Note 1.

This note replaces the theory of p. 13-14 (Definition 1.12 and Theorem 1.13), which is quite technical.

Proposition 1. Let \(D \subseteq \mathbb{R} \times \mathbb{R}^n \) and let \(X : D \to \mathbb{R}^n \) be continuous. Let \((I, y)\) be a solution to

\[
\dot{y} = X(t, y)
\]

with \(I = (a, b) \) where \(a < b \).

If there exists a compact set \(K \subset D \) such that \((t, y(t)) \in K \) for all \(t \in I \), then \(y \) admits an extension \((\hat{I}, \hat{y})\) to a solution on the closed interval \(\hat{I} = [a, b] \).

Proof. Since \(K \) is compact and \(X \) is continuous, there exists \(M < \infty \) such that \(\|X(t, x)\| \leq M \) for all \((t, x) \in K\). Here we use the standard norm

\[
\|x\| = (x_1^2 + \cdots + x_n^2)^{1/2}
\]
on \(\mathbb{R}^n \). In particular, it follows from (1) that \(\|\dot{y}(t)\| \leq M \) for all \(t \in I \). Hence each coordinate of \(\dot{y}(t) \) is bounded by \(M \) for \(t \in I \).

Let \(t_1, t_2 \in I \). From the mean value theorem it follows that for each coordinate \(y_i \) of \(y \) there exists \(t \) between \(t_1 \) and \(t_2 \) such that

\[
y_i(t_2) - y_i(t_1) = \dot{y}_i(t)(t_2 - t_1),
\]

and hence \(|y_i(t_2) - y_i(t_1)| \leq M|t_2 - t_1| \). We thus conclude

\[
\|y(t_2) - y(t_1)\| \leq \sqrt{n}M|t_2 - t_1|.
\]

Let \(s_k \) be an arbitrary sequence in \(I \) converging to the end-point \(a \). Then \(s_k \) is a Cauchy sequence, and the inequality above then implies that so is its image \(y(s_k) \) in \(\mathbb{R}^n \). Hence \(y(s_k) \to \eta \) as \(k \to \infty \), for some \(\eta \in \mathbb{R}^n \). It is easily seen that if \(s'_k \) is another sequence converging to \(a \), then its image \(y(s'_k) \) will have same limit \(\eta \). For example, one can argue that the mixed sequence \(y(s_1), y(s'_1), y(s_2), y(s'_2), \ldots \) is also Cauchy and contains both \(y(s_k) \) and \(y(s'_k) \) as subsequences. It follows that if we define \(\hat{y}(a) = \eta \) and \(\hat{y} = y \) on \(I \), then \(\hat{y} \) is continuous at \(a \).

Next, we show that \(\hat{y} \) solves the differential equation (1) also at \(a \). We have to show that \(\hat{y} \) is right-differentiable at \(a \) with derivative \(X(a, \hat{y}(a)) \), that is,

\[
\lim_{t \to a^+} \frac{\hat{y}(t) - \hat{y}(a)}{t - a} = X(a, \hat{y}(a)).
\]
Again we employ the mean value theorem to each coordinate. With \(i \in \{1, \ldots, n\} \) fixed it follows that here exists, for each \(t \in I \), an element \(c_t \in (a, t) \) such that

\[
\frac{\hat{y}_i(t) - \hat{y}_i(a)}{t - a} = y'_i(c_t)
\]

(note that the mean value theorem requires continuity of \(\hat{y}_i \) in \([a, t]\) but differentiability only in \((a, t)\)). From (1) it follows that

\[
y'_i(c_t) = X(c_t, y(c_t))_i
\]

Now \(t \to a_+ \) implies \(c_t \to a \) since \(a < c_t < t \), and as \(\hat{y} \) and \(X \) are continuous, it then follows that \(X(c_t, y(c_t))_i \to X(a, \hat{y}(a))_i \), which implies what we wanted to show for each \(i \).

Similarly, we obtain an extension of \(y \) at \(b \). \(\square \)

Example 3.10. The book treats this example without reference to Theorem 1.13. With Proposition 1 it reads as follows. The differential equation is

\[
(2) \quad \dot{y} = y^{1/3} + \frac{1}{2} t^{1/2}, \quad (t, y) \in D = \mathbb{R}_+ \times \mathbb{R}_+.
\]

By an Ansatz, the solution \((\mathbb{R}_+, t^{2/3})\) was found in Example 1.4.

Claim: Let \((t_0, \eta) \in D\) be an initial condition with \(0 < \eta < t_0^{3/2} \). The corresponding maximal solution \((I, y)\) with \(y(t_0) = \eta \) satisfies \([t_0, \infty[\subseteq I\).

Proof. Suppose the right end-point \(b \) of \(I \) is finite. By Theorem 3.1 and Remark 3.2, \(I \) is open and the graph of \(y \) does not intersect with the graph of \(t^{3/2} \). Thus \(y(t) < t^{3/2} \leq B := b^{3/2} \) for all \(t \in I \). Furthermore, from (2) we derive that \(\dot{y} \geq 0 \) and hence \(y \) is increasing. Hence \((t, y(t))\) belongs to the compact set

\[
K = [t_0, b] \times [\eta, B]
\]

for all \(t \in (t_0, b) \). By Proposition 1, the solution \(((t_0, b), y)\) admits an extension \(((t_0, b), \hat{y})\). According to Lemma 1.17, we can glue this extension together with \((I, y)\) and thus obtain an extension of the latter in the end-point \(b \), which is a contradiction.

HS