GEOM2, 2010

P8. Class program for Tuesday Dec 14

Presentation of E3. Besides select from the following exercises
1 Show that S^{3} can be given a structure as a Lie group (hint: Consider $\mathrm{SU}(2)=$ $\left\{U \in \mathrm{GL}(2, \mathbb{C}) \mid U^{*} U=I, \operatorname{det} U=1\right\}=\left\{\left(\begin{array}{c}\alpha \\ -\bar{\beta} \\ -\bar{\alpha}\end{array}\right)\left|\alpha, \beta \in \mathbb{C},|\alpha|^{2}+|\beta|^{2}=1\right\}\right)$.

2 Let M be an abstract manifold, and let $p \in M$.
a) Let f be a diffeomorphism of M to itself with p as fixed point, $f(p)=p$. Show that if M is oriented, then f preserves the orientation at p if and only if $\operatorname{det} d f_{p}>0$.
b) Let σ and $\tilde{\sigma}$ be charts on M around $p=\sigma(x)=\tilde{\sigma}(\tilde{x})$. Show that σ and $\tilde{\sigma}$ induce the same orientation at p if and only if the Jacobian matrix $D\left(\tilde{\sigma}^{-1} \circ \sigma\right)(x)$ has positive determinant.

3 Verify that the unit sphere S^{n} is orientable. Let $\alpha: S^{n} \rightarrow S^{n}$ be the antipodal map. Verify that it is a diffeomorphism, and determine for each n whether it is orientation preserving or -reversing.

4 Let $A, B \subset S^{2}$ denote, respectively, the cap $\left\{(x, y, z) \left\lvert\, z>\frac{1}{2}\right.\right\}$ and the band $\left\{(x, y, z)\left||z|<\frac{1}{2}\right\}\right.$, and put $D=\pi(A), E=\pi(B) \subset \mathbb{R} P^{2}$. Prove that D and E are domains with a common smooth boundary $C=\partial D=\partial E$, which is diffeomorphic to a circle, and that $\mathbb{R} P^{2}=D \cup C \cup E$ (in this fashion, $\mathbb{R} P^{2}$ can be thought of as a disc and a Möbius band, sewn together along the edge of each).

5 Let $F: M \rightarrow N$ be a diffeomorphism. If $D \subset M$ is a domain with smooth boundary, verify that so is $F(D)$, and $\partial(F(D))=F(\partial D)$. Furthermore, if M and N are oriented, and F is orientation preserving/reversing, then so is its restriction $\partial D \rightarrow \partial(F(D))$.

Prove finally that the rotation of S^{n-1} by an element $A \in \mathrm{O}(n)$ is orientation preserving if $\operatorname{det} A=1$ and -reversing if $\operatorname{det} A=-1$.

6 Prove that if M and N are orientable manifolds, then so is their product $M \times N$.

