Extra Exercise 1

In this exercise we consider the differential equation

$$
\begin{equation*}
\frac{d^{3} x}{d t^{3}}=7 \frac{d^{2} x}{d t^{2}}-7 \frac{d x}{d t}-15 x \tag{1}
\end{equation*}
$$

on $\mathbf{R} \times \mathbf{R}$ with initial conditions

$$
\begin{equation*}
x(0)=0, \frac{d x}{d t}(0)=-2, \frac{d^{2} x}{d t^{2}}(0)=8 . \tag{2}
\end{equation*}
$$

(a) Find three different solutions of (1) by making the Ansatz that $x=e^{\lambda t}$ for some $\lambda \in \mathbf{C}$.
(b) Use these solutions to find a solution to the initial value problem (1) and (2).

Next we will solve the initial value problem in a different way.
(c) Rewrite (1) as a equation of the form

$$
\frac{d y}{d t}=A y
$$

on $\mathbf{R} \times \mathbf{R}^{3}$, where A is a 3×3-matrix.
(d) What is the initial value condition for y ?
(e) Calculate the eigenvalues and eigenvectors of A.
(f) Calculate $e^{t A}$ using Exercise 6.7.
(g) Find the solution to the initial value condition.

