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1 Introduction

In Fourier analysis one attempts to express a periodic function of a real variable
x as a combination of pure oscillations

cos(λx), sin(λx), λ ∈ R

or more conveniently in complex notation

eiλx, e−iλx, λ ∈ R.

Fourier analysis is a recurring theme in all of modern mathematical analysis,
especially in functional analysis, description of infinite vector spaces, operator
algebras, spectral theory, and not least it is an indispensable tool in the study of
partial differential equations.

In these notes we will focus on real or complex valued functions, which are
periodic with a given period. When we try to express such a function by pure
oscillations, only the pure oscillations having the same period are relevant. There
are countably many such oscillations. More precisely, we will try to express such
periodic functions by an infinite series, where the terms are the appropriate pure
oscillations. Such a series will be called a trigonometric series (see Definition 2.3)
or a Fourier series (see Definition 2.10).
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2 Fourier series

2.1 Periodic functions, trigonometric polynomials and trigono-
metric series

2.1 DEFINITION (Periodic function). A function f : R→ C is called periodic
with period p > 0 (or p-periodic) if

f(x+ p) = f(x)

for all x ∈ R.

2.2 DEFINITION (Periodic extension). For a function g : [a, a + p] → C
defined on a closed interval of length p > 0 and for which g(a) = g(a + p), one
defines the p-periodic extension g̃ : R→ C by

g̃(x+ np) = g(x)

for all x ∈ [a, a+p[ and all n ∈ Z. In the same manner one defines the p-periodic
extension of a function g : [a, a+ p[→ C.

2.3 DEFINITION (Trigonometric polynomial and trigonometric series). A
trigonometric polynomial of period p > 0 is a real or complex function of the
form

1
2
a0 +

n∑
k=1

(
ak cos

(
2π

p
kx

)
+ bk sin

(
2π

p
kx

))
,

where ak, bk ∈ C, k = 1, . . . n. Equivalently, 1

n∑
k=−n

cke
i 2π
p
kx = c0 +

n∑
k=1

(
cke

i 2π
p
kx + c−ke

−i 2π
p
kx
)
,

where ck ∈ C, k = −n, . . . , n. The transition between the two formulas is given
by

c0 = 1
2
a0, ck = 1

2
(ak − ibk), c−k = 1

2
(ak + ibk),

a0 = 2c0, ak = ck + c−k, bk = i(ck − c−k),
(1)

for all k = 1, . . . , n.
A trigonometric series of period p > 0 is a series of form

1
2
a0 +

∞∑
k=1

(
ak cos

(
2π

p
kx

)
+ bk sin

(
2π

p
kx

))
, ak, bk ∈ C, k ∈ N

1using Euler’s formula eiθ = cos θ + i sin θ.
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or equivalently

∞∑
k=−∞

cke
i 2π
p
kx = c0 +

∞∑
k=1

(
cke

i 2π
p
kx + c−ke

−i 2π
p
kx
)
, ck ∈ C, k ∈ Z.

The transition formulas are as in (1).

2.4 THEOREM (Absolute convergence implies uniform convergence). If the

series
∑∞

k=−∞ |ck| converges, then the trigonometric series
∑∞

k=−∞ cke
i 2π
p
kx con-

verges uniformly on R.

To ease notation we will primarily use the period p = 2π. This is no real
limitation, as the general case can be transformed by considering 2π

p
x instead of

x. To further ease the notation we introduce the notation

ek(x) = eikx, k ∈ Z

for the 2π-periodic pure oscillations. An important property of these functions is
the following relationship.

2.5 LEMMA (Orthonormality relation). For all n,m ∈ Z

1

2π

∫ π

−π
en(x)em(x)dx =

{
0, for n 6= m
1, for n = m

.

These orthonormality relations will allow us to use methods from linear al-
gebra to study trigonometric polynomials and series. We will consider functions
ek, k ∈ Z as an orthonormal family of vectors in an inner product vector space.

2.2 Inner product formalism

2.6 DEFINITION (Piecewise continuous function). A function f : [a, b] → C
is called piecewise continuous if there exists a division of the interval [a, b] by
dividing points a = x0 < x1 < · · · < xk−1 < xk = b and for each j ∈ {1, . . . , k}
a continuous function fj : [xj−1, xj] → C which is identical with f on the open
interval ]xj−1, xj[. A function f : I → C on an interval I ⊆ R is said to be
piecewise continuous, if it is piecewise continuous, on any closed and bounded
sub-interval of I.

For a piecewise continuous function, we define the limits from the right and
left

f(x+ 0) = lim
h↓0

(x+ h), f(x− 0) = lim
h↓0

f(x− h). (2)

Points of continuity are characterized by f(x+ 0) = f(x− 0) = f(x).
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2.7 DEFINITION (Normalized piecewise continuous function). A piecewise
continuous function f : I → C is called normalized, if

f(x) = 1
2
(f(x+ 0) + f(x− 0))

for all x ∈ I which are not end points of I.
An arbitrary piecewise continuous function can be normalized by substituting

for f(x) the value 1
2
(f(x+ 0) + f(x− 0)) at any point x of discontinuity.

Note that if g : [a, a+ p]→ C, with g(a) = g(a+ p), is a normalized piecewise
continuous function, then the p-periodic extension g̃ is normalized if and only if

1
2
(g(a+ 0) + g(a+ p− 0)) = g(a).

2.8 LEMMA (Mean value of a periodic function). If f : R → C is piecewise
continuous and periodic with period p, then

Mp(f) :=
1

p

∫ a+p

a

f(x)dx

is independent of a ∈ R. The number Mp(f) ∈ C is called the mean value of f .

The set PC2π of 2π-periodic normalized piecewise continuous functions is a
complex vector space with the addition and scalar multiplication

(f + g)(x) = f(x) + g(x), (λf)(x) = λf(x),

for all f, g ∈ PC2π and λ ∈ C. On this vector space we define an inner product
by

〈f, g〉 =
1

2π

∫ π

−π
f(x)g(x)dx. (3)

We see immediately from Lemma 2.8 that

〈f, g〉 =
1

2π

∫ a+2π

a

f(x)g(x)dx.

for all a ∈ R.
We can now express the orthonormality relations in Lemma 2.5 by the family

of vectors (functions) (en)n∈Z being an orthonormal family in PC2π, i.e.,

〈en, em〉 =

{
0, n 6= m
1, n = m

(4)

for all n,m ∈ Z. The trigonometric polynomials belonging to PC2π are exactly

the functions in the subspace spanned by the vectors (en)n∈Z, i.e., span
{
en

∣∣∣n ∈ Z
}

.
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Note that a sum function for a trigonometric series does not necessarily belong
to the linear span, as the span of a family of vectors is defined as finite linear
combinations of vectors from the family.

An important consequence of orthonormality is that if s =
∑n

k=−n ckek, i.e.,

s(x) =
n∑

k=−n

cke
ikx

is a trigonometric polynomial belonging to the period 2π, then the coefficients
will be given by

ck = ck〈ek, ek〉 =
n∑

m=−n

cm〈em, ek〉 = 〈s, ek〉 =
1

2π

∫ π

−π
s(x)e−ikxdx, (5)

where |k| ≤ n. Moreover, it follows that

1

2π

∫ π

−π
|s(x)|2 = 〈s, s〉 =

n∑
k=−n

n∑
m=−n

〈ckek, cmem〉 =
n∑

k=−n

n∑
m=−n

ckcm〈ek, em〉

=
n∑

k=−n

|ck|2. (6)

An interesting question is whether the results in (5) and (6) generalize to
sum functions for trigonometric series. If we assume that the series is uniformly
convergent, this is true.

2.9 THEOREM (uniformly convergent trigonometric series). If a trigonometric
series

∑∞
k=−∞ cke

ikx is uniformly convergent with sum function f(x), then f :
R→ C is continuous and 2π-periodic. In addition, the coefficients are given by

ck =
1

2π

∫ π

−π
f(x)e−ikxdx (7)

and we have the Parseval identity

M2π(|f |2) =
1

2π

∫ π

−π
|f(x)|2dx =

∞∑
k=−∞

|ck|2. (8)

The theorem tells us that if a trigonometric series converges uniformly, then
the series is uniquely determined from its sum function by the coefficients in
(7). For any piecewise continuous 2π-periodic function f , we can calculate these
coefficients and hence a uniquely determined trigonometric series. We emphasize
that this series is not necessarily uniformly convergent and does not necessarily
have f as sum function. We call this series the Fourier series for the function.
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2.10 DEFINITION (Fourier series). If f : R → C is a piecewise continuous
2π-periodic function, then the numbers

ck(f) =
1

2π

∫ π

−π
f(x)e−ikxdx, k ∈ Z (9)

are called the Fourier coefficients of f and the series

∞∑
k=−∞

ck(f)eikx

is called the Fourier series for f .
More generally, if f is p-periodic and piecewise continuous, the Fourier coef-

ficients and the Fourier series are defined by

ck(f) =
1

p

∫ p/2

−p/2
f(x)e−i

2πk
p
xdx,

∞∑
k=−∞

ck(f)ei
2πk
p
x. (10)

We will also define the Fourier series for functions defined on bounded inter-
vals.

2.11 DEFINITION (Fourier series for functions on bounded intervals). If f :
I → C is defined on an interval of length p and has a piecewise continuous
extension to the closure I, we define the Fourier coefficients and Fourier series
for f by

ck(f) =
1

p

∫
I

f(x)e−i
2πk
p
xdx,

∞∑
k=−∞

ck(f)ei
2πk
p
x. (11)

In this case, the Fourier series for f is identical to the Fourier series for every
p-periodic function f̃ : R→ C for which f̃ = f in the interior of I.

Theorem 2.9 thus says that if a trigonometric series converges uniformly, then
it is the Fourier series for its sum function. It is quite analogous to the result for
power series, which says that a convergent power series is the Taylor series for its
sum.

Using inner product notation the Fourier coefficients of a 2π-periodic normal-
ized piecewise continuous function f can also be written

ck(f) = 〈f, ek〉. (12)

Using the transition formulas (1) we see that the Fourier series of a 2π-periodic
piecewise continuous function f can also be written

1
2
a0(f) +

n∑
k=1

(ak(f) cos(kx) + bk(f) sin(kx)) ,
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where

ak(f) =
1

π

∫ π

−π
f(x) cos(kx)dx, k ∈ N ∪ {0},

bk(f) =
1

π

∫ π

−π
f(x) sin(kx)dx, k ∈ N.

(13)

2.12 REMARK (Fourier series for even and odd functions). If f : R → C is a
2π-periodic, piecewise continuous function, which is also even, i.e., f(x) = f(−x)
for all x ∈ R, then

ak(f) =
1

π

∫ π

−π
f(x) cos(kx)dx =

2

π

∫ π

0

f(x) cos(kx)dx

for all k ∈ N ∪ {0} and

bk(f) =
1

π

∫ π

−π
f(x) sin(kx)dx = 0,

for all k ∈ N, since f(−x) cos(−kx) = f(x) cos(kx) and f(−x) sin(−kx) =
−f(x) sin(kx). Hence the Fourier series for f is a pure cosine series (the sine
terms are missing). Conversely if f is odd i.e. f(x) = −f(−x) for all x ∈ R then

ak(f) = 0, bk(f) =
2

π

∫ π

0

f(x) sin(kx)dx

for all k. Hence the Fourier series is a pure sine series (the constant term and the
cosine terms are missing).

We saw in Theorem 2.4 a criterion which ensures uniform convergence of a
trigonometrical series. Another interesting question which we will study in the
next section is which properties of a function ensure convergence of its Fourier
series and convergence towards the function itself. Since continuity is maintained
by uniform limits, it is clear that if f is not continuous, the Fourier series can
not converge uniformly to f . There remains the possibility that it converges
pointwise and we will give a sufficient criterion for this in the next section.

Although Fourier series do not always converge uniformly, it can be shown that
Parseval’s identity (8) holds for the Fourier coefficients of all piecewise continuous
functions f . we will not show this result here, but merely show an inequality.

2.13 THEOREM (Bessel’s inequality). If f is piecewise continuous and 2π-
periodic, the Fourier coefficients ck(f) = 1

2π

∫ π
−π f(x)e−ikxdx satisfy Bessel’s in-

equality
∞∑

k=−∞

|ck(f)|2 ≤ 1

2π

∫ π

−π
|f(x)|2dx.

In particular, the series on the left is convergent.
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Bessel’s inequality gives that when f is piecewise continuous and 2π-periodic,
the series

∑∞
k=−∞ |ck(f)|2 is convergent. It follows that the terms must tend to

zero. This result is one of the most crucial steps in the study of Fourier series
and is known as Riemann’s Lemma .

2.14 LEMMA (Riemann’s Lemma). If f : [−π, π]→ C is piecewise continuous,
then ∫ π

−π
f(x)e−inxdx→ 0 when |n| → ∞.

In particular, if f : R→ C is 2π-periodic and piecewise continuous, then cn(f)→
0 when |n| → ∞.

3 Pointwise convergence of Fourier series

We shall in this section provide sufficient criteria for when the Fourier series of a
function converges pointwise.

3.1 THEOREM (Convergence Test for Fourier series). Let f : R → C be a
piecewise continuous 2π-periodic function. If there exist s ∈ C such that the limit

lim
t↓0

f(x+ t) + f(x− t)− 2s

t

exists, then the Fourier series for f converges in the point x with sum s. That is

∞∑
k=−∞

ck(f)eikx = s.

Using the newly derived criteria, we will now show that there is a large class
of functions for which the Fourier series converges pointwise to the function itself.
It does not apply to all piecewise continuous functions. It requires a little more
regularity. In full analogy with the piecewise continuous functions, we define
piecewise differentiable functions.

3.2 DEFINITION (piecewise differentiable functions). A function f : [a, b] →
C is called piecewise differentiable, if there exists a division of the interval [a, b]
by dividing points a = x0 < x1 < · · · < xk−1 < xk = b and for each j ∈ {1, . . . , k}
a differentiable function 2 fj : [xj−1, xj] → C which is identical with f on the
open interval ]xj−1, xj[. A function f : I → C on any interval I ⊆ R is said
to be piecewise differentiable, if it is piecewise differentiable on any closed and
bounded subinterval of I.

2This will specifically say that fj has a derivative from left in the xj−1 and a derivative from
the right in the xj
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Note that a piecewise differentiable function is piecewise continuous, but not
necessarily continuous. We have easily the following equivalent characterization
of a piecewise differentiable function.

3.3 LEMMA (Characterization of piecewise differentiable functions). A piece-
wise continuous function f : [a, b] → C is piecewise differentiable if and only if
the right and left derivative

f ′+(x) = lim
t↓0

f(x+ t)− f(x+ 0)

t
and f ′−(x) = lim

t↓0

f(x− t)− f(x− 0)

−t
(14)

exist at all points x ∈]a, b[, are the same except for at most finally many points,
and f ′+(a) and f ′−(b) exist.

Using the convergence criterion from Theorem 3.1 it is easy to show the fol-
lowing main result on pointwise convergence of Fourier series for piecewise differ-
entiable functions.

3.4 THEOREM (Fourier series for piecewise differentiable functions). For every
piecewise differentiable 2π-periodic function f : R → C the Fourier series is
pointwise convergent at all points with sum function equal to the function obtained
by normalizing f .

3.5 EXAMPLE. Let f : R→ R be the 2π-periodic function on [−π, π[ given by

f(x) =

{
1 if x ∈ [0, π[

0 if x ∈ [−π, 0[ .

The function f is piecewise differentiable and it is only discontinuous at pπ, p ∈ Z.
By explicit calculation we find the Fourier coefficients

cn(f) =
1

iπn
, if n is odd ,

while c0(f) = 1
2

and cn(f) = 0, if n is even and 6= 0. This gives that the Fourier
series for f is

1

2
+

1

π

∞∑
n=1

n ulige

1

in
(einx − e−inx)

=
1

2
+

2

π

∞∑
k=0

sin((2k + 1)x)

2k + 1
.

¿From theorem 3.4 one obtains, since 1
2
(f(pπ + 0) + f(pπ − 0)) = 1

2
for p ∈ Z,

that the Fourier series is pointwise convergent in [−π, π[ and that

1

2
+

2

π

∞∑
k=0

sin((2k + 1)x)

2k + 1
=


0 if − π < x < 0

1 if 0 < x < π
1
2

if x = −π or x = 0 .
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For x = −π or x = 0 this is also verified immediately. As the sum function is not
continuous, it is clear that the the Fourier series does not converge uniformly.

Inserting x = π
2

and using sin((2k + 1)π
2
) = (−1)k one obtains

∞∑
k=0

(−1)k

2k + 1
= 1− 1

3
+ 1

5
− 1

7
+ . . . =

π

4
.

4 Uniform convergence of Fourier series

We saw in the previous section that a piecewise differentiable function has a
pointwise convergent Fourier series. If the function f is discontinuous the Fourier
series cannot be uniformly convergent. We will in this section provide a criterion
for uniform convergence. It is found not to be sufficient to require continuity of
f .

4.1 DEFINITION (Normalized derivative). If f : I → C is a piecewise dif-
ferentiable and continuous function on an arbitrary interval I, we define the
normalized derivative

f ′(x) = 1
2
(f ′+(x) + f ′−(x)),

for all x in the interior of I, where we note that according to Lemma 3.3 the right
and left derivative f ′±(x) exist for all x ∈ I. If f ′+(x) = f ′−(x) then f is differ-
entiable at x and our definition of f ′(x) is consistent with the usual derivative.
However, if f ′+(x) 6= f ′−(x) then f is not differentiable at x, but in this case we
shall still denote the normalized derivative by f ′(x). The function obtained by
taking the normalized derivative at every x is not necessarily piecewise continuous
but if it is, we say that f is piecewise C1.

Note that we only speak of the normalized derivative function if f is continu-
ous, although the definition in a way makes sense even when f is not continuous.

4.2 LEMMA (Fourier coefficients of a continuous piecewise C1-function). Let
f : R → C be 2π-periodic, continuous and piecewise C1. Then the normal-
ized derivative f ′ is a 2π-periodic normalized piecewise continuous function. Its
Fourier coefficients satisfy

cn(f ′) = incn(f), (15)

for all n ∈ Z.

4.3 THEOREM (Uniform convergence of Fourier series for C1-functions). If
f : R → C is 2π-periodic, continuous and piecewise C1 with Fourier coefficients
cn(f), n ∈ Z, then the series

∑∞
n=−∞ |cn(f)| converges. In this case the Fourier

series for f converges uniformly and absolutely towards f .
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Proof. We know from Theorem 3.4 that the Fourier series for f converges point-
wise to f . The last assertion follows, therefore, if we can show that it also
converges uniformly. That follows from Theorem 2.4 if we can show the first
claim, that

∑∞
k=−∞ |ck(f)| is convergent. We will use Bessel’s inequality to show

this, but Bessel’s inequality comments on the sum of absolute values of squares
on Fourier coefficients and not the sum of absolute values of the coefficient itself.
The idea is not to use the Bessel for the function f , but for f ′ with the following
observation: For arbitrary positive numbers a, b > 0 one has

ab =
1

2
a2 +

1

2
b2 − 1

2
(a− b)2 ≤ 1

2
a2 +

1

2
b2

Using Lemma 4.2 and this inequality we see that for |k| ≥ 1

|ck(f)| = 1

|k|
|ck(f ′)| ≤

1

2|k|2
+

1

2
|ck(f ′)|2

We know that the series
∑∞

k=1 k
−2 is convergent and from Bessel’s inequality

it follows that the series
∑∞

k=−∞ |ck(f ′)|2 is also convergent. The comparison
criterion provides, therefore, that

∑∞
k=−∞ |ck(f)| is convergent, which was what

we wanted to show.

5 Functions on bounded intervals

In this section we will look at functions which are only defined on bounded
intervals. We will see that they can be written in several different ways as sum
functions for trigonometric series.

If f : I → C is a function defined on an interval of length p, and f has a
piecewise continuous extension to I, then we can consider the Fourier series of f
given in Definition 2.11. There exists a unique normalized piecewise continuous
p-periodic function f ] which equals f on I except at most in finitely many points.
We will refer to this function as the normalized p-periodic extension of f . We see
that f ] is piecewise differentiable if f can be extended to a piecewise differentiable
function on I. The Fourier series of f is the same as the Fourier series for f ],
which together with the Theorems 3.4 and 4.3 immediately gives the following
result.

5.1 THEOREM (Convergence of Fourier series on a bounded interval). If the
function f : I → C defined on an interval I of length p, can be extended to a
piecewise differentiable function on I, the Fourier series for f converges pointwise
on R and hence especially on I to the normalized p-periodic extension f ]. If f ]

is continuous and piecewise C1 the convergence is uniform.

Note that we decided to extend the function f to a periodic function with
a period equal to the length of defining the range of f . One could have chosen
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to extend f to a periodic function on other ways and could thus have obtained
trigonometric series with other periods, also converging to f . We now give two
examples of this.

If f : [0, π] → C is a normalized piecewise differentiable function which is
continuous at 0 and π, we can extend f to an even function fE on [−π, π] by

fE(x) =

{
f(x), if x ∈ [0, π]

f(−x), if x ∈ [−π, 0[.

Note that fE is an even, normalized piecewise differentiable function with fE(−π) =
fE(π). (Why is it important that f is continuous at the endpoints?). Therefore, if

we find the 2π periodic extension f̃E of fE we get a 2π-periodic, even, normalized
piecewise differentiable function. We therefore know from Remark 2.12 that the
Fourier series for f̃E is a pure cosine series. The coefficients of this series can
be expressed in terms of f by at ak(f̃E) = 2

π

∫ π
0
f(x) cos(kx)dx. So we have the

pointwise convergent series

f(x) =
1

2
a0 +

∞∑
k=1

ak cos(kx), where ak =
2

π

∫ π

0

f(x) cos(kx)dx, k = 0, 1, . . .

for all x ∈ [0, π]. If in addition f is continuous and piecewise C1 then the series
is uniformly convergent. Note that it is important that our interval is [0, π] as
a function of an arbitrary interval [a, a + π] can not necessarily be written as a
cosine series.

As the last example, we will look at the odd extension of a function. If
f : [0, π] → C is a normalized piecewise differentiable function, which takes the
value 0 at points 0 and π, we can extend f for an odd function fO : [−π, π] by

fO(x) =

{
f(x), if x ∈ [0, π]

−f(−x), if x ∈ [−π, 0[.

Then fO is an odd normalized piecewise differentiable function with fO(−π) =
fO(π). It is important here that we started with a function f satisfying that

f(0) = f(π) = 0 (why?). We can therefore find the 2π-periodic extension f̃O
of fU, which is a 2π-periodic, odd, normalized piecewise differentiable function.
We therefore know from Remark 2.12 that the Fourier series for f̃O is a pure
sine series . The coefficients of this series can be expressed in terms of f by as
bk(f̃E) = 2

π

∫ π
0
f(x) sin(kx)dx. So we have the pointwise convergent series

f(x) =
∞∑
k=1

bk sin(kx), where bk =
2

π

∫ π

0

f(x) sin(kx)dx, k = 1, 2 . . .

for all x ∈ [0, π]. If in addition f is continuous and piecewise C1, then the series
is uniformly convergent.
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Let us conclude by noting that if we have a normalized piecewise differentiable
function f : [0, π] → C for which f(0) = f(π) = 0 and which is continuous in
these two points, then we can write the function as sum function of both a pure
cosine series and a pure pure sine series. Moreover, we can also write the function
as sum function of a π-periodic Fourier series as described first in this section.
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