Note 1.
This note replaces the theory of p. 13-14 (Definition 1.12 and Theorem 1.13), which is quite technical.

Proposition 1. Let $\mathcal{D} \subseteq \mathbb{R} \times \mathbb{R}^{n}$ and let $X: \mathcal{D} \rightarrow \mathbb{R}^{n}$ be continuous. Let (I, y) be a solution to

$$
\begin{equation*}
\dot{y}=X(t, y) \tag{1}
\end{equation*}
$$

with $I=(a, b)$ where $a<b$.
If there exists a compact set $K \subset \mathcal{D}$ such that $(t, y(t)) \in K$ for all $t \in I$, then y admits an extension (\hat{I}, \hat{y}) to a solution on the closed interval $\hat{I}=[a, b]$.

Proof. Since K is compact and X is continuous, there exists $M<\infty$ such that $\|X(t, x)\| \leq M$ for all $(t, x) \in K$. Here we use the standard norm

$$
\|x\|=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}
$$

on \mathbb{R}^{n}. In particular, it follows from (1) that $\|\dot{y}(t)\| \leq M$ for all $t \in I$. Hence each coordinate of $\dot{y}(t)$ is bounded by M for $t \in I$.

Let $t_{1}, t_{2} \in I$. From the mean value theorem it follows that for each coordinate y_{i} of y there exists t between t_{1} and t_{2} such that

$$
y_{i}\left(t_{2}\right)-y_{i}\left(t_{1}\right)=\dot{y}_{i}(t)\left(t_{2}-t_{1}\right),
$$

and hence $\left|y_{i}\left(t_{2}\right)-y_{i}\left(t_{1}\right)\right| \leq M\left|t_{2}-t_{1}\right|$. We thus conclude

$$
\left\|y\left(t_{2}\right)-y\left(t_{1}\right)\right\| \leq \sqrt{n} M\left|t_{2}-t_{1}\right|
$$

Let s_{k} be an arbitrary sequence in I converging to the end-point a. Then s_{k} is a Cauchy sequence, and the inequality above then implies that so is its image $y\left(s_{k}\right)$ in \mathbb{R}^{n}. Hence $y\left(s_{k}\right) \rightarrow \eta$ as $k \rightarrow \infty$, for some $\eta \in \mathbb{R}^{n}$. It is easily seen that if s_{k}^{\prime} is another sequence converging to a, then its image $y\left(s_{k}^{\prime}\right)$ will have same limit η. For example, one can argue that the mixed sequence $y\left(s_{1}\right), y\left(s_{1}^{\prime}\right), y\left(s_{2}\right), y\left(s_{2}^{\prime}\right) \ldots$ is also Cauchy and contains both $y\left(s_{k}\right)$ and $y\left(s_{k}^{\prime}\right)$ as subsequences. It follows that if we define $\hat{y}(a)=\eta$ and $\hat{y}=y$ on I, then \hat{y} is continuous at a.

Next, we show that \hat{y} solves the differential equation (1) also at a. We have to show that \hat{y} is right-differentiable at a with derivative $X(a, \hat{y}(a))$, that is,

$$
\lim _{t \rightarrow a_{+}} \frac{\hat{y}(t)-\hat{y}(a)}{t-a}=X(a, \hat{y}(a))
$$

Again we employ the mean value theorem to each coordinate. With $i \in\{1, \ldots, n\}$ fixed it follows that here exists, for each $t \in I$, an element $c_{t} \in(a, t)$ such that

$$
\frac{\hat{y}_{i}(t)-\hat{y}_{i}(a)}{t-a}=y_{i}^{\prime}\left(c_{t}\right)
$$

(note that the mean value theorem requires continuity of \hat{y}_{i} in $[a, t]$ but differentiability only in (a, t)). From (1) it follows that

$$
y_{i}^{\prime}\left(c_{t}\right)=X\left(c_{t}, y\left(c_{t}\right)\right)_{i}
$$

Now $t \rightarrow a_{+}$implies $c_{t} \rightarrow a$ since $a<c_{t}<t$, and as \hat{y} and X are continuous, it then follows that $X\left(c_{t}, y\left(c_{t}\right)\right)_{i} \rightarrow X(a, \hat{y}(a))_{i}$, which implies what we wanted to show for each i.

Similarly, we obtain an extension of y at b.
Example 3.10. The book treats this example without reference to Theorem 1.13. With Proposition 1 it reads as follows. The differential equation is

$$
\begin{equation*}
\dot{y}=y^{1 / 3}+\frac{1}{2} t^{1 / 2}, \quad(t, y) \in \mathcal{D}=\mathbb{R}_{+} \times \mathbb{R}_{+} \tag{2}
\end{equation*}
$$

By an Ansatz, the solution $\left(\mathbb{R}_{+}, t^{2 / 3}\right)$ was found in Example 1.4.
Claim: Let $\left(t_{0}, \eta\right) \in \mathcal{D}$ be an initial condition with $0<\eta<t_{0}^{3 / 2}$. The corresponding maximal solution (I, y) with $y\left(t_{0}\right)=\eta$ satisfies $\left[t_{0}, \infty[\subseteq I\right.$.
Proof. Suppose the right end-point b of I is finite. By Theorem 3.1 and Remark $3.2, I$ is open and the graph of y does not intersect with the graph of $t^{3 / 2}$. Thus $y(t)<t^{3 / 2} \leq B:=b^{3 / 2}$ for all $t \in I$. Furthermore, from (2) we derive that $\dot{y} \geq 0$ and hence y is increasing. Hence $(t, y(t))$ belongs to the compact set

$$
K=\left[t_{0}, b\right] \times[\eta, B]
$$

for all $t \in\left(t_{0}, b\right)$. By Proposition 1, the solution $\left(\left[t_{0}, b\right), y\right)$ admits an extension ($\left[t_{0}, b\right], \hat{y}$). According to Lemma 1.17, we can glue this extension together with (I, y) and thus obtain an extension of the latter in the end-point b, which is a contradiction.

