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Abstract

An overview of results for the cointegrated vector autoregressive model for nonstationary I(1) variables is given. The emphasis
is on the analysis of the model and the tools for asymptotic inference. These include: formulation of criteria on the
parameters, for the process to be nonstationary and I(1), formulation of hypotheses of interest on the rank, the cointegrating
relations and the adjustment coefficients. A discussion of the asymptotic distribution results that are used for inference. The
results are illustrated by a few examples. A number of extensions of the theory are pointed out.

Introduction

The term cointegration was defined by Granger (1983) as
a formulation of the phenomenon that nonstationary
processes can have linear combinations that are stationary. It
was his investigations of the relation between cointegration
and error correction that brought modeling of vector autore-
gressions with unit roots and cointegration to the center of
attention in applied and theoretical econometrics; see Engle
and Granger (1987).

During the last 30 years, many have contributed to the
development of theory and applications of cointegration. The
account given here focuses on theory, more precisely on like-
lihood-based theory for the vector autoregressive model; see
Johansen (1996). By building a statistical model as a frame-
work for inference, one has to make explicit assumptions about
the model used and hence has a possibility of checking the
assumptions made before conducting inference.

We start with some examples of cointegration.

Example 1: As a simple economic example of the main idea
in cointegration, consider 229 observations of US monthly
interest rates in the period 1987:1 to 2006:1, which defines the
period when Greenspan was the chairperson of the Federal
Reserve System. The data are taken from IMF's financial data-
base and consist of the 6 months treasury bill rate and the
3 years bond rate, denoted by i, and i3y, respectively. In
Figure 1 we plot the two interests rates and their spread

ism — i3y. The expectations hypothesis implies that these interest
rates should be equal up to a constant, i3, = ig;; + ¢, and such
a relation is not found in data. We can formulate it instead as
their spread being stationary around a constant, possibly zero.
This is an example of the formulation of an economic regularity
as a cointegrating relation and we want below to analyze
a statistical model, which allows such a formulation.

As simple examples of models for processes of this nature, we
first consider a model for a random walk and a stationary
process. Throughout we consider the sequence of p-dimensional
errors €, t = 1,..., T, which are independent and identically
distributed with mean zero and variance matrix, Q.

Example 2: (Autoregressive processes) (Figure 2) Let x; =
(yv %) be given by the equations fort = 1,...,T

Vi = Vi-1+ &p [1]
Zr = pzr—1 + €z [2]

here —1 < p < 1. Tt is seen that y, = yo + &1 + ... + &, and
that E(ylyo) = yo and Var(yyo) = tQ, so the variance is
increasing and the process is nonstationary. We also find

2z = plzo+ Zf;épiez,z,i which implies that E(z|z9) = p'zo
and Var(z|zo) = 023 i20p* =023 700" = 02/(1 - p?). We
can make z; stationary by choosing zyp = Zf;op"e@,,— and then
2 = > rop'ez—i. We call y, an I(1) process and z, an I(0)
process, see section Integration and Cointegration.
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A plot of 229 monthly observations of the 6 months treasury bill rate and the 3 years bond rate and their spread i, — i3, Note the

nonstationary behavior of the interest rates and the much more stationary spread, see Example 1.
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Figure 2 Three examples of AR(1) processes. Each plot has 100 observations. The first two are stationary with p = 0.1 and p = 0.5, and the last is

a random walk with p = 1, see Example 2.

Next we give a model for nonstationary variables that are
cointegrated, using the notation, Ax; = x; — x;_1.

Example 3: (Cointegrated processes) A bivariate process is
given for t = 1,...,T by the equations

Axy = ay(Xy—1 —%2-1) + € [3]
Axyy = ap(Xyp—1 — X20—1) + €2¢

Subtracting the equations, we find that the process y; =
X1y — X is autoregressive, see |[2]| and stationary if
p =1+ a; — o, satisfies |p| < 1, and the initial value is given
by its invariant distribution. Similarly we find that s, =
apxy — apxy, is a random walk, see [1], so that the process
x; = (x1, x2,)’ is given by
St — oyt
Q) —«q

St — QY
Q) — o

X1 = and xp =

This shows that when |1 + a7 — ap| < 1, xpis I(1), X1 — x2¢
is stationary, and apx1, — a1xy, is a random walk Zle(azsl,»—
a1€2i), so that x; is a cointegrated I(1) process with cointegra-
tion vector 3’ = (1, —1). We call s, a common stochastic trend
and «, the adjustment coefficients (Figure 3).

Three Approaches to Cointegration

There are at present three different ways of modeling the linear
cointegration idea in a parametric statistical framework. To
illustrate the ideas they are formulated in the simplest possible
cases, leaving out deterministic terms.

Regression Formulation
The multivariate process, x, = (x'1, ')’ of dimension
p = p1 + p2 is given by the regression equations

!
X1e = YXu + &

Axy = ey

This model implies that x,, is a nonstationary random walk,
and xq; — ylxgt gives p; stationary linear combinations. Hence,
in this case, the cointegration rank of x; is p;, see section Inte-
gration and Cointegration. The first estimation method used in
this model is least squares regression, Engle and Granger
(1987), which is shown to give a superconsistent estimator
by Stock (1987). This estimation method gives rise to residual
based tests for cointegration. It was shown by Phillips and
Hansen (1990) that, for a more general error term, a modifi-
cation of the regression estimator gives useful methods for
inference on coefficients of cointegration relations; see also
Phillips (1991).

Autoregressive Formulation
In the rest of this contribution we focus on the autoregressive
formulation of the p-dimensional process, x; defined by the
equations

Ax; = af'x_1 + &

where a and 8 are p x r matrices of rank r. Under the condition
that Ay, is stationary, the solution is

t ©
X = ngi+ZCi€t—i+A [4]
=1 i—0

where C = 6, (¢, 8,) '/, and /A = 0. Here 8, is a full
rank, p x (p — r), matrix so that 8, = 0. This formulation
allows for modeling of both the long-run relations, §'x, and the
adjustment, or feedback coefficient «, toward the attractor set
{x : f’x = 0} defined by the long-run relations. Models for
different cointegration ranks are nested and the smallest, for
a = 8 = 0, corresponds to p random walks. The rank can be
analyzed by likelihood ratio tests. Methods usually applied for
this analysis are derived from the Gaussian likelihood function,
which is discussed here; see also Johansen (1988, 1996), and
Ahn and Reinsel (1990).
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Figure 3 Two simulations of model [3] for cointegrated variables, see Example 3.

Unobserved Components Formulation
Let x; be given by

t
x =&Y enitexn
i=1
where ¢, typically, is independent of &1,.

In this formulation too, hypotheses of different ranks are
nested but in the opposite direction, and the smallest, for
£ = n = 0, corresponds to stationary processes. The
parameters are linked to the autoregressive formulation by
¢ =06, and 7 = a,, even though the linear process,
> oCigr—i, in [4] depends on the random walk part, so the
unobserved components model and the autoregressive
model are not the same. However, both adjustment and
cointegration can be discussed in this formulation, and
hypotheses on the rank can be tested. Rather than testing for
unit roots, one tests for stationarity, which is sometimes
a more natural formulation. Estimation is performed by the
Kalman filter, and asymptotic theory of the rank tests has
been worked out by Nyblom and Harvey (2000), see also
Durbin and Koopman (2012).

The Model Analyzed in This Contribution

In the following we consider cointegration modeled by the
cointegrated vector autoregressive (CVAR) model, H(r), for the
p-dimensional process x;,

k=1
H(r): Ax, = a(Bxi1 +yDe) + Y Tilx i+ ®dy+ & [5]
i=1

i=

The terms D; and d; are deterministic terms like constant,
trend, seasonal or intervention dummies. The matrices « and
B are p x r where 0 < r < p. In section Integration and Coin-
tegration, conditions for the processes §'x, and Ax, to be
stationary around their means are given, and model [5] can
then be formulated as

Ax; — E(Ax;) = a(8'x-1 — E(B'x—1))

k—1
+ > Ti(Ax i — E(Ax ) + &
i=1

This shows how the change of the process reacts to feedback
from disequilibrium errors ,B/x,,l — E(ﬁlxt,l) and Ax,_; —
E(Ax;—;), via the short-run adjustment coefficients, « and T';.
The equation 8'x, — E(8'x;) = 0 defines the long-run relations
between the processes.

There are many surveys of the theory of cointegration; see
for instance Watson (1994) and Stock (1994) or Johansen
(2006, 2009), where the last two form the basis for the
presentation here. The topic has become part of most textbooks
in econometrics; see among others Banerjee et al. (1993),
Hamilton (1994), Hendry (1995), and Liitkepohl (2006). For
a general account of the methodology of the CVAR model with
applications to the analysis of economic data, see Juselius
(2006).

Linear Stationary Processes

We consider p-dimensional linear stationary processes

«©
2 = E Cier—i
i=0

which are well defined if the coefficient matrices satisfy the
condition that Y7,tr'/?(C/C;) < ©, where the trace of
a matrix, C, is tr(C) = Z?:1Cii- If in [5] we consider r = p we
define the matrix IT = f and the matrix valued characteristic
polynomial

k-1

W) = (1-2),-Tz—(1-2)Y I (6]
i=1

with determinant |¥(z)|. The properties of the solution of [5]
are determined by W(z). We define the roots z;i = 1,...,n, as the
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solutions of |¥(z)| = 0, and get, because |¥(0)| = 1, that

|W(z)| = [1;(1 —z/z). The inverse characteristic polynomial
is given by
-1 _ adj(¥(z)
W)t = SR ey
2) detw(z) <7 A

that is, the adjoint of W(z) divided by the determinant
of W(z).

The function, C(z) = W(z)™" has poles at the roots of the
polynomial |¥(z)|, and the position of the poles determine the
stochastic properties of the solution of [5]. We first mention
a well-known result; see Anderson (1971).

Theorem 1: If the roots satisfy |z;| > 1, then @ and § have full
rank r = p, and the coefficients of W~1(z) = > Ciz' are
exponentially decreasing. Let u, = > ;= Ci(alD_; + ®d;_;).
Then the distribution of the initial values of x; can be chosen so
that x; — u, is stationary with moving average representation

fee]
Xt — My = E Cigr—i
i=0

Thus the exponentially decreasing coefficients are found by
simply inverting the characteristic polynomial if the roots are
outside the unit disk. The matrices, C; contain the impulse
response coefficient of the process in the sense that a shock at
time zero to variable k will have the effect, (C;), at time ¢ to
variable i.

Integration and Cointegration

The basic definitions of integration and cointegration are given
together with a moving average representation of the solution
of the error correction model [5]. This solution reveals the
stochastic properties of the solution, see Example 3.

If the roots of |¥(z)| = 0 are not greater than 1, the equa-
tions generate nonstationary processes of various types, and the
coefficients are not exponentially decreasing. Still, the coeffi-
cients of C(z) = W™ '(z) determine the stochastic properties of
the solution of [5].

Definition 1: If 3.2 tr'/2(CIC;) < =, the linear process
x —E(x;) = Y1t oCier—i is called I1(0) if C(1) = >.2,Ci#0
The process, x; is called integrated of order 1, I(1), if
Ax; — E(Ax;) is I(0). If there is a vector 8 # 0 so that §'x,
is stationary around its mean, then x; is cointegrated with
cointegration vector, 8. The number of linearly independent
cointegration vectors is the cointegration rank.

We consider the process given by [5] and the characteristic
polynomial, W(z) defined in [6]. This has a unit root, if
W(1) = -II is singular, and by Theorem 1, the process is not
stationary. A singular matrix IT of rank r can be expressed as
II = af’, where a and B are p x r. We next formulate
a condition for the process to be I(1). We define
r=1,-Y5T

Assumption 1: (The I(1) condition) The I(1) condition is
satisfied if the roots, |W(z;)| = O satisfy |zj| > 1 orz; =1 and it
holds that

!alFﬁL‘;&o [7]

Condition [7] is needed to avoid solutions that are inte-
grated of order 2 or higher; see section Further Topics in

Cointegration for references. For a process with one lag I' = I,
and [5] implies

B = (I +Ba)fx—1 + B

In this case the I(1) condition is equivalent to the condition
that @'x; is stationary, that is, the absolute value of the eigen-
values of I, + ('« are less than 1, and in Example 2 this
condition reduces to |1 + a3 — a|<1.

Example 3 presents a special case of the Granger Repre-
sentation Theorem, which gives the moving average represen-
tation of the solution of the error correction model.

Theorem 2: (The Granger Representation Theorem) If W(z)
has unit roots and the I(1) condition is satisfied, then

(1-2)¥() ™" =Clr) = icizi = C+(1-2)C(2)
i=0

converges for |z| < 1 + 6 for some 6 > 0. The matrix C is
defined by

C = ﬁL (alfﬂl)flal

The solution x; of [5] has the moving average representation

xL:C

1

(&i + ®d;) + Z Cf (e1—i + ®di—i + a«¥Dy_j) + A
1 i=0

t ©

(8]

where A depends on initial values, so that §’A = 0.

This result implies that Ax; and ('x; are stationary around
their mean, so that x; is a cointegrated I(1) process with r
cointegration vectors 8 and p — r common stochastic trends
ol YT

One of the useful applications of the representation [8] is to
investigate the role of the deterministic terms. Note that d;
cumulates in the process with a coefficient, C®, but that D, does
not, because CaY' = 0. A leading special case is the model with
D;=t, and d, = 1, which ensures that any linear combination of
the components of x; is allowed to have a linear trend. Note
that if D, = t is not allowed in the model, that is Y’ = 0, then x;
has a trend given by C®t, but the cointegration relation, §’x; has
no trend because 3'C® = 0.

Interpretation of the /(1) Model

In this section, model H(r) defined by [5] is discussed.
The parameters in H(r) are

(0[7 67 Fla -“>I‘kflzr7 (D?Q)
All parameters vary freely and « and  are p x r matrices. The

normalization and identification of « and (8 are discussed, and
some examples of hypotheses on « and g are given.

The Relation between the Models H(n
The models H(r) are nested

H(0)C...CH(r)C...CH(p)

Here H(p) is the unrestricted vector autoregressive
model, so that « and § are unrestricted p x p matrices. The
model H(0) corresponds to the restriction, « = 8 = 0, which
is the vector autoregressive model for the process in
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differences. Note that in order to have nested models, we
allow in H(r) for all processes with rank of a and 8 less
than or equal to r.

The formulation allows us to derive likelihood ratio tests
for the hypothesis, H(r) in the unrestricted model, H(p).
These tests can be applied to check if one’s prior knowledge
of the number of cointegration relations is consistent with
the data, or alternatively to construct an estimator of the
cointegration rank.

Note that when the cointegration rank is r, the number of
common trends is p — r. Thus, if one can interpret the presence
of r cointegration relations, one should also interpret the
presence of p — r independent stochastic trends or p — r driving
forces in the data.

Normalization of Parameters

The parameters o« and § in [5] are not uniquely identified,
because given any choice of « and § and any nonsingular r x r
matrix £, the choice «f and &' gives the same matrix
aE(BETY) = afETIB = af

Ifx, = (x},,x)) wherex; isr x 1andxyis (p — 1) x 1, and
g = (81,8, with 81, r x r, and |81| # 0, we can solve the
cointegration relations as

’
X1 = Y X2 + U

where u; is stationary and v/ = —(8))”'8,. This represents
cointegration as a regression equation, see Section Regression
Formulation. A normalization of this type is sometimes
convenient for estimation and calculation of ‘standard errors’
of the estimator, see Section Asymptotic Distribution of Esti-
mators, but many hypotheses are invariant with respect to
a normalization of 3, and thus, in a discussion of a test of such
a hypothesis, § does not require normalization.

Similarly &, and @, are not uniquely defined. From the
Granger Representation Theorem we see that the p — r common
trends are the nonstationary random walks in C3"%_ ¢;, that is,
can be chosen as o, S°i_, &;. For any full rank (p — 1) x (p — 1)
matrix 7, the processes, na’, °i_;& could also be used as
common trends because

C=g8, (alfﬁj_)ilal =6 (nalfm)flnal

Thus identifying restrictions on the coefficients in «, are
needed to find their estimates and standard errors, and
a similar result holds for 3| .

In the cointegration model there are therefore four separate
identification problems: one for the cointegration relations,
one for the common trends, one for 8, , and finally one for the
short-run dynamics, if the model has simultaneous effects.

Hypotheses on Long-Run Coefficients

One purpose of modeling economic data is to test hypotheses
on the coefficients, thereby investigating whether the data
support an economic hypothesis or reject it. As an example
consider the series x, = (e, p,p)’, where p, and p; are the log
price indices in two countries and e, the exchange rate. The
hypothesis of the law of one price, PPP, is thate; = p; — p;. We
formulate that as the hypothesis that (1, -1, 1) is

a cointegration vector so that e, — p; + p; becomes stationary.
Similarly, the hypothesis of price homogeneity is formulated
as the restriction

R'8 = (0,1,1)8 = 0

1 0
g=10 1 (“’1) = Ho
0 -1 @2

where H = R . A general formulation of restrictions on each of
r cointegration vectors, including a normalization, is

B = (h1 +Higy,...,h + Hro,). [9]

Here h;is p x 1 and orthogonal to H;, whichisp x (s; — 1) of
rank s; — 1, so that p — s; restrictions are imposed on the vector,
Bi. Let the restrictions be R; = (h;,H;), then ; satisfies
R8; = 0, and the normalization (h;hi)flhgﬁi = 1. The usual
rank condition for identification is that g8; is identified by
Rig; = 0, if

rank (R(B1, ..., 6;)) = 1 —1

Hypotheses on Adjustment Coefficients

The coefficients in « measure how the process adjusts to
disequilibrium errors. The hypothesis of weak exogeneity is the
hypothesis that some rows of « are zero; see Engle et al. (1983).
We decompose the process x, as x = (x},,%,)" and the
matrices are decomposed similarly so that the model equations
(without deterministic terms and k = 2) become

Axy = oqB'x—1 + T11Ax 1 + ey
Axy = %1 4+ T21 A%y + &y

The conditional model for Axy, given Ax,, and the past is

Axyy = wAXy + a1f'x—1 + (I'11 — 0T21)Ax_1 + €1, — wey
[10]

where w = Q1,Q5, . If & = 0, there is no levels feedback from
6x,—1 to Axy,, and if the errors are Gaussian, x5, is called weakly
exogenous for ¢; and . In this case the likelihood is a product
of two factors depending on (I'21, Q27) and («1,8,I'11,0,Q11.2),
respectively. Because the parameters are unrestricted (variation
independent), likelihood inference on # and «; can be con-
ducted in the conditional model alone.

If the hypothesis of weak exogeneity is not satisfied, infer-
ence of the conditional model is complicated because limit
distributions contain nuisance parameters, and asymptotic
inference is not Gaussian.

If x,; is weakly exogenous, a contains the columns of
(o, Ip_,)/, so that Zleegi are common trends. Thus the errors in
the equations for Ax,, cumulate in the system and give rise to
nonstationarity.

Likelihood Analysis

This section contains first some comments on what aspects of
the data are important for checking for model misspecification,
and then describes the calculation of reduced rank regression,
introduced by Anderson (1951). Then reduced rank regression
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and modifications thereof are applied to estimate the param-
eters of the I(1) model [5] and various submodels defined by
restrictions on (3, see Johansen and Juselius (1990).

Checking for Specification

In order to apply Gaussian maximum likelihood methods, the
assumptions behind the model have to be checked carefully, so
that one is convinced that the statistical model contains the
density that generated the data. If this is not the case, the
asymptotic results available from the Gaussian analysis need
not hold. Methods for checking vector autoregressive models
include choice of lag length, test for normality of residuals, tests
for autocorrelation, and test for heteroscedasticity in errors.
Asymptotic results for estimators and tests derived from the
Gaussian likelihood turn out to be robust to some types of
deviations from the above assumptions. Thus the limit results
hold for independent identically distributed (iid) errors with
finite variance, and not just for Gaussian errors, but auto-
correlated errors violate the asymptotic results, so autocorre-
lation has to be checked carefully.

Finally and perhaps most importantly, the assumption of
constant parameters is crucial. In practice it is important to model
outliers by suitable dummies, but it is also important to model
breaks in the dynamics, breaks in the cointegration properties,
breaks in the stationarity properties, etc. The papers by Seo
(1998) and Hansen and Johansen (1999) contain some results
on recursive tests in the cointegration model, and Doornik and
Hendry (2013) contains a description of a general algorithm
(Autometrics) for finding a model that describes the data.

Reduced Rank Regression

Let u; w;, and z; be three multivariate time series of dimensions
pubw, and p, respectively. The algorithm of reduced rank
regression, see Anderson (1951), can be described in the
regression model

/ —_
u = af'w; + Bz + &

where ¢, are iid (0,Q). The product moments are

T
w = T71 Zulw’t
=1
and the residuals, which we get by regressing u; on w,, are
(uelwe) = ur — Suw S;lewt
so that the conditional product moments are

T
Suwz = Suw — Squ;zl Saw = T! Z(ut|zl)(wt‘zt),
t=1

T
—1 ! -1
Sumwz = T Z(ut|wt7zt)(“t|wt7zt) = Suuw — Suzwszz_wszu.w
=1
For fixed 8 the regression estimates are

a(ﬁ) = Suw.zﬁ(ﬂlsww.zﬁ)71
ﬁ(ﬁ) = Suu.z - Suwzﬁ(ﬁ,sww.zﬁ)ilﬂ,Swu.z

so that

=~ ‘6/Sww4u16 |

Q)] = |Suaw| rorierzl]

| ( )‘ ‘ uuw| |6,Sww.zﬁ|
Minimizing over 3 gives the reduced rank estimators. This
minimization problem is solved as follows. First we solve the

eigenvalue problem
|)\Sww.z - Swu.zS;ulleuw.A =0

The eigenvalues are ordered 11 > ... > ipw with corre-
sponding eigenvectors vy, ...Up,. The reduced rank estimate
of B is R

B = (V1,....,vr) [11]

-~/
and the other estimators are found by regression of u; on 8 x;—;
and z,. Finally we find

0 = 'S“”‘Zliljl(l )

The eigenvectors are orthogonal with respect to S, ., that is,
agswwﬁ,- =0 for i # j, and they are normalized by
aﬁsww,z@- = 1. The calculations described here are called
a reduced rank regression and are denoted by RRR(u,w; | z;).

Likelihood Analysis

It is assumed for the likelihood analysis that &, is iid N,(0, Q),
but for asymptotic results the Gaussian assumption is not
needed. The Gaussian likelihood function shows that the
maximum likelihood estimator can be found by the reduced
rank regression of Ax, on (¥,—; D)’ correcting for
X = (Ax’[,1,...,Ax’t,k+1,d’[)'

RRR <Axt, (xgl ) |xt)
t

The estimates are given by [11], and the maximized likeli-
hood is, apart from a constant, given by

~ r ~
ST 10) = \SOO\H<1 —Ai) [12]
i=1

where Soo = T~ 'S0 (AX, X)) (AXqX,)'.

Note that all the models, H(r), r = 0,..., p, have been solved by
the same eigenvalue calculation. The maximized likelihood is
given for each r by [12] and by dividing the maximized likeli-
hood function for r with the corresponding expression for r = p,
the likelihood ratio test for cointegration rank is obtained:

~2log LR(H(")|H(p)) = —T z,,: 1og(1 fii)
i=r+1

The asymptotic distribution of this test statistic and the
estimators are discussed in section Asymptotic Analysis.
The model obtained under the hypothesis, 8 = Hg is

analyzed by
H'X,—
RRR (Axt, ( th ! ) \ xt>

and a number of hypotheses of this type for § and « can be
solved in the same way, but the more general hypothesis

B8 = (h1 +Hyoy,...,h + Hyo,)

see [9], cannot be solved by reduced rank regression.
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Asymptotic Analysis

A discussion of the most important aspects of the asymptotic
analysis of the cointegration model is given. This includes the
result that the rank test requires a family of Dickey-Fuller type
distributions, depending on the specification of the
deterministic terms of the model. The asymptotic distribution
of B is mixed Gaussian and that of the remaining parameters
is Gaussian, so that tests for hypotheses on the parameters
are asymptotically distributed as 2.

Asymptotic Distribution of the Rank Test

The asymptotic distribution of the rank test is given in case the
process has a linear trend.

Theorem 3: Let ¢ be iid (0, ) and assume that D; = t and
d; = 1, in model [5]. Under the assumptions that the cointe-
gration rank is r, the asymptotic distribution of the likelihood
ratio test statistic —2logLR(H(r)|H(p)), [13], is

1 1 -1

tr / (dB)F' / FFdu / F(dB) [13]

0 0 0

)

and B(u) is the p — r dimensional standard Brownian motion.

The limit distribution is tabulated by simulation. Note that
it does not depend on the parameters (I'y,...,I;,—1,Y,P,Q), but
only on p — r, the number of common trends, and the pres-
ence of the linear trend. For finite samples, however, the
dependence on the parameters can be quite pronounced. A
small sample correction for the test has been given in
Johansen (2002), and the bootstrap has been investigated by
Rahbek et al. (2012).

In the model without deterministics, the same result holds,
but with F(u) = B(u). A special case of this, for p = 1, is the
Dickey-Fuller test and the asymptotic distributions given in
Theorem 3 are called the Dickey-Fuller distributions with
p — r degrees of freedom; see Dickey and Fuller (1981).

where F is defined by
F(u) = (B(”)

u

Asymptotic Distribution of Estimators

The main result here is that the estimator of @, suitably
normalized, converges to a mixed Gaussian distribution; see
Johansen (1988). This result implies that likelihood ratio tests
on @ are asymptotically x? distributed. Furthermore the esti-
mators of the adjustment parameters a and the short-run
parameters, I'; are asymptotically Gaussian and asymptotically
independent of the estimator for (.

To illustrate how to conduct inference on a cointegrating
coefficient, and why it becomes asymptotic x> despite the
asymptotic mixed Gaussian limit of 8, we consider an example.

Example 4: (Mixed Gaussian distribution) Let x; be a bivar-
iate process with one lag for which o = (—1, 0)" and 8 = (1, 6)".
The equations become

X1 = Oxp1 + €1

14
Axy = ey [14]

This model as a special case of [5] with o« =
(-1,0),6 = (1,—-0),p = 2,k = 1. If we add the assumption
that & is Gaussian with mean zero and variance Q =
diag(3,03) the maximum likelihood estimator simplifies to
a regression estimator, and becomes

T T
5 E[:]xllxﬂ—l thlgltxﬂ—l

T T
Y1 P15

The distribution of @ conditional on the whole process
{xzr}tT=1 is clearly Gaussian:

5| {x2¢ }is distributed as N(H, al/ZLT:lx%t,1>

By integrating out the process x,, we get a distribution which
we call mixed Gaussian with mixing parameter 1/3 13, |,
and hence

E<§> =460 and Var(?) = U%E(l/ztilx%[,])

When constructing a test for § = 6y we do not use

. \1/2
(5-9) fvar(3)"
but instead expand the likelihood function and find the Wald
test, which is based on the observed information:

T 1/2
(Z) (i -0)
t=

This statistic is asymptotically distributed as N(0, 1): Thus
we normalize by the observed information, 3_/_,x3,_, /a3, not
the expected information often used when analyzing stationary
processes.

Figure 4 shows a scatter diagram of 1000 simulations of
(0, S L %3, ,/?). That is, the estimator and the informa-
tion about the parameter. We note that when the informa-
tion is large, the variation of 9 is small, and when the
information is small, the variation of § is much larger. Thus
the variation of § should be measured by its conditional
variance, which is the reciprocal information in the data.
This has the further advantage that if we only consider those
estimates with a given information we see that 9 is
approximately Gaussian.

The main result is that tests on § are asymptotically
distributed as x?, and we formulate that as.

Theorem 4: Let et be iid (0, ). The asymptotic distribution
of the likelihood ratio test statistic for the restrictions [9] in
model [5] is distributed as x? with degrees of freedom given by
S (p—1—si+1). Asmall sample correction for some tests
on 3 has been developed in Johansen (2000).

=0+

Further Topics in Cointegration

The basic model for I(1) processes has been extended to other
types of nonstationarity. In particular models for seasonal
roots, Ahn and Reinsel (1994) and Johansen and Schaumburg
(1998), explosive processes, Nielsen (2010), I(2) processes,
Johansen (1997), fractional processes, Johansen and Nielsen
(2012), nonlinear processes, Lange and Rahbek (2009), panel
data cointegration, Larsson et al. (2001) and Pesaran et al.
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Figure 4 A scatter plot of & = "]y xix1/3°[ 1% ,_; and the information. 3743, ,/a% for model [14]. The number of observations is

T =100, and the number of simulations is 1000.

(2004), and finally applications to rational expectation
models, Johansen and Swensen (2011).

Concluding Remarks

In summary one can say, that what has been developed for
the CVAR model is a set of useful tools for the analysis of
many types of economic time series. The theory is now part
of many textbooks, and software for the analysis of data has
been implemented in several packages, e.g., in CATS,
in RATS, Givewin, Eviews, Microfit, Shazam, R, Gauss,
GRETL, etc.

We have given a brief tour in the cointegration landscape
showing some of the major sights without indicating, except by
examples, how the formal analysis is conducted. We concluded
with a list of extensions of the basic model, which shows that
the ideas behind the CVAR extend to a large number of other
models.
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