GEOM2, 2010

P3. Class program for Friday Nov 26
 Select from the following exercises

1 Prove Lemma 2.1.1

2 Let X be a finite set. Prove that it is a Hausdorff topological space in one and only one way. If X has 2 elements, in how many ways is it a topological space?

3 Equip \mathbb{R} with the family of all intervals $] a, \infty[$ where $a \in \mathbb{R}$, including also \emptyset and \mathbb{R}. Verify that it is a topological space, but not Hausdorff.

4 Let X, Y be topological spaces, and let $f, g: X \rightarrow Y$ be continuous maps. Prove that if Y is Hausdorff, then $\{x \in X \mid f(x)=g(x)\}$ is closed.

Give an example which shows the conclusion can fail if Y is not Hausdorff (for example, Y could be a two element set with the trivial topology)
$\mathbf{5}$ Verify that compatibility of atlasses is an equivalence relation (see Defn 2.2.3). Prove that the union of all the atlasses in a given equivalence class is an atlas (called the maximal atlas for the structure).

6 Prove that if $A \subset S^{2}$ is open, then $\pi(A)$ is open in $\mathbb{R} P^{2}$.
7 The natural injection of S^{1} into the equator of S^{2} induces a map $f: \mathbb{R} P^{1} \rightarrow$ $\mathbb{R} P^{2}$. Prove that the image is closed in $\mathbb{R} P^{2}$, and that f is a homeomorphism onto it.

8 a. Let X be a topological space with an equivalence relation \sim, and let $M=X / \sim$ denote the set of equivalence classes, with $\pi: X \rightarrow M$ the natural map. A set $A \subset M$ is said to be open if and only if the preimage $\pi^{-1}(A)$ is open in X. Verify that M is a topological space (called the quotient space). - Unfortunately, it need not be Hausdorff, even if X is.
b. Define a relation on $X=\mathbb{R}^{2}$ by $(s, t) \sim\left(s^{\prime}, t^{\prime}\right)$ if and only if $s^{\prime}-s$ is an integer and $t^{\prime}=(-1)^{s^{\prime}-s} t$. Verify it is an equivalence relation. Let M be the quotient space. Prove that it is Hausdorff.
c. For each $a \in \mathbb{R}$ let $\left.U_{a}=\right] a, a+1\left[\times \mathbb{R} \subset \mathbb{R}^{2}\right.$ and let $\sigma_{a}: U_{a} \rightarrow M$ be the restriction of π to this set. Prove that the collection of all these maps is an atlas on M.

9 Let $\mathbb{C} P^{1}$ denote the set of 1-dimensional (complex) subspaces of the complex vector space \mathbb{C}^{2}. Turn it into an abstract 2-dimensional manifold (you are entitled to skip the verification of the Hausdorff axiom for the relevant quotient space).

10 Verify that if M is a manifold in \mathbb{R}^{k} and N is a manifold in \mathbb{R}^{l}, then $M \times N$ is a manifold in \mathbb{R}^{k+l}, and its smooth structure is identical to that of the product manifold.

