Extra Exercise 4

The following differential equation is encountered in the geometry of surfaces as the *geodesic* equation,

$$\ddot{u}_i = \sum_{j,k=1}^2 \Gamma^i_{jk}(u_1, u_2) \dot{u}_j \dot{u}_k \quad (i = 1, 2).$$

The eight functions Γ_{jk}^i (called the *Christoffel symbols* for the given surface) are indexed by numbers $i, j, k \in \{1, 2\}$. They are defined on an open set $U \subset \mathbf{R}^2$ and they are smooth $U \to \mathbf{R}$.

The theorem of existence of geodesics asserts that for every $w \in \mathbf{R}^2$ there exists a solution $u(s) = (u_1(s), u_2(s))$, defined for s in some interval I around s = 0, with u(0) = (0, 0) and $\dot{u}(0) = w$. It also asserts that this solution is unique, in the sense that if another solution satisfying the same condition is defined on an interval $J \ni 0$, then it will agree with u in the intersection $I \cap J$.

- 1. Reformulate to a first order equation and verify the theorem.
- 2. For the Euclidean plane $U = \mathbf{R}^2$ and all the Γ_{jk}^i are 0. Solve the equation in this case. Which curves $s \mapsto u(s)$ are obtained in this case?
- 3. In another case (the sphere with spherical coordinates) we have

$$U = (-\pi, \pi) \times (-\frac{\pi}{2}, \frac{\pi}{2})$$

and

$$\Gamma_{11}^1 = \Gamma_{22}^1 = 0, \quad \Gamma_{12}^1(u_1, u_2) = -2 \tan u_2$$

and

$$\Gamma_{12}^2 = \Gamma_{22}^2 = 0, \quad \Gamma_{11}^2(u_1, u_2) = \sin u_2 \cos u_2$$

Without solving the equations, show that $\dot{u}_1(s) \cos^2(u_2(s))$ is constant for every solution $u = (u_1, u_2), s \in I$.