Note 1. Differential Equations, 2013

This note replaces the theory of p. 13-14 (Definition 1.12 and Theorem 1.13),
which is quite technical.

Proposition 1. Let D C R x R™ and let X : D — R™ be continuous. Let (I,y) be
a solution to

(1) y=X(ty)

with I = (a,b) where a < b.
If there exists a compact set K C D such that (t,y(t)) € K for allt € I, then y
admits an extension (1,7) to a solution on the closed interval I = [a,b].

Proof. Since K is compact and X is continuous, there exists M < oo such that
| X (t,z)|| < M for all (t,z) € K. Here we use the standard norm

|zl = (2F +--- + 23)'/?
on R™. In particular, it follows from (1) that ||g(¢)|| < M for all t € I. Hence each
coordinate of g(t) is bounded by M for ¢t € I.

Let t1,t2 € I. From the mean value theorem it follows that for each coordinate
y; of y there exists ¢ between t; and t5 such that

yi(te) — yi(t1) = 9i(t)(t2 — t1),

and hence |y;(t2) — y;(t1)| < M|ty — t1]. We thus conclude

ly(t2) — y(t) |l < VM |ty —t1].

Let s be an arbitrary sequence in I converging to the end-point a. Then sj is a
Cauchy sequence, and the inequality above then implies that so is its image y(sy)
in R™. Hence y(sx) — n as k — oo, for some n € R™. It is easily seen that if s} is
another sequence converging to a, then its image y(s),) will have same limit . For
example, one can argue that the mixed sequence y(s1),y(s]),y(s2),y(s5) ... is also
Cauchy and contains both y(sx) and y(s)) as subsequences. It follows that if we
define g(a) =n and § = y on I, then ¢ is continuous at a.

Next, we show that  solves the differential equation (1) also at a. We have to
show that g is right-differentiable at a with derivative X (a,g(a)), that is,

lim
t—ay t—a



Again we employ the mean value theorem to each coordinate. With ¢ € {1,...,n}
fixed it follows that here exists, for each ¢ € I, an element ¢; € (a,t) such that

3i(t) — 9i(a)

/
t—a yz( t)

(note that the mean value theorem requires continuity of ¢; in [a, t] but differentia-
bility only in (a,t)). From (1) it follows that

yg(ct) = X(Ctay(ct))i

Now t — a4 implies ¢; — a since a < ¢; < t, and as ¢ and X are continuous, it then
follows that X (c;,y(ct))i = X(a,9(a));, which implies what we wanted to show for
each i.

Similarly, we obtain an extension of y at b. [

Example 3.10. The book treats this example without reference to Theorem 1.13.
With Proposition 1 it reads as follows. The differential equation is

1
(2) yzﬁ“+;”{ (t,y) €D =R, x R,.

By an Ansatz, the solution (R ,#%/3) was found in Example 1.4.

Claim: Let (tp,7) € D be an initial condition with 0 < n < tg/z

sponding maximal solution (I,y) with y(to) = n satisfies [tg, 00[C I.

. The corre-

Proof. Suppose the right end-point b of [ is finite. By Theorem 3.1 and Remark
3.2, I is open and the graph of y does not intersect with the graph of t3/2. Thus
y(t) < t3/2 < B :=b%2 for all t € I. Furthermore, from (2) we derive that g > 0
and hence y is increasing. Hence (t,y(t)) belongs to the compact set

K = [to, ] x [n, Bl

for all ¢t € (to,b). By Proposition 1, the solution ([tg,b),y) admits an extension
([to,b],9). According to Lemma 1.17, we can glue this extension together with
(I,y) and thus obtain an extension of the latter in the end-point b, which is a
contradiction.
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