GEOM2, 2010

P2. Class program for Tuesday Nov 23

Select among the following exercises.

1 Prove Lemma 1.4

2 Find an atlas for the cylinder (Example 1.5.2), consisting of a single chart.

3 Let $S = \{(x, y, z) \mid z = 0\}$ be the *xy*-plane, let $U = \{(u, v) \in \mathbb{R}^2 \mid u > v\}$, and let $\sigma : U \to \mathbb{R}^3$ be given by $\sigma(u, v) = (u + v, uv, 0)$. Verify that σ is a chart on S. After that, replace the condition u > v by $u \neq v$ in the definition of U, and prove that σ is no longer a chart.

4 Give an example of a level set $S = \{(x, y, z) \mid f(x, y, z) = 0\}$ which is a surface in \mathbb{R}^3 , and yet there exists a point in S for which $(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) = (0, 0, 0)$.

5 Let $S = \{(x, y, z) \mid xyz = c\}$ where $c \in \mathbb{R}$. Show that S is a surface in \mathbb{R}^3 if $c \neq 0$. Determine S explicitly when c = 0 and prove that it is *not* a surface.

6 Let $\mathcal{C} \subset \mathbb{R}^2$ be a curve in \mathbb{R}^2 , and put $\mathcal{S} = \mathcal{C} \times \mathbb{R} = \{(x, y, z) \mid (x, y) \in \mathcal{C}\}$. Prove that \mathcal{S} is a surface in \mathbb{R}^3 (it is called a *generalized cylinder*).

7 Let $S \subset \mathbb{R}^3$. Show that S is a surface if and only if the following holds. For each $p \in S$ there exists an open neighborhood $W \subset \mathbb{R}^3$ of p and a smooth function $f: W \to \mathbb{R}$ such that

(i) $\mathcal{S} \cap W = \{(x, y, z) \in W \mid f(x, y, z) = 0\}$

(ii) $(f'_x(p), f'_y(p), f'_z(p)) \neq (0, 0, 0).$

Propose (and prove) a similar statement for curves in \mathbb{R}^2 .

8 Verify that $\{x \mid x_1^2 + x_2^2 - x_3^2 - x_4^2 = 1\}$ is a 3-dimensional manifold in \mathbb{R}^4 .

9 Let $M \subset \mathbb{R}^n$ be an *m*-dimensional manifold in \mathbb{R}^n , and let $N \subset M$ be a subset. Prove that N is also an *m*-dimensional manifold in \mathbb{R}^n if and only if it is relatively open in M (see Definition 1.2.3)

10 Consider the set M of points (x, y, z) in \mathbb{R}^3 which satisfy both equations

$$x^2 + y^2 + z^2 = 1$$
 and $x^2 = yz^2$.

Show that P = (0, -1, 0) is isolated in M (that is, there is a neighborhood in \mathbb{R}^3 , in which P is the only point from M). Find another point Q in M, such that $M \setminus \{P, Q\}$ is a manifold in \mathbb{R}^3 .

11 Let \mathcal{C} be a curve in \mathbb{R}^2 .

a) Let $f: \Omega \to \mathbb{R}^2$ be a smooth map, where $\Omega \subset \mathbb{R}^3$ is open. Let $\mathcal{S} = f^{-1}(\mathcal{C})$, and assume that Df(p) has rank 2 for all $p \in \mathcal{S}$.

Prove that S is a surface in \mathbb{R}^3 (hint: Apply Exercise 7 above in order to describe C as a level set (locally). Now consider the composed map).

b) Assume that x > 0 for all $(x, y) \in \mathcal{C}$, and let

$$\mathcal{S} = \{(x,y,z) \mid (\sqrt{x^2 + y^2}, z) \in \mathcal{C}\}.$$

Prove that this is a surface, and describe it in words.