1 The Lieb-Thirring inequality

We consider the Schrödinger operator

$$
H=-\Delta+V
$$

defined on $\mathcal{D}(H)=C_{0}^{2}\left(\mathbb{R}^{d}\right)$, which is dense in $L^{2}\left(\mathbb{R}^{d}\right)$. Here $V \in L_{\text {loc }}^{2}\left(\mathbb{R}^{d}\right)$, such that the operator maps into $L^{2}\left(\mathbb{R}^{d}\right)$.

Theorem 1 (Lieb-Thirring inequality). If H is as above and the negative part $V_{-}=\min \{V, 0\}$ of V satisfies $V_{-} \in L^{\frac{d}{2}+1}\left(\mathbb{R}^{d}\right)$ then H is bounded below and its min-max values μ_{n} satisfy the Lieb-Thirring inequality

$$
\sum_{n=1}^{\infty}\left[\mu_{n}\right]_{-} \geq-C_{d} \int\left|V_{-}(x)\right|^{\frac{d}{2}+1} d x
$$

From the Lieb-Thirring inequality we see that the bottom of the essential spectrum of H must satisfy $\Sigma(H) \geq 0$, because otherwise all $\mu_{n} \leq \Sigma(H)<0$ and hence we would have $\sum_{n=1}^{\infty}\left[\mu_{n}\right]_{-}=-\infty$. It follows that all negative min-max values are eigenvalues and hence the Lieb-Thirring inequality is an estimate on the sum of negative eigenvalues. The proof is based on M. Rumin, Balanced distribution-energy inequalities and related entropy bounds, Duke Math. J., 160 (2011), pp. 567-597.

Proof of the Lieb-Thirring Inequality.
Step 1: It is enough to show that

$$
\begin{equation*}
\sum_{j=1}^{N}\left\langle\phi_{j}, H \phi_{j}\right\rangle \geq-C_{d} \int\left|V_{-}(x)\right|^{\frac{d}{2}+1} d x \tag{1}
\end{equation*}
$$

for all finite orthonormal families $\left\{\phi_{j}\right\}_{j=1}^{N}$ in $C_{0}^{2}\left(\mathbb{R}^{d}\right)$.
Indeed, if (1) holds it is clear that H is bounded below (the case $N=1$). Moreover, it is clear from (1) that $\Sigma(H) \geq 0$. Otherwise, we could find a subspace $M \subseteq C_{0}^{2}\left(\mathbb{R}^{d}\right)$ of arbitrarily large dimension N such that $\langle\phi, H \phi\rangle<$ $\Sigma(H) / 2<0$ for all normalized $\phi \in M$. Choosing any orthonormal basis in M the sum on the left side of (1) would be less than $-N \Sigma(H) / 2$ contradicting (1). Since $\Sigma(H) \geq 0$ all negative min-max values are eigenvalues and we can therefore choose an orthonormal family in $C_{0}^{2}\left(\mathbb{R}^{d}\right)$ approximating the corresponding eigenvectors such that the left side of (1) approximates arbirarily well the sum of the negative eigenvalues.

Step 2: We will use the following convention for the Fourier transform of $\overline{f \in L^{1}\left(\mathbb{R}^{d}\right)}$

$$
\widehat{f}(p)=(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} f(x) e^{-i p x} d x
$$

Then the Fourier transform extends to a unitary map on $L^{2}\left(\mathbb{R}^{d}\right)$.
For all $e>0$ and $\phi \in L^{2}\left(\mathbb{R}^{d}\right)$ we write

$$
\phi=\phi^{e,+}+\phi^{e,-}
$$

where

$$
\widehat{\phi}^{e,+}(p)=\left\{\begin{array}{ll}
\widehat{\phi}(p), & p^{2}>e \\
0, & p^{2} \leq e
\end{array}, \quad \widehat{\phi}^{e,-}(p)=\left\{\begin{array}{ll}
0, & p^{2}>e \\
\widehat{\phi}(p), & p^{2} \leq e
\end{array} .\right.\right.
$$

Then since the Fourier transform is unitary we obtain for $\phi \in C_{0}^{1}\left(\mathbb{R}^{d}\right)$

$$
\begin{align*}
\int_{0}^{\infty} \int_{\mathbb{R}^{d}}\left|\phi^{e,+}(x)\right|^{2} d x d e & =\int_{\mathbb{R}^{d}} \int_{0}^{\infty}\left|\widehat{\phi}^{e,+}(p)\right|^{2} d p d e \\
& =\int_{\mathbb{R}^{d}} \int_{0}^{p^{2}}|\widehat{\phi}(p)|^{2} d e d p \\
& =\int_{\mathbb{R}^{d}} p^{2}|\widehat{\phi}(p)|^{2} d x=\int_{\mathbb{R}^{d}}|\nabla \phi(x)|^{2} d x . \tag{2}
\end{align*}
$$

Step 3: For any family $\left\{\phi_{j}\right\}_{j=1}^{N}$ in $L^{2}\left(\mathbb{R}^{d}\right)$ we have using the triangle inequality in \mathbb{C}^{N}

$$
\begin{equation*}
\left(\sum_{j=1}^{N}\left|\phi_{j}^{e,+}(x)\right|^{2}\right)^{1 / 2} \geq\left[\left(\sum_{j=1}^{N}\left|\phi_{j}(x)\right|^{2}\right)^{1 / 2}-\left(\sum_{j=1}^{N}\left|\phi_{j}^{e,-}(x)\right|^{2}\right)^{1 / 2}\right]_{+} \tag{3}
\end{equation*}
$$

for all $e>0$. Here we have again used $t_{+}=\max \{t, 0\}$.
Step 4: For any orthonormal family $\left\{\phi_{j}\right\}_{j=1}^{N}$ we have using Bessel's inequality that for all $x \in \mathbb{R}^{d}$

$$
\begin{align*}
\sum_{j=1}^{N}\left|\phi_{j}^{e,-}(x)\right|^{2} & =\sum_{j=1}^{N}\left|(2 \pi)^{-d / 2} \int e^{i p x} \mathbf{1}_{(0, e)}\left(p^{2}\right) \widehat{\phi}_{j}(p) d p\right|^{2} \\
& \leq(2 \pi)^{-d} \int\left|e^{i p x} \mathbf{1}_{(0, e)}\left(p^{2}\right)\right|^{2} d p=(2 \pi)^{-d} \kappa_{d} e^{d / 2} \tag{4}
\end{align*}
$$

Step 5: Combining (2-4) we obtain for any orthonormal family $\left\{\phi_{j}\right\}_{j=1}^{N}$

$$
\begin{aligned}
\sum_{j=1}^{N} \int_{\mathbb{R}^{d}}\left|\nabla \phi_{j}(x)\right|^{2} d x & \geq \iint_{0}^{\infty}\left[\left(\sum_{j=1}^{N}\left|\phi_{j}(x)\right|^{2}\right)^{1 / 2}-(2 \pi)^{-d / 2} \kappa_{d}^{1 / 2} e^{d / 4}\right]_{+}^{2} d e d x \\
& \geq \frac{(2 \pi)^{2} d^{2} \kappa_{d}^{-2 / d}}{(d+2)(d+4)} \int_{\mathbb{R}^{d}}\left(\sum_{j=1}^{N}\left|\phi_{j}(x)\right|^{2}\right)^{\frac{d+2}{d}} d x
\end{aligned}
$$

Step 6: Using Step 5 and Hölder's inequality we arrive at the final result as follows

$$
\begin{aligned}
\sum_{j=1}^{N}\left\langle\phi_{j}, H \phi_{j}\right\rangle= & \sum_{[j=1}^{N} \int\left|\nabla \phi_{j}(x)\right|^{2}+V(x)\left|\phi_{j}(x)\right|^{2} d x \\
\geq & \sum_{j=1}^{N} \int\left|\nabla \phi_{j}(x)\right|^{2}-\left|V_{-}(x)\right|\left|\phi_{j}(x)\right|^{2} d x \\
\geq & \frac{(2 \pi)^{2} d^{2} \kappa_{d}^{-2 / d}}{(d+2)(d+4)} \int_{\mathbb{R}^{d}}\left(\sum_{j=1}^{N}\left|\phi_{j}(x)\right|^{2}\right)^{\frac{d+2}{d}} d x \\
& -\left(\int\left|V_{-}(x)\right|^{\frac{d+2}{2}} d x\right)^{\frac{2}{d+2}}\left(\int_{\mathbb{R}^{d}}\left(\sum_{j=1}^{N}\left|\phi_{j}(x)\right|^{2}\right)^{\frac{d+2}{d}} d x\right)^{\frac{d}{d+2}} \\
\geq & -\frac{2(2 \pi)^{-d} \kappa_{d}}{d+2}\left(\frac{d+4}{d}\right)^{d / 2} \int\left|V_{-}(x)\right|^{\frac{d+2}{2}} d x
\end{aligned}
$$

where we have used the fact that the function $\mathbb{R}_{+} \ni t \mapsto A t-B t^{\frac{d}{d+2}}$ for $A, B>0$ has the minimal value $-\frac{2}{d+2}\left(\frac{d}{d+2}\right)^{d / 2} A^{-d / 2} B^{\frac{d+2}{2}}$.

The estimate in the Lieb-Thirring inequality should be compared to the classical phase space integral

$$
(2 \pi)^{-d} \iint\left[p^{2}+V(x)\right]_{-} d p d x=-\frac{2(2 \pi)^{-d} \kappa_{d}}{d+2} \int\left|V_{-}(x)\right|^{\frac{d+2}{2}} d x
$$

The celebrated Lieb-Thirring conjecture states that the inequality holds with the classical constant above, i.e.,

$$
\sum_{n=1}^{\infty}\left[\mu_{n}\right]_{-} \geq(2 \pi)^{-d} \int\left[p^{2}+V(x)\right]_{-} d p d x
$$

As we saw the Lieb-Thirring inequality implies that $\Sigma(H) \geq 0$. If V tends to zero at infinity we have $\Sigma(H) \leq 0$.

Theorem 2. If $V \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{d}\right)$ is such that $\{x \mid V(x)>\varepsilon\}$ is a bounded set (except for a set of measure zero) for all $\varepsilon>0$ then $\Sigma(H) \leq 0$.

Proof. Given $\varepsilon>0$ we will show that there exists a subspace M of $C_{0}^{2}\left(\mathbb{R}^{d}\right)$ of arbitrarily large dimension such that $\langle\phi, H \phi\rangle \leq \varepsilon\|\phi\|^{2}$ for all $\phi \in M$. In order to construct M choose $g \in C_{0}^{2}\left(\mathbb{R}^{d}\right)$ with $\int|g|^{2}=1$. Choose R so large that

$$
R^{-2} \int|\nabla g|^{2}<\varepsilon / 2
$$

Given an integer N we may define $\phi_{j}(x)=R^{-d / 2} g\left(\left(x-u_{j}\right) / R\right), j=1, \ldots, N$ where the $u_{j} \in \mathbb{R}^{d}$ are chosen in such a way that all ϕ_{j} have disjoint support and are supported away from the set $\{x \mid V(x)>\varepsilon / 2\}$. Then the ϕ_{j} form an orthonormal family. If $\phi=\sum_{j=1}^{N} \alpha_{j} \phi_{j}$ then

$$
\langle\phi, H \phi\rangle \leq \sum_{j=1}^{N}\left|\alpha_{j}\right|^{2}\left(\int R^{-2}|\nabla g|^{2}+\varepsilon / 2 \int|g|^{2}\right) \leq \varepsilon \sum_{j=1}^{N}\left|\alpha_{j}\right|^{2} .
$$

Hence the space $M=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ has the desired property.

2 The CLR bound

We will now prove a bound on the number of negative eigenvalues in dimension $d \geq 3$. The argument is due to Rupert Frank.

STEP 1:
We proceed as in the proof of the Lieb-Thirring inequality, but instead of assuming that $\left\{\phi_{j}\right\}_{j=1}^{N}$ is an orthonormal family, we assume that $\left\{\sqrt{-\Delta} \phi_{j}\right\}_{j=1}^{N}$ is an orthonormal family. The calculation of the kinetic energy is unchanged, but Bessel's inequality now yields (under the assumption $d \geq 3$),

$$
\begin{align*}
\sum_{j=1}^{N}\left|\phi_{j}^{e,-}(x)\right|^{2} & =\sum_{j=1}^{N}\left|(2 \pi)^{-d / 2} \int \frac{e^{i p x} \mathbf{1}_{(0, e)}\left(p^{2}\right)}{|p|}\left(|p| \widehat{\phi}_{j}(p)\right) d p\right|^{2} \\
& \leq(2 \pi)^{-d} \int \frac{\left|e^{i p x} \mathbf{1}_{(0, e)}\left(p^{2}\right)\right|^{2}}{|p|^{2}} d p=(2 \pi)^{-d} \kappa_{d} e^{(d-2) / 2} \tag{5}
\end{align*}
$$

STEP 2:

Upon inserting (5) in the old Step 5, we get (with $\rho(x)=\sum_{j=1}^{N}\left|\phi_{j}(x)\right|^{2}$)

$$
\begin{aligned}
\sum_{j=1}^{N} \int_{\mathbb{R}^{d}}\left|\nabla \phi_{j}(x)\right|^{2} d x & \geq \iint_{0}^{\infty}\left[\rho(x)^{1 / 2}-(2 \pi)^{-d / 2} \kappa_{d}^{1 / 2} e^{(d-2) / 4}\right]_{+}^{2} d e d x \\
& \geq C_{d} \int \rho(x)^{1+\frac{2}{d-2}} d x
\end{aligned}
$$

STEP 3:

Let now $\left\{\psi_{1}, \ldots, \psi_{N}\right\}$ be linearly independent eigenvectors of H with eigenvalue below 0 (or more generally satisfy $\left.1_{(-\infty, 0]}(H) \psi_{j}=\psi_{j}\right)$. We can now apply Gram-Schmidt to obtain a collection $\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ with $\left\langle\sqrt{-\Delta} \phi_{j}, \sqrt{-\Delta} \phi_{k}\right\rangle=$ $\delta_{j, k}$.

Notice that the number N is unchanged because if $\sqrt{-\Delta \psi}=0$, then $|p| \widehat{\psi}(p)=0$ in L^{2} which implies that $\widehat{\psi}=0$ almost everywhere.

We now get that (using Hölder and STEP 2)

$$
\begin{align*}
0 \geq \sum_{j=1}^{N}\left\langle\phi_{j},(-\Delta-V) \phi_{j}\right\rangle & =N-\int V(x) \rho(x) d x \\
& \geq N-\left(\int V^{d / 2}\right)^{2 / d}\left(\int \rho^{d /(d-2)}\right)^{(d-2) / d} \\
& \geq N-C\left(\int V^{d / 2}\right)^{2 / d} N^{(d-2) / d} \tag{6}
\end{align*}
$$

A Hölder inequality now gives that

$$
\begin{equation*}
N \leq \tilde{C} \int V^{d / 2} \tag{7}
\end{equation*}
$$

