
Note 1. Differential Equations, 2013

This note replaces the theory of p. 13-14 (Definition 1.12 and Theorem 1.13),
which is quite technical.

Proposition 1. Let D ⊆ R×R
n and let X : D → R

n be continuous. Let (I, y) be
a solution to

(1) ẏ = X(t, y)

with I = (a, b) where a < b.

If there exists a compact set K ⊂ D such that (t, y(t)) ∈ K for all t ∈ I, then y

admits an extension (Î , ŷ) to a solution on the closed interval Î = [a, b].

Proof. Since K is compact and X is continuous, there exists M < ∞ such that
‖X(t, x)‖ ≤ M for all (t, x) ∈ K. Here we use the standard norm

‖x‖ = (x2
1 + · · ·+ x2

n)
1/2

on R
n. In particular, it follows from (1) that ‖ẏ(t)‖ ≤ M for all t ∈ I. Hence each

coordinate of ẏ(t) is bounded by M for t ∈ I.
Let t1, t2 ∈ I. From the mean value theorem it follows that for each coordinate

yi of y there exists t between t1 and t2 such that

yi(t2)− yi(t1) = ẏi(t)(t2 − t1),

and hence |yi(t2)− yi(t1)| ≤ M |t2 − t1|. We thus conclude

‖y(t2)− y(t1)‖ ≤
√
nM |t2 − t1|.

Let sk be an arbitrary sequence in I converging to the end-point a. Then sk is a
Cauchy sequence, and the inequality above then implies that so is its image y(sk)
in R

n. Hence y(sk) → η as k → ∞, for some η ∈ R
n. It is easily seen that if s′k is

another sequence converging to a, then its image y(s′k) will have same limit η. For
example, one can argue that the mixed sequence y(s1), y(s

′

1), y(s2), y(s
′

2) . . . is also
Cauchy and contains both y(sk) and y(s′k) as subsequences. It follows that if we
define ŷ(a) = η and ŷ = y on I, then ŷ is continuous at a.

Next, we show that ŷ solves the differential equation (1) also at a. We have to
show that ŷ is right-differentiable at a with derivative X(a, ŷ(a)), that is,

lim
t→a+

ŷ(t)− ŷ(a)

t− a
= X(a, ŷ(a)).



Again we employ the mean value theorem to each coordinate. With i ∈ {1, . . . , n}
fixed it follows that here exists, for each t ∈ I, an element ct ∈ (a, t) such that

ŷi(t)− ŷi(a)

t− a
= y′i(ct)

(note that the mean value theorem requires continuity of ŷi in [a, t] but differentia-
bility only in (a, t)). From (1) it follows that

y′i(ct) = X(ct, y(ct))i

Now t → a+ implies ct → a since a < ct < t, and as ŷ and X are continuous, it then
follows that X(ct, y(ct))i → X(a, ŷ(a))i, which implies what we wanted to show for
each i.

Similarly, we obtain an extension of y at b. �

Example 3.10. The book treats this example without reference to Theorem 1.13.
With Proposition 1 it reads as follows. The differential equation is

(2) ẏ = y1/3 +
1

2
t1/2, (t, y) ∈ D = R+ × R+.

By an Ansatz, the solution (R+, t
2/3) was found in Example 1.4.

Claim: Let (t0, η) ∈ D be an initial condition with 0 < η < t
3/2
0 . The corre-

sponding maximal solution (I, y) with y(t0) = η satisfies [t0,∞[⊆ I.

Proof. Suppose the right end-point b of I is finite. By Theorem 3.1 and Remark
3.2, I is open and the graph of y does not intersect with the graph of t3/2. Thus
y(t) < t3/2 ≤ B := b3/2 for all t ∈ I. Furthermore, from (2) we derive that ẏ ≥ 0
and hence y is increasing. Hence (t, y(t)) belongs to the compact set

K = [t0, b]× [η,B]

for all t ∈ (t0, b). By Proposition 1, the solution ([t0, b), y) admits an extension
([t0, b], ŷ). According to Lemma 1.17, we can glue this extension together with
(I, y) and thus obtain an extension of the latter in the end-point b, which is a
contradiction.
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