P6. Class program for Tuesday Dec 7

Presentation of E2. Besides select from the following exercises
1 Let M be an abstract manifold, and M^{\prime} an open subset (see Example 2.3.2). Show:
a) There is a natural linear isomorphism of $T_{x} M^{\prime}$ onto $T_{x} M$ for each $x \in M^{\prime}$, and it is the differential of the inclusion map $M^{\prime} \rightarrow M$.
b) If $f: M \rightarrow N$ is a smooth map into an abstract manifold, then the restriction of f to M^{\prime} is also smooth, and it has the same differential as f at every $x \in M^{\prime}$.
c) If $f: N \rightarrow M$ is a map from an abstract manifold into M with $f(N) \subset M^{\prime}$, then f is smooth as a map into M if and only if it is smooth into M^{\prime}, and the two maps have the same differential at each $y \in N$.

2 Let M, N be abstract manifolds.
a) Let $\mu: M \times N \rightarrow M$ and $\nu: M \times N \rightarrow N$ be the projection maps $(p, q) \mapsto p$ and $(p, q) \mapsto q$.

Verify that the isomorphism $T_{(p, q)} M \times N \rightarrow T_{p} M \times T_{q} N$ constructed in Exercise P5-3 is $Z \mapsto\left(d \mu_{(p, q)}(Z), d \nu_{(p, q)}(Z)\right)$.
b) For a given element $q \in N$ let $\phi^{q}: M \rightarrow M \times N$ be defined by $\phi^{q}(x)=(x, q)$ for $x \in M$. Define $\psi^{p}: N \rightarrow M \times N$ similarly by $\psi^{p}(y)=(p, y)$ for $p \in M$.

Verify that these maps are smooth, and that the inverse of the above mentioned isomorphism is $(X, Y) \mapsto d \phi_{p}^{q}(X)+d \psi_{q}^{p}(Y)$

3 Let M, N be abstract manifolds, and let $f: M \rightarrow N$ be smooth. Prove the following inverse function theorem for manifolds.
a) Let $p \in M$ be given, and assume that the differential $d f_{p}: T_{p} M \rightarrow T_{f(p)} N$ is an isomorphism of vector spaces (hence, in particular $\operatorname{dim} M=\operatorname{dim} N$). Then there exist open sets U and V around p and $f(p)$, respectively, such that f restricts to a diffeomorphism $U \rightarrow V$.
b) Assume that $d f_{p}$ is bijective for all $p \in M$. Then $f(M)$ is open in N, hence a manifold. If in addition f is injective, then it is a diffeomorphism of M onto this manifold $f(M)$.

4 Let $\Omega \subset S^{2}$ be an open hemisphere. Verify that the restriction to Ω of the projection $\pi: S^{2} \rightarrow \mathbb{R} P^{2}$ is a diffeomorphism onto its image.

5 Let G be a group with neutral element e, which at the same time is an abstract manifold, such that the multiplication map $m: G \times G \rightarrow G$ is smooth.
a) Show that left multiplication, $l_{g}: x \mapsto g x$ and right multiplication $r_{g}: x \mapsto x g$ are diffeomorphisms of G to itself, for all $g \in G$.
b) Show that when $T_{(x, y)} G \times G$ is identified with $T_{x} G \times T_{y} G$ as above, then the differential $d m_{(e, e)}: T_{(e, e)} G \times G \rightarrow T_{e} G$ is the map $(X, Y) \mapsto X+Y$ (Hint: consider the cases $Y=0$ and $X=0$ separately, and apply linearity)
c) Show that the map $(x, y) \mapsto(x y, y)$ is smooth and bijective $G \times G \rightarrow G \times G$, and determine the inverse $\Phi: G \times G \rightarrow G \times G$.
d) Show that Φ is smooth in a neighborhood of (e, e), and conclude that the inversion $i: g \mapsto g^{-1}$ is smooth in a neighborhood of e.
e) Prove that the inversion i is everywhere smooth (hint: consider $r_{g} \circ i \circ l_{g}$).

Conclude: The assumption about x^{-1} is superfluous in the definition of a Lie group.

