GEOM2, 2010

P1. Class program for Friday Nov 19

1 Consider the parametrized curve

$$\gamma(t) = (-\frac{t}{1+t^3}, -\frac{t^2}{1+t^3})$$

with $t \in]-\infty, -1[\cup]-1, \infty[$. Verify that γ is a bijection onto the set

$$\mathcal{C} = \{ (x, y) \in \mathbb{R}^2 \mid x^3 + xy + y^3 = 0 \}.$$

2 Let γ be as above, with $t \in I$ where $-1 \notin I \subset \mathbb{R}$. In each of the following cases $I = I_i$, prove or disprove that γ is an embedded parametrized curve.

1) $I_1 =] - \infty, -1[,$ 2) $I_2 =] -1, 0[,$ 3) $I_3 =]0, \infty[,$ 4) $I_4 =] -1, \infty[.$

3 Prove that a singleton set $\{p\} \subset \mathbb{R}^2$ is not a curve.

4 Let $\mathcal{C} \subset \mathbb{R}^2$ be a curve. Prove that \mathcal{C} has no interior points.

5 Verify that the set \mathcal{C} in number 1 above is not a curve in \mathbb{R}^2 .

6 Let $c \in \mathbb{R} \setminus \{0\}$ and put

$$\mathcal{C} = \{ (x, y) \in \mathbb{R}^2 \mid x^3 + xy + y^3 = c \}.$$

Verify that \mathcal{C} is a curve in \mathbb{R}^2 if $c \neq \frac{1}{27}$.

7 Let $c = \frac{1}{27}$ and let C be as above. Prove or disprove that it is a curve in \mathbb{R}^2 .