GEOM2 TEST, 2012-13. SOLUTIONS

1 Solve Exercise 16 from Chapter 1. Let S = M \ {P, @} and define F : S — S
by F(x,y,z2) = (—z,y,—2). Why is F' smooth?

Let a = (0,0,1) and b = (0,0, —1). Determine the tangent spaces T,S and TS
and the differential dF,.

Solution

P is isolated: If y < 0 then 22 = 322 implies * = z = 0 and then y = —1
follows from 2 + y? + 22 = 1. Hence P is the only point in M from the open set
{(x,y,2) € R® | y < 0}.

Let Q = (0,1,0). Define f(z,y,2) = (2 + 4%+ 2%, 2% — yz?), then M is the level
set of the equation f(z,y,z) = (1,0) and

2¢ 2 2z
Df(m,y,z) = (2I _52 —2yz) :

By Thm. 1.6 we can establish that S is a manifold in R?® by showing that Df has
rank 2 for all (z,y,2) € M\ {P,Q}.

Let (z,y,2) € M\ {P,Q}. If z = 0 then 2? = yz? implies * = 0 and then
2?2 +y? + 22 = 1 implies y = £1, which was excluded. It follows that z # 0. As
y > 0 it follows from

det (;i 2y2) = —2z(2% +2y) # 0,

—Zz

that Df has rank 2 if  # 0. On the other hand, if z = 0 then 22 = 32?2 implies
y = 0. In this case we also see that

proa= (3 0 %)

—z

has rank 2.
F' is smooth: Note that F'(S) C S. Now F' is the restriction to S of the smooth
map (7,9, 2) — (—x,y, —2z) of R? to itself. Hence F is smooth by Definition 2.6.1.
Tangent spaces: It is clear that a,b € S and F'(a) = b. We use Example 3.2.2.

As
viw=(5 * 7)

it follows that 7,5 = Re;. Similarly we find TS = Re;.
The differential dF, is determined by Lemma 3.8.2: It is the restriction to T,S
of the linear map R3 — R? with matrix

0

o = O
[a)

1
0
0 -1

hence dF,(v) = —v for all v € T,S§ = Re;.



2 Let X be a topological space and let Y C X. Let U and V be subsets of Y.
Show that if U is open in the topology of X and V' is open in the relative topology
of Y, then U NV is open in the topology of X.

Solution
If V is relatively open in Y, then V =Y N'W where W C X is open. Then

Unv=0nYnWwW=UnWw,
which is open when U is open.

3 Let f: M — N be a smooth map between differentiable manifolds. Show that
if f is submersive at p € M then f(p) is interior in f(M). (Hint: use Theorem
4.3.2).

Solution
Let 0 : U — M and 7: V — N be as in Theorem 4.3.2, so that

flo(@)) = (n(x)), (zel).

Since U is open and contains 0, there exist open sets A C R™ and B C R™™" such
that 0 € A x BCU. Then 0 € A =n(A x B) and hence

f(p) € f(o(Ax B)) = 7(n(A x B)) = 7(A).

Since 7 is a homeomorphism, 7(A) is open in N, hence f(o(A x B)) is a neighbor-
hood of f(p) in f(M).

4 Let M be an m-dimensional differentiable manifold and let p,...,py be dis-
tinct points in M. Let ¢q,...,cir € R be arbitrary numbers. Show that there exists
feC®(M) with f(pj) =c; forall j=1,... k.

Solution

Let Q; = M\ {p1,...,pi—1,Pi+1,---,pk} for i =1,... k. Then each €; is open
since finite sets are closed (M being Hausdorff), and M = U*_ ;. By Theorem
5.5, let (fi)i=1,...x be a partition of unity with supp f; C Q;. Then f;(p;) = 0 for
i # j, and since the functions sum to 1 it follows that f;(p;) = 1 for all j. Now
f= Zle ¢; f; is smooth and has the desired property.

5 Let f: M — N be a smooth map between differentiable manifolds. Show that
f is constant on every component of M if and only if the differential df, : T,M —
TN is zero for all p € M.

Solution

If f is constant on every component, then the function f o~ is constant for every
parametrized smooth curve 7y : I — M, because as f(y([)) is connected it has to lie
in a component. It then follows from Theorem 3.8 together with the last statement
in Theorem 3.3 that df,(v) = 0 for every v € T, M.

Assume conversely that df, = 0 for all p € M, and consider a level set

L={peM]|f(p)=ctCM



for some c € R. Let p € L and let ¢ : U — M be a chart around p with U C R™
convex. Then, since ¢ is smooth, we see by applying ¢ to linear curves in U that
for every q € o(U) there exists a parametrized smooth curve v : [0,1] — o(U) with
endpoints y(0) = p and (1) = q. Now Theorem 3.8 implies that (f o)’ = 0, and
hence f o~ is constant, so that f(q) = f(p) = ¢. Hence o(U) C L. It follows that
the level set L is open, and as it is also closed (by continuity of f), its intersection
with any component of M cannot be a non-empty proper subset of that component.
Hence every component is contained in a level set, which exactly means that f is
constant along the components.

6 (more challenging) Let X be a connected topological space, and let E C X
be a connected subset. Assume X = AU B where A and B are open and where
AN B C E. Show that FU A and E U B are connected.

Solution

By the symmetry between A and B it suffices to show that E'U A is connected.
Assume that F U A = A; U As is a disjoint union of relatively open sets in £ U A.
As FE is not empty, one of the sets A; and As must contain a point from F. Let us
assume it is As. The aim is then to show that A; is empty.

We shall first use that E is connected to show that A; N E is empty. It is clear
that F is the disjoint union of its intersections with A; and As. As A; and A, are
relatively open, we have

Alz(EUA)ﬂWl and AQI(EUA)QWQ

for some open sets W1, Wy C X. Then ENA; = ENW; and ENAy = ENW,, and
hence these intersections with F are relatively open in F. Since E is connected,
ENA; or EN Ay must be empty. As we assumed E N Ay # (), we conclude that
EﬂAlzﬂ)andECAg.
Next we want to employ that X is connected. As X = AUBand AC FUA =
Al U A2 we find
X=AUAUB.

We claim that A; and Ay U B are open, and that A; N (As U B) is empty.

1) A; open: As ENA; =0, we have A} C A. Hence A; C ANW;. On the other
hand it is clear that ANW; C A;. Hence A; = AN W; which is open.

2) As U B open: Since X = AU B we find AoUB = (A2 N A) U B. Now
A NA=((EUA)NWy)NA=ANWs, is open, and hence so is Az U B.

3) Intersection empty: As A; and A, are disjoint we find A;N(A2UB) = A1NB.
This set is empty because Ay "B C ANB C E but AiNE = 0.

The claim follows. Since X is connected and As U B is not empty, we conclude
that A; must be empty.



