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1 Introduction

We consider the second order homogeneous linear equation

A(t)x′′ +B(t)x′ + C(t)x = 0 (1)

with the aim of constructing solutions in the form of power series. The method
we shall use works equally well for equations of order n = 1 or n > 2, but the
second-order case is the most important for applications.

The basic method consists of substituting a power series

x(t) =
∞
∑

n=0

cnt
n (2)

into the differential equation, and then sort out what conditions the coefficients
c0, c1, . . . must satisfy in order for the equation to be satisfied. If we succeed the
outcome will thus be a solution given by an infinite series, rather than a solution
expressed in closed form with elementary functions.

2 Power series

Let us first review (from your real analysis course) a few basic facts about power
series. A general power series has the form

∞
∑

n=0

cn(t− a)n

with coefficients c0, c1, · · · ∈ C and a ∈ R. For simplicity we confine ourselves
to the case a = 0, as the general case is easily converted to this situation by
replacement of the translated variable t− a with t.

Recall that for every power series (2) there exists ρ ∈ [0,+∞], called the radius
of convergence, such that the series converges absolutely for every t ∈ I = (−ρ, ρ),
and diverges whenever |t| > ρ. It follows from the ratio test that if the limit

limn→∞
|cn|

|cn+1|
exists in [0,+∞], then it equals ρ.

If ρ > 0 then the sum x(t) belongs to C∞(I), and its derivatives are the sums
of the power series obtained by termwise differentiations,

x′(t) =
∞
∑

n=1

ncnt
n−1, x′′(t) =

∞
∑

n=2

n(n− 1)cnt
n−2, etc. (3)

In particular, x(k)(0) = k!ck for k = 0, 1, . . . . It follows that when the power series
converges, it is the Taylor series at 0 of its sum. The fact that all the coefficients
ck are uniquely determined by the sum x(t) is called the identity principle for
power series.
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Recall also that power series can be manipulated algebraically termwise. If
x(t) =

∑∞
n=0 ant

n and y(t) =
∑∞

n=0 bnt
n, with intervals of convergence I and J ,

respectively, then

x(t) + y(t) =
∞
∑

n=0

(an + bn)t
n, λx(t) =

∞
∑

n=0

λant
n (4)

for all λ ∈ R, and

x(t)y(t) =
∞
∑

n=0

cnt
n, (5)

where cn =
∑

i+j=n aibj for each n. Both series converge for t ∈ I ∩ J (at least).
In the application to differential equations we shall use the technique of shift of

summation index, according to which the power series
∑∞

n=0 cnt
n can be rewritten

as
∑∞

n=1 cn−1t
n−1. More generally

∞
∑

n=N

cnt
n =

∞
∑

n=N+k

cn−kt
n−k,

where the summation index n is shifted by k and its initial value N is shifted also
by k, but in the opposite direction. The identity is valid simply because both
expressions expand to the same sum cN t

N + cN+1t
N+1 + . . . .

3 Example

We are now ready to present the solution method in a simple example, the equa-
tion

x′′ + x = 0.

With the Ansatz that x(t) is given by (2) with a positive radius of convergence,
it follows from (3) that

∞
∑

n=2

n(n− 1)cnt
n−2 +

∞
∑

n=0

cnt
n = 0.

We shift the first summation by 2 in order to obtain the same power of t in both
sums:

∞
∑

n=0

(n+ 2)(n+ 1)cn+2t
n +

∞
∑

n=0

cnt
n = 0.

Next we apply (4) and obtain

∞
∑

n=0

((n+ 2)(n+ 1)cn+2 + cn)t
n = 0.
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By the identity principle we conclude that (n+ 2)(n+ 1)cn+2 + cn = 0 for all n,
and hence

cn+2 = −
cn

(n+ 1)(n+ 2)
.

A relation of this type is called a recursion formula, and it shows that we can
determine all the coefficients cn recursively from the first two. In fact, by a simple
induction we derive

c2k =
(−1)kc0
(2k)!

, c2k+1 =
(−1)kc1
(2k + 1)!

for all k, and hence

x(t) = c0

∞
∑

k=0

(−1)k

(2k)!
t2k + c1

∞
∑

k=0

(−1)k

(2k + 1)!
t2k+1.

Here we recognize the Taylor series of cos t and sin t, but in a general situation
we will obtain power series that do not necessarily represent known functions.
Note that since c0 and c1 can vary freely, we have obtained a 2-dimensional linear
solution space, spanned by the functions represented by the two series. This is
in accordance with the general principle for a linear homogeneous equation.

4 Main theorems

The main theorem about the power series method deals with an important issue
which was not addressed in the example above, namely the actual convergence
of the series solutions produced by the method. We shall call a power series,
which satisfies (1), by substitution into the equation and by manipulations using
(3), (4), (5) and index shifts as above, a formal solution, regardless of whether it
converges or not.

We first state a result for the special case where A(t) = 1. Then the equation
reads

x′′ + P (t)x′ +Q(t)x = 0 (6)

for some functions P (t) and Q(t). The original equation can obviously be brought
to this form by division with A(t). In the following, we say that a function f is
sum of a power series on ]−R,R[ if its Taylor series at 0 converges on the entire
interval with sum f .

4.1 Theorem. Let R > 0 and assume P (t) and Q(t) are sums of power series
on I =] − R,R[. Then every formal power series solution to (6) converges to a
solution on I, and all solutions on this interval can be obtained in this fashion.
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Most important applications are of the form

A(t)x′′ +B(t)x′ + C(t)x = 0 (7)

with functions A, B and C that are polynomials. In the simplified form (6) we
then have rational functions P (t) = B(t)/A(t) and Q(t) = C(t)/A(t), but when
deriving the formal solutions it is more convenient not to simplify, but instead
use the original form (7). The next theorem concerns the equation (7).

4.2 Theorem. Suppose A(t), B(t) and C(t) are polynomials and that A(0) 6= 0.
Then every formal power series solution to (7) has a radius of convergence R > 0,
which is at least the distance from 0 to the nearest zero of A in the complex plane.
Its sum is a solution on I =] − R,R[, and all solutions on this interval can be
obtained in this fashion.

Proof of Theorems 4.1 and 4.2. Once convergence of a formal power series solu-
tion is known, then all the manipulations mentioned for the concept of a formal
solution (see above) correspond to actual operations on the sum. In that case
the formal solution converges to an actual solution. Hence it suffices to prove the
convergence stated in the theorems.

We first prove Theorem 4.1. We begin by deriving the general form of the re-
cursion formula for the power series solutions to (6). Let

∑∞
k=0 pkt

k and
∑∞

k=0 qkt
k

be the Taylor series at 0 for P and Q, known to converge with sum P (t) and Q(t)
for |t| < R. Substituting (2) and (3) into (6) yields

∞
∑

n=2

n(n− 1)cnt
n−2 +

(

∞
∑

k=0

pkt
k

)(

∞
∑

n=1

ncnt
n−1

)

+

(

∞
∑

k=0

qkt
k

)(

∞
∑

n=0

cnt
n

)

= 0.

In the first two terms we shift the sums so that they become

∞
∑

n=0

(n+ 2)(n+ 1)cn+2t
n and

(

∞
∑

k=0

pkt
k

)(

∞
∑

n=0

(n+ 1)cn+1t
n

)

.

Applying (5) to the products we then obtain

∞
∑

n=0

(n+ 2)(n+ 1)cn+2t
n +

∞
∑

n=0

∑

i+j=n

pi(j + 1)cj+1t
n +

∞
∑

n=0

∑

i+j=n

qicjt
n = 0.

Collecting all terms with tn we see that this is formally valid if

(n+ 2)(n+ 1)cn+2 = −
∑

i+j=n

pi(j + 1)cj+1 −
∑

i+j=n

qicj

for all n ≥ 0. This is the recursion formula that the method provides, and it
allows us to determine cn+2 for all n ≥ 0 recursively from c0 and c1, regardsless
of which values these two parameters have.
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Let 0 < r < R and choose s with r < s < R. Then
∑∞

k=0 |pk|s
k converges. In

particular the terms |pk|s
k are bounded above as functions of k. We see similarly

that |qk|s
k is bounded. Hence we can find C > 0 such that |pk| ≤ Cs−k and

|qk| ≤ Cs−k for all k ≥ 0.
We will now prove that the sequence |cn|r

n is bounded. We shall do this by
induction, and to prepare for the inductive step we prove the following lemma.

4.3 Lemma. There exists a number N (depending on r, s, C from above) such
that

|cm|r
m ≤ max

0≤k<m
|ck|r

k.

for all integers m ≥ N .

Proof. Letm ≥ 2 andM = max0≤k<m |ck|r
k. Sincem ≥ 2 we can writem = n+2

where n ≥ 0 and apply the recursion formula for cn+2. It follows that

(n+ 2)(n+ 1)|cn+2| ≤
∑

i+j=n

Cs−i(j + 1)Mr−j−1 +
∑

i+j=n

Cs−iMr−j

= CM
∑

i+j=n

(j + 1 + r)s−ir−j−1

≤ CM(n+ 1 + r)r−1
∑

i+j=n

s−ir−j.

Now n+ 1 + r ≤ (n+ 1)(1 + r) and

∑

i+j=n

s−ir−j = r−n

n
∑

i=0

(r/s)i ≤ r−n

∞
∑

i=0

(r/s)i.

Since r < s we have
∑∞

i=0(r/s)
i = s

s−r
< ∞ and hence the bound above yields

|cn+2| ≤
CM(1 + r)s

(n+ 2)(s− r)
r−n−1.

Hence if

m = n+ 2 ≥ N :=
C(1 + r)sr

s− r

it follows that
|cm| ≤ Mr−m.

The boundedness of |cn|r
n easily follows: Let M = max0≤k<N |ck|r

k where N
is as in the lemma. By induction it follows that M = max0≤k<m |ck|r

k for all
m ≥ N .
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From the bound |cn| ≤ Mr−n it follows that the series cnt
n converges for

|t| < r. Hence the radius of convergence is at least r, and as r was an arbitrary
number below R, it is at least R.

Finally, we saw above that the recursive relation can be solved for all values
of c0 and c1. These are exactly the values x(0) and x′(0) of the sum function, and
hence every set of initial values x(0) and x′(0) is accounted for with the power
series. It follows that all the solutions on I are accounted for. This completes
the proof of Theorem 4.1.

In order to derive Theorem 4.2 from Theorem 4.1 we only need to prove that
the rational functions P (t) = B(t)/A(t) and Q(t) = C(t)/A(t) are sums of power
series on the interval I =] − R,R[ mentioned in Theorem 4.2. Since B and C
are polynomials it suffices to prove that 1/A(t) is sum of a power series on I
(this follows from (5)). By the fundamental theorem of algebra A(t) is a constant
times the product of the functions α − t where α ∈ C are the roots of A. In
particular |α| ≥ R by assumption. Using (5) we easily reduce to the statement
that (α− t)−1 is the sum of a power series on I. This is true, since

(α− t)−1 =
∞
∑

n=0

α−n−1tn

which has radius of convergence |α|.

5 Legendre’s equation

This equation is important in many applications. It has the form

(1− t2)x′′ − 2tx′ + l(l + 1)x = 0

with l a complex constant (often an integer). The substitution of (2) into the
equation leads to

∞
∑

n=2

n(n− 1)cnt
n−2 −

∞
∑

n=2

n(n− 1)cnt
n −

∞
∑

n=1

2ncnt
n + l(l + 1)

∞
∑

n=0

cnt
n = 0.

Here we have to shift the first sum so that it has the same power of t as the
others. It becomes

∞
∑

n=0

(n+ 2)(n+ 1)cn+2t
n

We also observe that the other sums might as well start at n = 0, since their
coefficients are zero for the added values of n. Collecting terms we obtain

∞
∑

n=0

((n+ 2)(n+ 1)cn+2 − n(n− 1)cn − 2ncn + l(l + 1)cn) t
n = 0
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and by the identity principle we conclude

cn+2 =
n(n− 1) + 2n− l(l + 1)

(n+ 2)(n+ 1)
cn =

n(n+ 1)− l(l + 1)

(n+ 2)(n+ 1)
cn

for all n ≥ 0. This recurrence formula allows us to determine the even numbered
coefficients from c0 and the odd numbered from c1. This leads to two series, one
in even powers of t obtained with c0 = 1 and c1 = 0, and the other in odd powers,
obtained with c0 = 0 and c1 = 1. The roots of A(t) = 1 − t2 are ±1, and hence
Theorem 4.2 tells us that the two series converge on ] − 1, 1[, and that every
solution in this interval is a linear combination of these to functions.

It is interesting to consider the case where l is a non-negative integer. In this
case it follows from the recursion formula that cn+2 = 0 for n = l, and then
all the later coefficients of the same parity vanish as well. If l is even it follows
that the power series solution with even powers terminates at n = l, and if l is
odd then the solution with odd powers terminates at n = l. In both cases the
equation thus allows a solution which is polynomial of degree l. This polynomial
(appropriately normalized) is called the Legendre polynomial of degree l.

6 Regular singular points

In Theorem 4.2 we considered the equation

A(t)x′′ + B(t)x′ + C(t)x = 0.

under the assumption that A(0) 6= 0. We will now consider a situation where this
is not the case. We assume that A(t), B(t) and C(t) are polynomials, and that
there is no non-trivial common polynomial factor to all three of them. Then a
point t = t0 is said to be singular if A(t0) = 0, and ordinary otherwise. For the
Legendre equation, for example, the singular points are t0 = ±1.

Let us assume that t = 0 is singular. Then A(0) = 0. We will deal with two
cases of this. The simplest case occurs when the multiplicity of t = 0 as a zero of
the polynomial A(t) is one. The second case occurs when the multiplicity is two
and in addition B(0) = 0. The type of the solutions turns out to be similar in the
two cases, and it is customary to refer to them together by saying that t = 0 is a
regular singular point. Note that the first case, where A(0) = 0 with multiplicity
one, can be transformed into a special case of the second case by multiplication
of the entire equation with t. The common feature of the two cases is thus that
the equation has or can be brought to the form

t2a(t)x′′(t) + tb(t)x′(t) + c(t)x(t) = 0 (8)

with polynomials a(t), b(t) and c(t) such that a(0) 6= 0. This means that we can
treat the two cases simultaneously through the equation (8).
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In general (8) cannot be solved by a power series (2). This can be seen already
in the case where a, b and c are constants,

a(t) = a0, b(t) = b0, c(t) = c0.

In this case we can solve with the Ansatz x(t) = tλ. Substitution into (8) gives

t2a0λ(λ− 1)tλ−2 + tb0λt
λ−1 + c0t

λ = 0

or equivalently
a0λ(λ− 1) + b0λ+ c0 = 0.

Thus tλ solves (8) if (and only if) λ solves this quadratic equation. If a solution
λ is not a non-negative integer, there is no way to develop tλ in a power series
as (2).

The proper solution method for the general equation (8) with a regular sin-
gularity at t = 0 was found by Frobenius, and it consists of substituting

x(t) = tλ
∞
∑

n=0

cnt
n =

∞
∑

n=0

cnt
λ+n, (9)

rather than the plain power series (2), into (8). Frobenius’ method works in
general, but here we will just indicate it briefly through an important example.

7 Bessel’s equation

This is the equation

t2x′′(t) + tx′(t) + (t2 − p2)x(t) = 0 (10)

where p ≥ 0 is constant. The substitution of (9) in (10) leads to

∞
∑

n=0

(λ+n)(λ+n−1)cnt
λ+n+

∞
∑

n=0

(λ+n)cnt
λ+n+

∞
∑

n=0

cnt
λ+n+2−p2

∞
∑

n=0

cnt
λ+n = 0,

which we divide by tλ and obtain

∞
∑

n=0

(λ+ n)(λ+ n− 1)cnt
n +

∞
∑

n=0

(λ+ n)cnt
n +

∞
∑

n=0

cnt
n+2 − p2

∞
∑

n=0

cnt
n = 0.

The first, second and fourth sum combined gives

∞
∑

n=0

(

(λ+ n)2 − p2
)

cnt
n.
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In the third sum we have to shift the summation in order to have the same power
of t as in the other terms. It becomes

∞
∑

n=2

cn−2t
n.

We conclude

(λ2 − p2)c0 + ((λ+ 1)2 − p2)c1t+
∞
∑

n=2

(

((λ+ n)2 − p2)cn + cn−2

)

tn = 0

for all t > 0. By the identity principle it follows that

(λ2 − p2)c0 = 0, (11)
(

(λ+ 1)2 − p2
)

c1 = 0 (12)
(

(λ+ n)2 − p2
)

cn + cn−2 = 0, (n ≥ 2). (13)

Here (11) is valid when λ = ±p. We choose λ = p. Then (12) forces c1 = 0.
Finally (13) leads to the formula

cn =
−cn−2

(p+ n)2 − p2
=

−cn−2

n(2p+ n)
, n ≥ 2,

from which all cn can be determined recursively. In particular all the odd num-
bered terms vanish. We thus reach a formal solution of the form (9), but with only
even powers of t. It is easily seen with the ratio test that the series

∑∞
m=0 c2mt

2m

converges for all t, and as before it then follows that the sum is actually a solu-
tion to Bessel’s equation for t > 0. The resulting function, suitably normalized,
is called the Bessel function of order p. With the first terms it reads

Jp(t) = tp
(

1−
t2

2(2p+ 2)
+

t4

2(2p+ 2)4(2p+ 4)
− . . .

)

up to normalization. A second solution, linearly independent from Jp, can be
derived in the same fashion by choosing λ = −p instead of λ = p, but only if p is
not an integer.

Bessel functions are among the most important functions of mathematics
because they have many applications.


