GEOM2, 2013-14. Extra Notes

Let $1 \leq k<n$. The Grassmannian $\mathrm{Gr}_{n, k}$ is the set of all k-dimensional linear subspaces in \mathbb{R}^{n}. It generalizes the projective space $\mathbb{R} P^{n-1}=\mathrm{Gr}_{n, 1}$. We will show that $\mathrm{Gr}_{n, k}$ can be equipped with the structure of an $(n-k) k$-dimensional differentiable manifold.

We first need a way to identify the elements of $\mathrm{Gr}_{n, k}$. A subspace of dimension k in \mathbb{R}^{n} can be identified by means of a basis consisting of k linearly independent vectors from the subspace. We view these vectors as columns and collect them in an $n \times k$ matrix. Let $M_{n, k}$ denote the vector space of all $n \times k$ matrices, and $M_{n . k}^{\prime}$ the subset of matrices with independent columns. For $B \in M_{n, k}$ let $\operatorname{Sp}(B) \subset \mathbb{R}^{n}$ denote the linear space spanned by the columns of B. That is, it is the image

$$
\begin{equation*}
\operatorname{Sp}(B)=\left\{B x \mid x \in \mathbb{R}^{k}\right\} \tag{1}
\end{equation*}
$$

of the linear map $\mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ represented by B. We thus obtain a surjective map Sp: $M_{n, k}^{\prime} \rightarrow \operatorname{Gr}_{n, k}$.

The atlas with which we shall equip $\mathrm{Gr}_{k, n}$ consists charts which are all constructed by means of this map. They are all defined on $\mathbb{R}^{(n-k) k}$, which we shall identify with $M_{n-k, k}$. For $A \in M_{n-k, k}$ we let

$$
\tilde{A}=\binom{I}{A} \in M_{n, k}^{\prime}
$$

the $n \times k$ matrix with a $k \times k$ unit matrix on top of A. The unit matrix in the top ensures the linear independence of the columns. We define $\sigma(A)=\operatorname{Sp}(\tilde{A})$ and more generally

$$
\sigma_{g}: M_{n-k, k} \rightarrow \mathrm{Gr}_{n, k}, \quad \sigma_{g}(A)=\operatorname{Sp}(g \tilde{A}) .
$$

for each $g \in \operatorname{GL}(n, \mathbb{R})$. Note that $g \tilde{A} \in M_{n, k}^{\prime}$ as $\tilde{A} \in M_{n-k, k}^{\prime}$ and g is invertible.
Theorem 1. There exists on $\mathrm{Gr}_{k, n}$ a topology and a differential structure for which the collection of maps $\left\{\sigma_{g} \mid g \in \mathrm{GL}(n, \mathbb{R})\right\}$ is an atlas.

Proof. We first equip $\mathrm{Gr}_{k, n}$ with a topology. Here we use the quotient topology with respect to the map $\mathrm{Sp}: M_{n, k}^{\prime} \rightarrow \mathrm{Gr}_{n, k}$, that is, we define a subset of $\mathrm{Gr}_{n, k}$ to be open if and only if its preimage in $M_{n, k}^{\prime}$ is open. The axioms of a topological space are easily verified. Note that $M_{n, k}^{\prime}$ is an open subset of $M_{n, k}$ as we can represent it by

$$
M_{n, k}^{\prime}=\left\{B \in M_{n, k} \mid \operatorname{det}\left(B^{t} B\right) \neq 0\right\}
$$

and $B \mapsto \operatorname{det}\left(B^{t} B\right)$ is a continuous map. The Hausdorff axiom for $\mathrm{Gr}_{n, k}$ will be verified later.

Let $G=\mathrm{GL}(n, \mathbb{R})$. In the proof we shall use the natural action of G on $\mathrm{Gr}_{n, k}$, defined as follows. For every matrix $g \in G$ and subspace $V \subset \mathbb{R}^{n}$ we define a subspace $g . V \subset \mathbb{R}^{n}$ by

$$
\begin{equation*}
g . V=\{g u \mid u \in V\} . \tag{2}
\end{equation*}
$$

Since g is invertible, V and $g . V$ have the same dimension. The resulting map

$$
G \times \mathrm{Gr}_{n, k} \rightarrow \mathrm{Gr}_{n, k}, \quad(g, V) \mapsto g . V
$$

is the mentioned action. The relation $g_{1} \cdot\left(g_{2} \cdot V\right)=\left(g_{1} g_{2}\right) \cdot V$ for $g_{1}, g_{2} \in G$ is easily seen. Note also that (1) and (2) imply

$$
\begin{equation*}
g \cdot \operatorname{Sp}(B)=\operatorname{Sp}(g B) \tag{3}
\end{equation*}
$$

for $g \in G$ and $B \in M_{n, k}$. In particular, since multiplication by g is continuous $M_{n, k} \rightarrow M_{n, k}$ it follows from (3) and the definition of the topology that $V \mapsto g . V$ is continuous $\mathrm{Gr}_{n, k} \rightarrow \mathrm{Gr}_{n, k}$. In fact, then it is a homeomorphism since the inverse $V \mapsto g^{-1} . V$ is also continuous.

We now study the proposed charts σ_{g}. Let $g \in G=\mathrm{GL}(n, \mathbb{R})$ and note that $\sigma_{g}(A)=g \cdot \sigma(A)$. The map σ is continuous, being composed by the continuous maps $A \mapsto \tilde{A}$ and Sp . Hence σ_{g} is continuous as well.

Our next aim is to show σ_{g} is injective. It suffices to show σ is injective, since multiplication by g is injective. We shall employ the following lemma.

Lemma 1. Let $B, B^{\prime} \in M_{n, k}^{\prime}$. Then $\operatorname{Sp}(B)=\operatorname{Sp}\left(B^{\prime}\right)$ if and only if there exists $C \in \mathrm{GL}(k, \mathbb{R})$ such that $B^{\prime}=B C$.

Proof. The equation $B^{\prime}=B C$ implies the image $\operatorname{Sp}\left(B^{\prime}\right)$ of B^{\prime} is contained in the image $\operatorname{Sp}(B)$ of B. The opposite inclusion follows from the equation $B=B^{\prime} C^{-1}$.

Conversely, if $\operatorname{Sp}\left(B^{\prime}\right)=\operatorname{Sp}(B)$ then each column of B^{\prime} is in $\operatorname{Sp}(B)$, hence can be expressed as a linear combination of the columns of B. Inserting the coefficients of these linear combinations in a $k \times k$ matrix C we find $B^{\prime}=B C$. If the rank of C was smaller than k then the rank of $B C$ would also be smaller than k. Since B^{\prime} has rank k, the rank of C must be k. Hence C is invertible.

We return to the proof that σ is injective. Let $A, A^{\prime} \in M_{n-k, k}$ and assume $\sigma\left(A^{\prime}\right)=\sigma(A)$, that is, $\operatorname{Sp}\left(\tilde{A}^{\prime}\right)=\operatorname{Sp}(\tilde{A})$. According to Lemma 1 there exists $C \in$ $\mathrm{GL}(k, \mathbb{R})$ such that $\tilde{A}^{\prime}=\tilde{A} C$. The first k rows of this matrix equation express that $I=C$ and the remaining rows then express that $A^{\prime}=A$. Hence the map is injective.

Next we want to study the inverse of σ_{g}, which is defined on its image set $\sigma_{g}\left(M_{n-k, k}\right)$. We want to show that this is an open subset of $\mathrm{Gr}_{k, n}$ and that σ_{g}^{-1} is continuous into $M_{n-k, k}$. Again it suffices to consider $g=I$, as the multiplication by g is a homeomorphism of $\mathrm{Gr}_{n, k}$. We claim

$$
\begin{equation*}
\sigma\left(M_{n-k, k}\right)=\left\{\left.\operatorname{Sp}\binom{C}{D} \right\rvert\, C \in \operatorname{GL}(k, \mathbb{R}), D \in M_{n-k, k}\right\}, \tag{4}
\end{equation*}
$$

and with C, D as in (4),

$$
\begin{equation*}
\operatorname{Sp}\binom{C}{D}=\sigma\left(D C^{-1}\right) . \tag{5}
\end{equation*}
$$

The inclusion \subset in (4) is obvious from the definition of σ. The equality (5) follow from Lemma 1, and it implies \supset in (4).

With (4) and Lemma 1 we conclude

$$
\mathrm{Sp}^{-1}\left(\sigma\left(M_{n-k, k}\right)\right)=\left\{\left.\binom{C}{D} \right\rvert\, C \in \operatorname{GL}(k, \mathbb{R}), D \in M_{n-k, k}\right\},
$$

which is open in $M_{n, k}$. From (5) we find

$$
\begin{equation*}
\sigma^{-1}\left(\operatorname{Sp}\binom{C}{D}\right)=D C^{-1} \tag{6}
\end{equation*}
$$

which shows that $\sigma^{-1} \circ \mathrm{Sp}$ is continuous. This implies that σ^{-1} is continuous.
We have now shown that each of the proposed charts σ_{g} is a homeomorphism onto an open set. In order to see that every point of $\mathrm{Gr}_{n, k}$ lies in some chart, we shall use that the action of $G=\mathrm{GL}(n, \mathbb{R})$ is transitive, by which we understand that for any pair of elements $V, V^{\prime} \in \operatorname{Gr}_{n, k}$ there exists $g \in G$ such that $V^{\prime}=g . V$. This can be seen by choosing a basis $u_{1} \ldots, u_{n}$ for \mathbb{R}^{n} such that u_{1}, \ldots, u_{k} belong to V, and likewise a basis $u_{1}^{\prime} \ldots, u_{n}^{\prime}$ such that $u_{1}^{\prime}, \ldots, u_{k}^{\prime}$ belong to V^{\prime}. The linear transformation of \mathbb{R}^{n} to itself, which maps u_{j} to u_{j}^{\prime} for all j, is invertible and maps V to V^{\prime}. Hence the action is transitive. In particular, let

$$
V_{0}=\left\{x \in \mathbb{R}^{n} \mid x_{k+1}=\cdots=x_{n}=0\right\}=\sigma(0),
$$

then there exists for every $V \in \mathrm{Gr}_{n, k}$ an element $g \in G$ such that $V=g . V_{0}$. It follows that $V=\sigma_{g}(0)$. Hence the proposed atlas covers all of $\mathrm{Gr}_{n, k}$.

Next we want to show the topology is Hausdorff. We shall employ the following two lemmas.

Lemma 2. The image of σ is

$$
\sigma\left(M_{n-k, k}\right)=\left\{V \in \operatorname{Gr}_{k, n} \mid V \cap W_{0}=\{0\}\right\}
$$

where $W_{0} \subset \mathbb{R}^{n}$ is the subspace $W_{0}=\left\{x \in \mathbb{R}^{n} \mid x_{1}=\cdots=x_{k}=0\right\}$.
Proof. Let $A \in M_{n-k, k}$, then every nontrivial linear combination of the columns of \tilde{A} must be non-zero in at least one of its first k coordinates. Hence $\sigma(A) \cap W_{0}=\{0\}$.

Conversely, let $V \in \mathrm{Gr}_{n-k, k}$ and assume $V \cap W_{0}=\{0\}$. Let $V=\operatorname{Sp}(B)$ where $B \in M_{n, k}^{\prime}$ and write

$$
B=\binom{C}{D}
$$

with $C \in M_{k, k}$ and $D \in M_{n-k, k}$. Then (4) implies $V \in \sigma\left(M_{n-k, k}\right)$ provided we show that C is invertible. If C was not invertible, there would exist a non-zero vector $x \in \mathbb{R}^{k}$ with $C x=0$. The vector $B x$ would be zero in its first k coordinates, that is, $B x \in W_{0}$, and from (1) and $V \cap W_{0}=\{0\}$ we would then deduce that $B x=0$. Since $x \neq 0$ this would contradict that B has independent columns.

It follows that

$$
\begin{equation*}
\sigma_{g}\left(M_{n-k, k}\right)=\left\{V \in \operatorname{Gr}_{k, n} \mid V \cap g \cdot W_{0}=\{0\}\right\} \tag{7}
\end{equation*}
$$

for all $g \in \operatorname{GL}(n, \mathbb{R})$, where W_{0} is as above.
Lemma 3. Let $V_{1}, V_{2} \subset \mathbb{R}^{n}$ be two arbitrary k-dimensional subspaces. Then there exist a n - k-dimensional subspace $W \subset \mathbb{R}^{n}$ such that $V_{1} \cap W=V_{2} \cap W=\{0\}$

Proof. We may assume $k<n$. We claim that there exists a vector v outside of $V_{1} \cup V_{2}$. This is clear if $V_{1}=V_{2}$. Otherwise, if $V_{1} \neq V_{2}$ there exists a vector $u_{1} \in$
$V_{1} \backslash V_{2}$ and also a vector $u_{2} \in V_{2} \backslash V_{1}$. Now any linear combination $v=a_{1} u_{1}+b_{2} u_{2}$, with a and b both $\neq 0$, lies outside both subspaces, and the claim is established.

We will describe a basis v_{1}, \ldots, v_{n-k} for W. The first vector v_{1} is the vector v of the just proved claim. Next we apply the claim (for k one higher) to the two subspaces $V_{1}+\mathbb{R} v$ and $V_{2}+\mathbb{R} v$, and find a vector v_{2} in neither space. After $n-k$ such steps we reach W.

We return to the proof of the Hausdorff property. Let $V_{1}, V_{2} \in \mathrm{Gr}_{n, k}$ be given, and let W be as in the preceding lemma. Since G acts transitively on $\mathrm{Gr}_{n, n-k}$ there exists $g \in G$ such that $g . W_{0}=W$, and hence by (7) both V_{1} and V_{2} belong to the image of σ_{g}. Since σ_{g} is a homeomorphism its image is Hausdorff. If V_{1} and V_{2} are not equal, they can thus be separated by open sets inside $\sigma_{g}\left(M_{n-k, k}\right)$, hence also in $\mathrm{Gr}_{n, k}$. This establishes the Hausdorff property for the Grassmannian.

Finally we show that $\mathrm{Gr}_{n, k}$ is a differentiable manifold. It only remains to show that $\sigma_{g_{2}}^{-1} \circ \sigma_{g_{1}}$ is smooth for all pairs of elements $g_{1}, g_{2} \in G$. Note that $\sigma_{g_{2}}^{-1} \circ \sigma_{g_{1}}=\sigma^{-1} \circ \sigma_{g}$ where $g=g_{2}^{-1} g_{1}$. It follows from (5) that $\sigma^{-1} \circ \sigma_{g}(A)=D C^{-1}$ where C and D are determined from $g \tilde{A}=\binom{C}{D}$. The entries of C and D depend smoothly (in fact, linearly) on the entries of A. The entries of C^{-1} depend smoothly on the entries of C because $\operatorname{GL}(k, \mathbb{R})$ is a Lie group. Finally the product of D and C^{-1} is smooth (again in fact linear) with respect to the entries of D and C^{-1}. Hence $\sigma^{-1} \circ \sigma_{g}$ is a smooth map. We conclude that the proposed charts comprise an atlas.

Exercise: Prove that Sp is a smooth map from $M_{n, k}^{\prime}$ to $\mathrm{Gr}_{n, k}$. Use this to show that the action $(g, V) \mapsto g . V$ is smooth $G \times \mathrm{Gr}_{n, k} \rightarrow \mathrm{Gr}_{n, k}$.

