GEOM2 TEST, 2012-13. SOLUTIONS

1 Solve Exercise 16 from Chapter 1. Let $\mathcal{S}=M \backslash\{P, Q\}$ and define $F: \mathcal{S} \rightarrow \mathcal{S}$ by $F(x, y, z)=(-x, y,-z)$. Why is F smooth?

Let $a=(0,0,1)$ and $b=(0,0,-1)$. Determine the tangent spaces $T_{a} \mathcal{S}$ and $T_{b} \mathcal{S}$ and the differential $d F_{a}$.

Solution

P is isolated: If $y<0$ then $x^{2}=y z^{2}$ implies $x=z=0$ and then $y=-1$ follows from $x^{2}+y^{2}+z^{2}=1$. Hence P is the only point in M from the open set $\left\{(x, y, z) \in \mathbb{R}^{3} \mid y<0\right\}$.

Let $Q=(0,1,0)$. Define $f(x, y, z)=\left(x^{2}+y^{2}+z^{2}, x^{2}-y z^{2}\right)$, then M is the level set of the equation $f(x, y, z)=(1,0)$ and

$$
D f(x, y, z)=\left(\begin{array}{ccc}
2 x & 2 y & 2 z \\
2 x & -z^{2} & -2 y z
\end{array}\right) .
$$

By Thm. 1.6 we can establish that \mathcal{S} is a manifold in \mathbb{R}^{3} by showing that $D f$ has rank 2 for all $(x, y, z) \in M \backslash\{P, Q\}$.

Let $(x, y, z) \in M \backslash\{P, Q\}$. If $z=0$ then $x^{2}=y z^{2}$ implies $x=0$ and then $x^{2}+y^{2}+z^{2}=1$ implies $y= \pm 1$, which was excluded. It follows that $z \neq 0$. As $y \geq 0$ it follows from

$$
\operatorname{det}\left(\begin{array}{cc}
2 x & 2 y \\
2 x & -z^{2}
\end{array}\right)=-2 x\left(z^{2}+2 y\right) \neq 0
$$

that $D f$ has rank 2 if $x \neq 0$. On the other hand, if $x=0$ then $x^{2}=y z^{2}$ implies $y=0$. In this case we also see that

$$
D f(0,0, z)=\left(\begin{array}{ccc}
0 & 0 & 2 z \\
0 & -z^{2} & 0
\end{array}\right)
$$

has rank 2.
F is smooth: Note that $F(\mathcal{S}) \subset \mathcal{S}$. Now F is the restriction to \mathcal{S} of the smooth map $(x, y, z) \mapsto(-x, y,-z)$ of \mathbb{R}^{3} to itself. Hence F is smooth by Definition 2.6.1.

Tangent spaces: It is clear that $a, b \in \mathcal{S}$ and $F(a)=b$. We use Example 3.2.2. As

$$
D f(a)=\left(\begin{array}{ccc}
0 & 0 & 2 \\
0 & -1 & 0
\end{array}\right)
$$

it follows that $T_{a} \mathcal{S}=\mathbb{R} e_{1}$. Similarly we find $T_{b} \mathcal{S}=\mathbb{R} e_{1}$.
The differential $d F_{a}$ is determined by Lemma 3.8.2: It is the restriction to $T_{a} \mathcal{S}$ of the linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

hence $d F_{a}(v)=-v$ for all $v \in T_{a} \mathcal{S}=\mathbb{R} e_{1}$.

2 Let X be a topological space and let $Y \subset X$. Let U and V be subsets of Y.
Show that if U is open in the topology of X and V is open in the relative topology of Y, then $U \cap V$ is open in the topology of X.

Solution

If V is relatively open in Y, then $V=Y \cap W$ where $W \subset X$ is open. Then

$$
U \cap V=U \cap Y \cap W=U \cap W,
$$

which is open when U is open.
3 Let $f: M \rightarrow N$ be a smooth map between differentiable manifolds. Show that if f is submersive at $p \in M$ then $f(p)$ is interior in $f(M)$. (Hint: use Theorem 4.3.2).

Solution

Let $\sigma: U \rightarrow M$ and $\tau: V \rightarrow N$ be as in Theorem 4.3.2, so that

$$
f(\sigma(x))=\tau(\pi(x)), \quad(x \in U)
$$

Since U is open and contains 0 , there exist open sets $A \subset \mathbb{R}^{n}$ and $B \subset \mathbb{R}^{m-n}$ such that $0 \in A \times B \subset U$. Then $0 \in A=\pi(A \times B)$ and hence

$$
f(p) \in f(\sigma(A \times B))=\tau(\pi(A \times B))=\tau(A)
$$

Since τ is a homeomorphism, $\tau(A)$ is open in N, hence $f(\sigma(A \times B))$ is a neighborhood of $f(p)$ in $f(M)$.

4 Let M be an m-dimensional differentiable manifold and let p_{1}, \ldots, p_{k} be distinct points in M. Let $c_{1}, \ldots, c_{k} \in \mathbb{R}$ be arbitrary numbers. Show that there exists $f \in C^{\infty}(M)$ with $f\left(p_{j}\right)=c_{j}$ for all $j=1, \ldots, k$.

Solution

Let $\Omega_{i}=M \backslash\left\{p_{1}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{k}\right\}$ for $i=1, \ldots, k$. Then each Ω_{i} is open since finite sets are closed (M being Hausdorff), and $M=\cup_{i=1}^{k} \Omega_{i}$. By Theorem 5.5 , let $\left(f_{i}\right)_{i=1, \ldots, k}$ be a partition of unity with $\operatorname{supp} f_{i} \subset \Omega_{i}$. Then $f_{i}\left(p_{j}\right)=0$ for $i \neq j$, and since the functions sum to 1 it follows that $f_{j}\left(p_{j}\right)=1$ for all j. Now $f=\sum_{i=1}^{k} c_{i} f_{i}$ is smooth and has the desired property.

5 Let $f: M \rightarrow N$ be a smooth map between differentiable manifolds. Show that f is constant on every component of M if and only if the differential $d f_{p}: T_{p} M \rightarrow$ $T_{f(p)} N$ is zero for all $p \in M$.

Solution

If f is constant on every component, then the function $f \circ \gamma$ is constant for every parametrized smooth curve $\gamma: I \rightarrow M$, because as $f(\gamma(I))$ is connected it has to lie in a component. It then follows from Theorem 3.8 together with the last statement in Theorem 3.3 that $d f_{p}(v)=0$ for every $v \in T_{p} M$.

Assume conversely that $d f_{p}=0$ for all $p \in M$, and consider a level set

$$
L=\{p \in M \mid f(p)=c\} \subset M
$$

for some $c \in \mathbb{R}$. Let $p \in L$ and let $\sigma: U \rightarrow M$ be a chart around p with $U \subset \mathbb{R}^{m}$ convex. Then, since σ is smooth, we see by applying σ to linear curves in U that for every $q \in \sigma(U)$ there exists a parametrized smooth curve $\gamma:[0,1] \rightarrow \sigma(U)$ with endpoints $\gamma(0)=p$ and $\gamma(1)=q$. Now Theorem 3.8 implies that $(f \circ \gamma)^{\prime}=0$, and hence $f \circ \gamma$ is constant, so that $f(q)=f(p)=c$. Hence $\sigma(U) \subset L$. It follows that the level set L is open, and as it is also closed (by continuity of f), its intersection with any component of M cannot be a non-empty proper subset of that component. Hence every component is contained in a level set, which exactly means that f is constant along the components.

6 (more challenging) Let X be a connected topological space, and let $E \subset X$ be a connected subset. Assume $X=A \cup B$ where A and B are open and where $A \cap B \subset E$. Show that $E \cup A$ and $E \cup B$ are connected.

Solution

By the symmetry between A and B it suffices to show that $E \cup A$ is connected. Assume that $E \cup A=A_{1} \cup A_{2}$ is a disjoint union of relatively open sets in $E \cup A$. As E is not empty, one of the sets A_{1} and A_{2} must contain a point from E. Let us assume it is A_{2}. The aim is then to show that A_{1} is empty.

We shall first use that E is connected to show that $A_{1} \cap E$ is empty. It is clear that E is the disjoint union of its intersections with A_{1} and A_{2}. As A_{1} and A_{2} are relatively open, we have

$$
A_{1}=(E \cup A) \cap W_{1} \quad \text { and } \quad A_{2}=(E \cup A) \cap W_{2}
$$

for some open sets $W_{1}, W_{2} \subset X$. Then $E \cap A_{1}=E \cap W_{1}$ and $E \cap A_{2}=E \cap W_{2}$, and hence these intersections with E are relatively open in E. Since E is connected, $E \cap A_{1}$ or $E \cap A_{2}$ must be empty. As we assumed $E \cap A_{2} \neq \emptyset$, we conclude that $E \cap A_{1}=\emptyset$ and $E \subset A_{2}$.

Next we want to employ that X is connected. As $X=A \cup B$ and $A \subset E \cup A=$ $A_{1} \cup A_{2}$ we find

$$
X=A_{1} \cup A_{2} \cup B
$$

We claim that A_{1} and $A_{2} \cup B$ are open, and that $A_{1} \cap\left(A_{2} \cup B\right)$ is empty.

1) A_{1} open: As $E \cap A_{1}=\emptyset$, we have $A_{1} \subset A$. Hence $A_{1} \subset A \cap W_{1}$. On the other hand it is clear that $A \cap W_{1} \subset A_{1}$. Hence $A_{1}=A \cap W_{1}$ which is open.
2) $A_{2} \cup B$ open: Since $X=A \cup B$ we find $A_{2} \cup B=\left(A_{2} \cap A\right) \cup B$. Now $A_{2} \cap A=\left((E \cup A) \cap W_{2}\right) \cap A=A \cap W_{2}$ is open, and hence so is $A_{2} \cup B$.
3) Intersection empty: As A_{1} and A_{2} are disjoint we find $A_{1} \cap\left(A_{2} \cup B\right)=A_{1} \cap B$. This set is empty because $A_{1} \cap B \subset A \cap B \subset E$ but $A_{1} \cap E=\emptyset$.

The claim follows. Since X is connected and $A_{2} \cup B$ is not empty, we conclude that A_{1} must be empty.

