## Extra Exercise 4

The following differential equation is encountered in the geometry of surfaces as the geodesic equation,

$$
\ddot{u}_{i}=\sum_{j, k=1}^{2} \Gamma_{j k}^{i}\left(u_{1}, u_{2}\right) \dot{u}_{j} \dot{u}_{k} \quad(i=1,2) .
$$

The eight functions $\Gamma_{j k}^{i}$ (called the Christoffel symbols for the given surface) are indexed by numbers $i, j, k \in\{1,2\}$. They are defined on an open set $U \subset \mathbf{R}^{2}$ and they are smooth $U \rightarrow \mathbf{R}$.

The theorem of existence of geodesics asserts that for every $w \in \mathbf{R}^{2}$ there exists a solution $u(s)=\left(u_{1}(s), u_{2}(s)\right)$, defined for $s$ in some interval $I$ around $s=0$, with $u(0)=$ $(0,0)$ and $\dot{u}(0)=w$. It also asserts that this solution is unique, in the sense that if another solution satisfying the same condition is defined on an interval $J \ni 0$, then it will agree with $u$ in the intersection $I \cap J$.

1. Reformulate to a first order equation and verify the theorem.
2. For the Euclidean plane $U=\mathbf{R}^{2}$ and all the $\Gamma_{j k}^{i}$ are 0 . Solve the equation in this case. Which curves $s \mapsto u(s)$ are obtained in this case?
3. In another case (the sphere with spherical coordinates) we have

$$
U=(-\pi, \pi) \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

and

$$
\Gamma_{11}^{1}=\Gamma_{22}^{1}=0, \quad \Gamma_{12}^{1}\left(u_{1}, u_{2}\right)=-2 \tan u_{2}
$$

and

$$
\Gamma_{12}^{2}=\Gamma_{22}^{2}=0, \quad \Gamma_{11}^{2}\left(u_{1}, u_{2}\right)=\sin u_{2} \cos u_{2}
$$

Without solving the equations, show that $\dot{u}_{1}(s) \cos ^{2}\left(u_{2}(s)\right)$ is constant for every solution $u=\left(u_{1}, u_{2}\right), s \in I$.

