
GEOM2 TEST, 2012-13. SOLUTIONS

1 Solve Exercise 16 from Chapter 1. Let S = M \ {P,Q} and define F : S → S
by F (x, y, z) = (−x, y,−z). Why is F smooth?

Let a = (0, 0, 1) and b = (0, 0,−1). Determine the tangent spaces TaS and TbS
and the differential dFa.

Solution

P is isolated: If y < 0 then x2 = yz2 implies x = z = 0 and then y = −1
follows from x2 + y2 + z2 = 1. Hence P is the only point in M from the open set
{(x, y, z) ∈ R

3 | y < 0}.
Let Q = (0, 1, 0). Define f(x, y, z) = (x2+ y2+ z2, x2− yz2), then M is the level

set of the equation f(x, y, z) = (1, 0) and

Df(x, y, z) =

(

2x 2y 2z
2x −z2 −2yz

)

.

By Thm. 1.6 we can establish that S is a manifold in R
3 by showing that Df has

rank 2 for all (x, y, z) ∈ M \ {P,Q}.
Let (x, y, z) ∈ M \ {P,Q}. If z = 0 then x2 = yz2 implies x = 0 and then

x2 + y2 + z2 = 1 implies y = ±1, which was excluded. It follows that z 6= 0. As
y ≥ 0 it follows from

det

(

2x 2y
2x −z2

)

= −2x(z2 + 2y) 6= 0,

that Df has rank 2 if x 6= 0. On the other hand, if x = 0 then x2 = yz2 implies
y = 0. In this case we also see that

Df(0, 0, z) =

(

0 0 2z
0 −z2 0

)

has rank 2.
F is smooth: Note that F (S) ⊂ S. Now F is the restriction to S of the smooth

map (x, y, z) 7→ (−x, y,−z) of R3 to itself. Hence F is smooth by Definition 2.6.1.
Tangent spaces: It is clear that a, b ∈ S and F (a) = b. We use Example 3.2.2.

As

Df(a) =

(

0 0 2
0 −1 0

)

it follows that TaS = Re1. Similarly we find TbS = Re1.
The differential dFa is determined by Lemma 3.8.2: It is the restriction to TaS

of the linear map R
3 → R

3 with matrix





1 0 0
0 1 0
0 0 −1



 ,

hence dFa(v) = −v for all v ∈ TaS = Re1.



2 Let X be a topological space and let Y ⊂ X. Let U and V be subsets of Y .
Show that if U is open in the topology ofX and V is open in the relative topology

of Y , then U ∩ V is open in the topology of X.

Solution

If V is relatively open in Y , then V = Y ∩W where W ⊂ X is open. Then

U ∩ V = U ∩ Y ∩W = U ∩W,

which is open when U is open.

3 Let f : M → N be a smooth map between differentiable manifolds. Show that
if f is submersive at p ∈ M then f(p) is interior in f(M). (Hint: use Theorem
4.3.2).

Solution

Let σ : U → M and τ : V → N be as in Theorem 4.3.2, so that

f(σ(x)) = τ(π(x)), (x ∈ U).

Since U is open and contains 0, there exist open sets A ⊂ R
n and B ⊂ R

m−n such
that 0 ∈ A×B ⊂ U . Then 0 ∈ A = π(A×B) and hence

f(p) ∈ f(σ(A×B)) = τ(π(A×B)) = τ(A).

Since τ is a homeomorphism, τ(A) is open in N , hence f(σ(A×B)) is a neighbor-
hood of f(p) in f(M).

4 Let M be an m-dimensional differentiable manifold and let p1, . . . , pk be dis-
tinct points in M . Let c1, . . . , ck ∈ R be arbitrary numbers. Show that there exists
f ∈ C∞(M) with f(pj) = cj for all j = 1, . . . , k.

Solution

Let Ωi = M \ {p1, . . . , pi−1, pi+1, . . . , pk} for i = 1, . . . , k. Then each Ωi is open
since finite sets are closed (M being Hausdorff), and M = ∪k

i=1Ωi. By Theorem
5.5, let (fi)i=1,...,k be a partition of unity with supp fi ⊂ Ωi. Then fi(pj) = 0 for
i 6= j, and since the functions sum to 1 it follows that fj(pj) = 1 for all j. Now

f =
∑k

i=1 cifi is smooth and has the desired property.

5 Let f : M → N be a smooth map between differentiable manifolds. Show that
f is constant on every component of M if and only if the differential dfp : TpM →
Tf(p)N is zero for all p ∈ M .

Solution

If f is constant on every component, then the function f ◦γ is constant for every
parametrized smooth curve γ : I → M , because as f(γ(I)) is connected it has to lie
in a component. It then follows from Theorem 3.8 together with the last statement
in Theorem 3.3 that dfp(v) = 0 for every v ∈ TpM .

Assume conversely that dfp = 0 for all p ∈ M , and consider a level set

L = {p ∈ M | f(p) = c} ⊂ M



for some c ∈ R. Let p ∈ L and let σ : U → M be a chart around p with U ⊂ R
m

convex. Then, since σ is smooth, we see by applying σ to linear curves in U that
for every q ∈ σ(U) there exists a parametrized smooth curve γ : [0, 1] → σ(U) with
endpoints γ(0) = p and γ(1) = q. Now Theorem 3.8 implies that (f ◦ γ)′ = 0, and
hence f ◦ γ is constant, so that f(q) = f(p) = c. Hence σ(U) ⊂ L. It follows that
the level set L is open, and as it is also closed (by continuity of f), its intersection
with any component of M cannot be a non-empty proper subset of that component.
Hence every component is contained in a level set, which exactly means that f is
constant along the components.

6 (more challenging) Let X be a connected topological space, and let E ⊂ X

be a connected subset. Assume X = A ∪ B where A and B are open and where
A ∩B ⊂ E. Show that E ∪A and E ∪B are connected.

Solution

By the symmetry between A and B it suffices to show that E ∪A is connected.
Assume that E ∪ A = A1 ∪ A2 is a disjoint union of relatively open sets in E ∪ A.
As E is not empty, one of the sets A1 and A2 must contain a point from E. Let us
assume it is A2. The aim is then to show that A1 is empty.

We shall first use that E is connected to show that A1 ∩ E is empty. It is clear
that E is the disjoint union of its intersections with A1 and A2. As A1 and A2 are
relatively open, we have

A1 = (E ∪A) ∩W1 and A2 = (E ∪A) ∩W2

for some open sets W1,W2 ⊂ X. Then E∩A1 = E∩W1 and E∩A2 = E∩W2, and
hence these intersections with E are relatively open in E. Since E is connected,
E ∩ A1 or E ∩ A2 must be empty. As we assumed E ∩ A2 6= ∅, we conclude that
E ∩A1 = ∅ and E ⊂ A2.

Next we want to employ that X is connected. As X = A ∪B and A ⊂ E ∪A =
A1 ∪A2 we find

X = A1 ∪A2 ∪B.

We claim that A1 and A2 ∪B are open, and that A1 ∩ (A2 ∪B) is empty.
1) A1 open: As E ∩A1 = ∅, we have A1 ⊂ A. Hence A1 ⊂ A∩W1. On the other

hand it is clear that A ∩W1 ⊂ A1. Hence A1 = A ∩W1 which is open.
2) A2 ∪ B open: Since X = A ∪ B we find A2 ∪ B = (A2 ∩ A) ∪ B. Now

A2 ∩A = ((E ∪A) ∩W2) ∩A = A ∩W2 is open, and hence so is A2 ∪B.
3) Intersection empty: As A1 and A2 are disjoint we find A1∩(A2∪B) = A1∩B.

This set is empty because A1 ∩B ⊂ A ∩B ⊂ E but A1 ∩ E = ∅.
The claim follows. Since X is connected and A2 ∪ B is not empty, we conclude

that A1 must be empty.


