GEOM2, 2010-2011

P11. Class program for Tuesday Jan 11
Presentation of E5. Besides select from the following exercises
1 Let Y denote the vector field $Y(x, y)=(x,-y)$ on \mathbb{R}^{2}. Determine its coordinates with respect to the chart $\sigma(u, v)=(u+v, u-v)$.

2 Prove that $Y(x, y, z)=\left(x z, y z, z^{2}-1\right)$ is a smooth vector field on the sphere S^{2}.

3 Consider $M=\mathbb{R}^{2}$. Compute the Lie bracket $[X, Y]$ when
a) $X(x, y)=(x, 0), Y(x, y)=(0, y)$
b) $X(x, y)=(0, x), Y(x, y)=(y, 0)$.

4 Consider $M=\mathbb{R}$. Determine the Lie bracket of two arbitrary smooth vector fields $X(x)=f(x)$ and $Y(x)=g(x)$.
$\mathbf{5}$ Let $N \subset M$ be a submanifold of an abstract manifold, and let $Y \in \mathfrak{X}(N)$ be a smooth vector field on N. Prove that there exists an open set $W \subset M$ with $N \subset W$, and a smooth vector field \tilde{Y} on W whose restriction to N is Y. Prove that if N is closed, this can be obtained with $W=M$.

Prove that if a function $f \in C^{\infty}(N)$ is extended to a smooth function $F \in$ $C^{\infty}(M)$ (see Exercise 6a-4), then $Y f$ is the restriction of $\tilde{Y} F$.

Prove that if another smooth vector field X on N is extended in the same manner to a vector field \tilde{X} on M, then $[X, Y]$ is the restriction of $[\tilde{X}, \tilde{Y}]$.

6 Prove Lemma 6.5.2.

