
GEOM2, 2013-14. Extra Notes

Let 1 ≤ k < n. The Grassmannian Grn,k is the set of all k-dimensional linear
subspaces in R

n. It generalizes the projective space RPn−1 = Grn,1. We will
show that Grn,k can be equipped with the structure of an (n − k)k-dimensional
differentiable manifold.

We first need a way to identify the elements of Grn,k. A subspace of dimension
k in R

n can be identified by means of a basis consisting of k linearly independent
vectors from the subspace. We view these vectors as columns and collect them in
an n× k matrix. Let Mn,k denote the vector space of all n× k matrices, and M ′

n.k

the subset of matrices with independent columns. For B ∈ Mn,k let Sp(B) ⊂ R
n

denote the linear space spanned by the columns of B. That is, it is the image

(1) Sp(B) = {Bx | x ∈ R
k}

of the linear map R
k → R

n represented by B. We thus obtain a surjective map
Sp:M ′

n,k → Grn,k.
The atlas with which we shall equip Grk,n consists charts which are all con-

structed by means of this map. They are all defined on R
(n−k)k, which we shall

identify with Mn−k,k. For A ∈ Mn−k,k we let

Ã =

(

I

A

)

∈ M ′

n,k,

the n × k matrix with a k × k unit matrix on top of A. The unit matrix in the
top ensures the linear independence of the columns. We define σ(A) = Sp(Ã) and
more generally

σg:Mn−k,k → Grn,k, σg(A) = Sp(gÃ).

for each g ∈ GL(n,R). Note that gÃ ∈ M ′

n,k as Ã ∈ M ′

n−k,k and g is invertible.

Theorem 1. There exists on Grk,n a topology and a differential structure for which

the collection of maps {σg | g ∈ GL(n,R)} is an atlas.

Proof. We first equip Grk,n with a topology. Here we use the quotient topology
with respect to the map Sp:M ′

n,k → Grn,k, that is, we define a subset of Grn,k to be

open if and only if its preimage in M ′

n,k is open. The axioms of a topological space

are easily verified. Note that M ′

n,k is an open subset of Mn,k as we can represent
it by

M ′

n,k = {B ∈ Mn,k | det(BtB) 6= 0},

and B 7→ det(BtB) is a continuous map. The Hausdorff axiom for Grn,k will be
verified later.

Let G = GL(n,R). In the proof we shall use the natural action of G on Grn,k,
defined as follows. For every matrix g ∈ G and subspace V ⊂ R

n we define a
subspace g.V ⊂ R

n by

(2) g.V = {gu | u ∈ V }.

Since g is invertible, V and g.V have the same dimension. The resulting map

G×Grn,k → Grn,k, (g, V ) 7→ g.V



is the mentioned action. The relation g1.(g2.V ) = (g1g2).V for g1, g2 ∈ G is easily
seen. Note also that (1) and (2) imply

(3) g. Sp(B) = Sp(gB)

for g ∈ G and B ∈ Mn,k. In particular, since multiplication by g is continuous
Mn,k → Mn,k it follows from (3) and the definition of the topology that V 7→ g.V

is continuous Grn,k → Grn,k. In fact, then it is a homeomorphism since the inverse
V 7→ g−1.V is also continuous.

We now study the proposed charts σg. Let g ∈ G = GL(n,R) and note that
σg(A) = g.σ(A). The map σ is continuous, being composed by the continuous maps

A 7→ Ã and Sp. Hence σg is continuous as well.
Our next aim is to show σg is injective. It suffices to show σ is injective, since

multiplication by g is injective. We shall employ the following lemma.

Lemma 1. Let B,B′ ∈ M ′

n,k. Then Sp(B) = Sp(B′) if and only if there exists

C ∈ GL(k,R) such that B′ = BC.

Proof. The equation B′ = BC implies the image Sp(B′) of B′ is contained in the
image Sp(B) of B. The opposite inclusion follows from the equation B = B′C−1.

Conversely, if Sp(B′) = Sp(B) then each column of B′ is in Sp(B), hence can be
expressed as a linear combination of the columns of B. Inserting the coefficients of
these linear combinations in a k × k matrix C we find B′ = BC. If the rank of C
was smaller than k then the rank of BC would also be smaller than k. Since B′

has rank k, the rank of C must be k. Hence C is invertible. � �

We return to the proof that σ is injective. Let A,A′ ∈ Mn−k,k and assume

σ(A′) = σ(A), that is, Sp(Ã′) = Sp(Ã). According to Lemma 1 there exists C ∈

GL(k,R) such that Ã′ = ÃC. The first k rows of this matrix equation express
that I = C and the remaining rows then express that A′ = A. Hence the map is
injective.

Next we want to study the inverse of σg, which is defined on its image set
σg(Mn−k,k). We want to show that this is an open subset of Grk,n and that σ−1

g is
continuous into Mn−k,k. Again it suffices to consider g = I, as the multiplication
by g is a homeomorphism of Grn,k. We claim

(4) σ(Mn−k,k) =
{

Sp

(

C

D

)

∣

∣C ∈ GL(k,R), D ∈ Mn−k,k

}

,

and with C,D as in (4),

(5) Sp

(

C

D

)

= σ(DC−1).

The inclusion ⊂ in (4) is obvious from the definition of σ. The equality (5) follow
from Lemma 1, and it implies ⊃ in (4).

With (4) and Lemma 1 we conclude

Sp−1(σ(Mn−k,k)) =
{

(

C

D

)

∣

∣C ∈ GL(k,R), D ∈ Mn−k,k

}

,



which is open in Mn,k. From (5) we find

(6) σ−1

(

Sp

(

C

D

))

= DC−1,

which shows that σ−1 ◦ Sp is continuous. This implies that σ−1 is continuous.
We have now shown that each of the proposed charts σg is a homeomorphism

onto an open set. In order to see that every point of Grn,k lies in some chart, we
shall use that the action of G = GL(n,R) is transitive, by which we understand
that for any pair of elements V, V ′ ∈ Grn,k there exists g ∈ G such that V ′ = g.V .
This can be seen by choosing a basis u1 . . . , un for Rn such that u1, . . . , uk belong
to V , and likewise a basis u′

1 . . . , u
′

n such that u′

1, . . . , u
′

k belong to V ′. The linear
transformation of Rn to itself, which maps uj to u′

j for all j, is invertible and maps
V to V ′. Hence the action is transitive. In particular, let

V0 = {x ∈ R
n | xk+1 = · · · = xn = 0} = σ(0),

then there exists for every V ∈ Grn,k an element g ∈ G such that V = g.V0. It
follows that V = σg(0). Hence the proposed atlas covers all of Grn,k.

Next we want to show the topology is Hausdorff. We shall employ the following
two lemmas.

Lemma 2. The image of σ is

σ(Mn−k,k) = {V ∈ Grk,n | V ∩W0 = {0}}

where W0 ⊂ R
n is the subspace W0 = {x ∈ R

n | x1 = · · · = xk = 0}.

Proof. Let A ∈ Mn−k,k, then every nontrivial linear combination of the columns of

Ãmust be non-zero in at least one of its first k coordinates. Hence σ(A)∩W0 = {0}.
Conversely, let V ∈ Grn−k,k and assume V ∩W0 = {0}. Let V = Sp(B) where

B ∈ M ′

n,k and write

B =

(

C

D

)

with C ∈ Mk,k and D ∈ Mn−k,k. Then (4) implies V ∈ σ(Mn−k,k) provided we
show that C is invertible. If C was not invertible, there would exist a non-zero
vector x ∈ R

k with Cx = 0. The vector Bx would be zero in its first k coordinates,
that is, Bx ∈ W0, and from (1) and V ∩ W0 = {0} we would then deduce that
Bx = 0. Since x 6= 0 this would contradict that B has independent columns. �

It follows that

(7) σg(Mn−k,k) = {V ∈ Grk,n | V ∩ g.W0 = {0}}

for all g ∈ GL(n,R), where W0 is as above.

Lemma 3. Let V1, V2 ⊂ R
n be two arbitrary k-dimensional subspaces. Then there

exist a n− k-dimensional subspace W ⊂ R
n such that V1 ∩W = V2 ∩W = {0}

Proof. We may assume k < n. We claim that there exists a vector v outside of
V1 ∪ V2. This is clear if V1 = V2. Otherwise, if V1 6= V2 there exists a vector u1 ∈



V1 \V2 and also a vector u2 ∈ V2 \V1. Now any linear combination v = a1u1+ b2u2,
with a and b both 6= 0, lies outside both subspaces, and the claim is established.

We will describe a basis v1, . . . , vn−k for W . The first vector v1 is the vector v

of the just proved claim. Next we apply the claim (for k one higher) to the two
subspaces V1 +Rv and V2 +Rv, and find a vector v2 in neither space. After n− k

such steps we reach W . �

We return to the proof of the Hausdorff property. Let V1, V2 ∈ Grn,k be given,
and let W be as in the preceding lemma. Since G acts transitively on Grn,n−k there
exists g ∈ G such that g.W0 = W , and hence by (7) both V1 and V2 belong to the
image of σg. Since σg is a homeomorphism its image is Hausdorff. If V1 and V2 are
not equal, they can thus be separated by open sets inside σg(Mn−k,k), hence also
in Grn,k. This establishes the Hausdorff property for the Grassmannian.

Finally we show that Grn,k is a differentiable manifold. It only remains to
show that σ−1

g2
◦ σg1 is smooth for all pairs of elements g1, g2 ∈ G. Note that

σ−1
g2

◦σg1 = σ−1 ◦σg where g = g−1
2 g1. It follows from (5) that σ−1 ◦σg(A) = DC−1

where C and D are determined from gÃ =

(

C

D

)

. The entries of C and D depend

smoothly (in fact, linearly) on the entries of A. The entries of C−1 depend smoothly
on the entries of C because GL(k,R) is a Lie group. Finally the product of D and
C−1 is smooth (again in fact linear) with respect to the entries of D and C−1.
Hence σ−1 ◦ σg is a smooth map. We conclude that the proposed charts comprise
an atlas. �

Exercise: Prove that Sp is a smooth map from M ′

n,k to Grn,k. Use this to show

that the action (g, V ) 7→ g.V is smooth G×Grn,k → Grn,k.


