GEOM2, 2010

P2. Class program for Tuesday Nov 23

Select among the following exercises.

1 Prove Lemma 1.4

2 Find an atlas for the cylinder (Example 1.5.2), consisting of a single chart.
3 Let $\mathcal{S}=\{(x, y, z) \mid z=0\}$ be the $x y$-plane, let $U=\left\{(u, v) \in \mathbb{R}^{2} \mid u>v\right\}$, and let $\sigma: U \rightarrow \mathbb{R}^{3}$ be given by $\sigma(u, v)=(u+v, u v, 0)$. Verify that σ is a chart on \mathcal{S}. After that, replace the condition $u>v$ by $u \neq v$ in the definition of U, and prove that σ is no longer a chart.

4 Give an example of a level set $\mathcal{S}=\{(x, y, z) \mid f(x, y, z)=0\}$ which is a surface in \mathbb{R}^{3}, and yet there exists a point in \mathcal{S} for which $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)=(0,0,0)$.

5 Let $\mathcal{S}=\{(x, y, z) \mid x y z=c\}$ where $c \in \mathbb{R}$. Show that \mathcal{S} is a surface in \mathbb{R}^{3} if $c \neq 0$. Determine \mathcal{S} explicitly when $c=0$ and prove that it is not a surface.

6 Let $\mathcal{C} \subset \mathbb{R}^{2}$ be a curve in \mathbb{R}^{2}, and put $\mathcal{S}=\mathcal{C} \times \mathbb{R}=\{(x, y, z) \mid(x, y) \in \mathcal{C}\}$. Prove that \mathcal{S} is a surface in \mathbb{R}^{3} (it is called a generalized cylinder).

7 Let $\mathcal{S} \subset \mathbb{R}^{3}$. Show that \mathcal{S} is a surface if and only if the following holds. For each $p \in \mathcal{S}$ there exists an open neighborhood $W \subset \mathbb{R}^{3}$ of p and a smooth function $f: W \rightarrow \mathbb{R}$ such that
(i) $\mathcal{S} \cap W=\{(x, y, z) \in W \mid f(x, y, z)=0\}$
(ii) $\left(f_{x}^{\prime}(p), f_{y}^{\prime}(p), f_{z}^{\prime}(p)\right) \neq(0,0,0)$.

Propose (and prove) a similar statement for curves in \mathbb{R}^{2}.
8 Verify that $\left\{x \mid x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}=1\right\}$ is a 3 -dimensional manifold in \mathbb{R}^{4}.
9 Let $M \subset \mathbb{R}^{n}$ be an m-dimensional manifold in \mathbb{R}^{n}, and let $N \subset M$ be a subset. Prove that N is also an m-dimensional manifold in \mathbb{R}^{n} if and only if it is relatively open in M (see Definition 1.2.3)

10 Consider the set M of points (x, y, z) in \mathbb{R}^{3} which satisfy both equations

$$
x^{2}+y^{2}+z^{2}=1 \quad \text { and } \quad x^{2}=y z^{2} .
$$

Show that $P=(0,-1,0)$ is isolated in M (that is, there is a neighborhood in \mathbb{R}^{3}, in which P is the only point from M). Find another point Q in M, such that $M \backslash\{P, Q\}$ is a manifold in \mathbb{R}^{3}.

11 Let \mathcal{C} be a curve in \mathbb{R}^{2}.
a) Let $f: \Omega \rightarrow \mathbb{R}^{2}$ be a smooth map, where $\Omega \subset \mathbb{R}^{3}$ is open. Let $\mathcal{S}=f^{-1}(\mathcal{C})$, and assume that $D f(p)$ has rank 2 for all $p \in \mathcal{S}$.

Prove that \mathcal{S} is a surface in \mathbb{R}^{3} (hint: Apply Exercise 7 above in order to describe \mathcal{C} as a level set (locally). Now consider the composed map).
b) Assume that $x>0$ for all $(x, y) \in \mathcal{C}$, and let

$$
\mathcal{S}=\left\{(x, y, z) \mid\left(\sqrt{x^{2}+y^{2}}, z\right) \in \mathcal{C}\right\} .
$$

Prove that this is a surface, and describe it in words.

