GEOM2, 2010

P1. Class program for Friday Nov 19

1 Consider the parametrized curve

$$
\gamma(t)=\left(-\frac{t}{1+t^{3}},-\frac{t^{2}}{1+t^{3}}\right)
$$

with $t \in]-\infty,-1[\cup]-1, \infty[$. Verify that γ is a bijection onto the set

$$
\mathcal{C}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{3}+x y+y^{3}=0\right\} .
$$

2 Let γ be as above, with $t \in I$ where $-1 \notin I \subset \mathbb{R}$. In each of the following cases $I=I_{i}$, prove or disprove that γ is an embedded parametrized curve.

1) $\left.I_{1}=\right]-\infty,-1[$,
2) $\left.I_{2}=\right]-1,0[$,
3) $\left.I_{3}=\right] 0, \infty[$,
4) $\left.I_{4}=\right]-1, \infty[$.

3 Prove that a singleton set $\{p\} \subset \mathbb{R}^{2}$ is not a curve.
4 Let $\mathcal{C} \subset \mathbb{R}^{2}$ be a curve. Prove that \mathcal{C} has no interior points.
5 Verify that the set \mathcal{C} in number 1 above is not a curve in \mathbb{R}^{2}.
6 Let $c \in \mathbb{R} \backslash\{0\}$ and put

$$
\mathcal{C}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{3}+x y+y^{3}=c\right\} .
$$

Verify that \mathcal{C} is a curve in \mathbb{R}^{2} if $c \neq \frac{1}{27}$.
7 Let $c=\frac{1}{27}$ and let \mathcal{C} be as above. Prove or disprove that it is a curve in \mathbb{R}^{2}.

