GEOM2, 2010

P5. Class program for Friday Dec 4

Select from the following exercises
1 Let

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1 \text { and } x^{2}=y z^{2}\right\}
$$

and put $\mathcal{C}=M \backslash\{(0, \pm 1,0)\}$ (see also Exercise P2-10).
a) Determine $T_{p} \mathcal{C}$ where $p=(0,0,1)$.
b) Prove that $\mathcal{C} \cup\{(0,1,0)\}$ is not a curve in \mathbb{R}^{3}.

2 Let $\mathcal{S}=\left\{(x, y, z) \mid x^{2}+y^{2}=1\right\}$, and let $p=(1,0,0) \in \mathcal{S}$. Let $X=e_{2}=$ $(0,1,1)$.
a) Verify that $X \in T_{p} \mathcal{S}$.
b) Let $f(x, y, z)=y-z$. Determine the directional derivative $L_{X} f$ at p.
c) Same as before, but now with $f(\cos \theta, \sin \theta, z)=z-\theta$.
d) Determine a smooth function f on \mathcal{S} for which $L_{X} f=1$.

3 Let M and N be abstract manifolds, and let $p \in M, q \in N$ be given. Establish a natural isomorphism between the vector spaces $T_{p} M \times T_{q} N$ and $T_{(p, q)}(M \times N)$. Verify that the isomorphism amounts to the identity map, when $M \subset \mathbb{R}^{k}, N \subset \mathbb{R}^{l}$ and $\mathbb{R}^{k} \times \mathbb{R}^{l}$ is identified with \mathbb{R}^{k+l}.

4 Let $\pi: \mathbb{R}^{3} \backslash\{0\} \rightarrow \mathbb{R} P^{2}$ be the projection map. Show that there is a natural isomorphism of vector spaces between $T_{p} S^{2}$ and $T_{\pi(p)} \mathbb{R} P^{2}$ for each $p \in S^{2}$.

5 Consider the following curves on $\mathbb{R} P^{2}$:

$$
\begin{aligned}
\alpha(t) & =\pi(\cos t, \sin t, 0) \\
\beta(t) & =\pi(-\cos t, 0, \sin t) \\
\gamma(t) & =\pi(1, t, t)
\end{aligned}
$$

At $t=0$ they all pass through the same point p. Determine a non-trivial linear relation between their equivalence classes at this point (we know that such a relation exists, since the tangent space is 2-dimensional).

