigma(A)$.

If on the other hand $\mu_{n}<\Sigma(A)$ we will now show that $\mu_{n} \geq \lambda_{n}$. Given $\varepsilon>0$ it is enough to show that $\mu_{n} \geq \lambda_{n}-\varepsilon$. Choose $M \subseteq \mathcal{D}(A)$ with $\operatorname{dim} M=n$ such that

$$
\mu_{n} \geq \max \{q(\phi) \mid\|\phi\|=1, \phi \in M\}-\varepsilon
$$

The projection of $\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{n-1}\right\}$ onto M is an at most $n-1$-dimensional subspace. Hence we can find a normalized $\phi \in M$ such that

$$
\phi \perp \operatorname{span}\left\{\phi_{1}, \ldots, \phi_{n-1}\right\} .
$$

It then follows by the Spectral Theorem that

$$
q(\phi)=\langle\phi, A \phi\rangle \geq \lambda_{n} .
$$

We conclude that $\mu_{n} \geq \lambda_{n}-\varepsilon$.
If K is a bounded operator we can also define the max-min values
$\nu_{n}=\sup \{\min \{q(\phi) \mid\|\phi\|=1, \phi \in M\} \mid M \subseteq \mathcal{Q}$ subspace, $\operatorname{dim}(M)=n\}$.
We of course have a corresponding max-min Theorem. We leave it to the reader to formulate this.

Definition 2 (Compact, trace class and Hilbert Schmidt operators). If K is a bounded operator such that $\lim _{n \rightarrow \infty} \nu_{n}\left(K^{*} K\right)=0$ then K is said to be compact. We have the following two subclasses of the compact operators.

- If $\sum_{n=0}^{\infty} \nu_{n}\left(K^{*} K\right)^{1 / 2}<\infty$ then K is said to be trace class.
- If $\sum_{n=0}^{\infty} \nu_{n}\left(K^{*} K\right)<\infty$ then K is said to be Hilbert-Schmidt.

One can prove that the sets of compact, trace class, and Hilbert-Schmidt operators are subspaces.

