Extra Exercise 5

Let $G(t)=\int_{0}^{t} e^{-\frac{1}{2} s^{2}} d s$ for $t \in \mathbf{R}$ (which, up to normalization, is the error function).
Consider the homogeneous differential equation

$$
\begin{equation*}
\ddot{x}-t \dot{x}-x=0 . \tag{1}
\end{equation*}
$$

1. Make the change of variables by the spatial transformation $x(t)=e^{\frac{1}{2} t^{2}} u(t)$
2. Solve the obtained equation for u, and determine the solution x to (1).
3. Find a particular solution to the inhomogeneous equation

$$
\begin{equation*}
\ddot{x}-t \dot{x}-x=f(t) \tag{2}
\end{equation*}
$$

with $f(t)=t^{2}$, by making the Ansatz that x is a second order polynomial, and give the complete solution to this equation.
4. Find the corresponding first order equation $\dot{y}=A(t) y$ and determine a fundamental matrix $\Phi(t)$.
5. Write down the general formula from Theorem 8.19 for the solution to (2) with $f \in$ $C^{0}(I)$ arbitrary.

