Power series exercises

1. Determine the radius of convergence for the power series

$$
f(t)=\sum_{n=1}^{\infty} \frac{1}{n} t^{n}
$$

and find its sum (hint: differentiate the series).
2. Consider the initial value problem

$$
x^{\prime \prime}-x^{\prime}-x=0, \quad x(0)=0, x^{\prime}(0)=1 .
$$

2a. Determine the recursion formula for the coefficients c_{n} of a power series solution $\sum c_{n} t^{n}$. What is the radius of convergence for the series?
2b. Rewrite the recursion formula in terms of the sequence defined by $F_{n}=c_{n} n$!
2c. Solve the initial value problem without use of power series
3. The equation

$$
x^{\prime \prime}-t x=0
$$

is called Airy's equation. It plays a role in the theory of optics.
3a. Determine a recursion formula for a power series solution. What is the radius of convergence? Some terms are always zero, which?
3b. Denote the solution with $x(0)=1, x^{\prime}(0)=0$ by $\mathrm{A}(t)$, and the solution with $x(0)=$ $0, x^{\prime}(0)=1$ by $\mathrm{B}(t)$. Verify that

$$
\mathrm{A}(t)=1+\sum_{k=1}^{\infty} \frac{t^{3 k}}{(2 \cdot 3)(5 \cdot 6) \ldots((3 k-1) \cdot(3 k))}
$$

and write down the similar formula for $\mathrm{B}(t)$.
4. Consider the Legendre equation

$$
\left(1-t^{2}\right) x^{\prime \prime}-2 t x^{\prime}+l(l+1) x=0
$$

with initial values: (a) $x(0)=1, x^{\prime}(0)=0$, or: (b) $x(0)=0, x^{\prime}(0)=1$.
4a. Determine for every $l \in \mathbf{C}$ the radius of convergence for the power series solution $x(t)=\sum_{n=0}^{\infty} c_{n} t^{n}$, in both cases (a) and (b).

4b. Consider the case (b) and $l=0$. Show that

$$
x(t)=\sum_{k \geq 1, \mathrm{odd}} \frac{1}{k} t^{k}
$$

for $-1<t<1$. Prove that $x(t) \rightarrow \infty$ for $t \uparrow 1$ (hint: For example, you can show that $x(t) \geq \frac{1}{2} f(t)$ for $0<t<1$, where f is as in Exercise 1).
5. Consider the equation

$$
x^{\prime \prime}+e^{t} x=0 .
$$

5a. Determine a recursion formula for a power series solution. What is the radius of convergence for the series?
5 b. Determine the first five terms (up to t^{4}) of the series in case $x(0)=1, x^{\prime}(0)=0$.
6. Investigate what happens when you try to solve the equation

$$
t x^{\prime}+x=0
$$

by a power series Ansatz $x(t)=\sum_{n=0}^{\infty} c_{n} t^{n}$.
Explain the result by solving the equation explicitly.
7. Verify that the series for the Bessel function $J_{p}(t)$ converges for all t.

