GEOM2, 2010-2011

P11. Class program for Tuesday Jan 11

Presentation of E5. Besides select from the following exercises

1 Let Y denote the vector field Y(x, y) = (x, -y) on \mathbb{R}^2 . Determine its coordinates with respect to the chart $\sigma(u, v) = (u + v, u - v)$.

2 Prove that $Y(x, y, z) = (xz, yz, z^2 - 1)$ is a smooth vector field on the sphere S^2 .

3 Consider $M = \mathbb{R}^2$. Compute the Lie bracket [X, Y] when

- a) X(x,y) = (x,0), Y(x,y) = (0,y)
- b) X(x,y) = (0,x), Y(x,y) = (y,0).

4 Consider $M = \mathbb{R}$. Determine the Lie bracket of two arbitrary smooth vector fields X(x) = f(x) and Y(x) = g(x).

5 Let $N \subset M$ be a submanifold of an abstract manifold, and let $Y \in \mathfrak{X}(N)$ be a smooth vector field on N. Prove that there exists an open set $W \subset M$ with $N \subset W$, and a smooth vector field \tilde{Y} on W whose restriction to N is Y. Prove that if N is closed, this can be obtained with W = M.

Prove that if a function $f \in C^{\infty}(N)$ is extended to a smooth function $F \in C^{\infty}(M)$ (see Exercise 6a-4), then Yf is the restriction of $\tilde{Y}F$.

Prove that if another smooth vector field X on N is extended in the same manner to a vector field \tilde{X} on M, then [X, Y] is the restriction of $[\tilde{X}, \tilde{Y}]$.

6 Prove Lemma 6.5.2.