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1 Laplace’s equation

The equation
∂2u

∂x2

1

+ · · ·+
∂2u

∂x2
n

= 0 (1)

for a function u(x1, . . . , un) of n variables is called Laplace’s equation. Typically
one wants to find a solution u in a given open set Ω ⊂ R

n, with an additional
boundary condition of the form

u(x) = f(x) x ∈ ∂Ω,

where f is a given function on the boundary. What we are looking for is thus a
continuous function on the closure Ω̄, which satisfies the Laplace equation in Ω
and the boundary condition on ∂Ω. We will describe the solution to this problem
for n = 2 and Ω a circular disk.

We choose the radius of the disk to be 1 for simplicity,

Ω = {(x, y) ∈ R
2 | x2 + y2 < 1},

As before, with the circular nature of Ω, it is convenient to use polar coordinates

(x, y) = (r cos θ, r sin θ),

where 0 ≤ r ≤ 1 and θ ∈ R. The Laplace equation (1) reads

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0 (2)

and the boundary condition becomes

u(1, θ) = f(θ) (3)

for all θ, where the given function on ∂Ω is represented as (cos θ, sin θ) 7→ f(θ)
with a 2π-periodic function f .

We apply the method of separation of variables and look first for solutions of
the product form u(r, θ) = R(r)Θ(θ). Substitution in the differential equation
and division by R(r)Θ(θ) yields

R′′(r)

R(r)
+

R′(r)

rR(r)
+

Θ′′(θ)

r2Θ(θ)
= 0.

Hence

r2
R′′(r)

R(r)
+ r

R′(r)

R(r)
= −

Θ′′(θ)

Θ(θ)
,
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and we see that both sides of this equation must be independent of both r and
θ, that is equal to some constant λ. It follows that R and Θ must satisfy the
ordinary differential equations

r2R′′ + rR′ − λR = 0, Θ′′ + λΘ = 0.

Furthermore, we must request that Θ is 2π-periodic. The differential equation
for Θ is easily solved, and we see that it has periodic solutions only if λ ≥ 0. For
λ > 0 the solutions are all linear combinations of ei

√
λθ and e−i

√
λθ, and they are

2π-periodic if and only if λ is the square of an integer. Let λn = n2 for n ∈ Z,
then we conclude that Θ is a linear combination of einθ and e−inθ if λ = λn 6= 0.
For λ = 0 the only 2π-periodic solutions are the constant functions, which we
express as multiples of ei0θ in order to get the uniform expression einθ, n ∈ Z, for
the basic 2π-periodic solutions.

We now turn to the equation for R with λ = λn,

r2R′′ + rR′ − n2R = 0.

This equation is easily solved with the change of variable r = es, by which the
equation for S(s) = R(es) becomes

S ′′ − n2S = 0.

If n 6= 0 the general solution is a linear combination of s 7→ ens and s 7→ e−ns,
and if n = 0 it is a linear combination of s 7→ 1 and s 7→ s. Hence the general
solution of the equation for R is a linear combination of r 7→ rn and r 7→ r−n if
n 6= 0, and of r 7→ 1 and r 7→ ln r if n = 0. The function R(r) must be continuous
at r = 0 if R(r)Θ(θ) is to represent a continuous function on the disk, and this
excludes the negative powers r−|n| and ln r. All together, we find that R(r) is a
multiple of r|n| for all n ∈ Z.

In conclusion, we have the separated solutions

u(r, θ) = r|n|einθ

and a reasonable Ansatz for the general solution appears to be

u(r, θ) =
∑

n∈Z
cnr

|n|einθ

for some coefficients cn ∈ C. These coefficients can be determined from the
boundary condition at r = 1, where we obtain

∑

n∈Z
cne

inθ = f(θ).

We recognize this as the Fourier series of f , and hence we anticipate the cn to be
exactly the Fourier coefficients for this function.

The analysis above motivates the following theorem, which we shall now prove.
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1.1 Theorem. Consider the Laplace equation (2) in polar coordinates with the
boundary condition (3), and assume that f is 2π-periodic, continuous and piece-
wise C1. Let (cn)n∈Z be its Fourier coefficients and define

u(r, θ) =
∑

n∈Z
cnr

|n|einθ (4)

for 0 ≤ r ≤ 1 and θ ∈ R. Then the series (4) converges uniformly and absolutely
on {(r, θ) | 0 ≤ r ≤ 1} and its sum

• is continuous on Ω̄

• belongs to C2(Ω)

• satisfies the Laplace equation in Ω

• satisfies the boundary condition on ∂Ω.

Furthermore, the sum of (4) is the only function on Ω̄ with these properties.

Proof. The conditions on f imply (see Solovej’s notes) that

∑

n∈Z
|cn| < ∞ (5)

and that the last item above is valid. It follows from Weierstrass that (4) con-
verges uniformly and absolutely on Ω since it is majorized by (5). The first item
follows.

To prove the other statements we first note that since reiθ = x + iy and
re−iθ = x− iy, the series (4) can be written in the original cartesian coordinates
as follows

u(x, y) = c0 +
∑

n∈Z,n>0

cn(x+ iy)|n| +
∑

n∈Z,n<0

cn(x− iy)|n| (6)

The convergence (5) is not strong enough to majorize the termwise differentiated
series simultaneously on all of Ω, since each differentiation with respect to x or
y will produce an extra factor n in the series. For example, by applying d/dx
termwise to (6) we obtain the series

∑

n∈Z,n>0

cn|n|(x+ iy)|n|−1 +
∑

n∈Z,n<0

cn|n|(x− iy)|n|−1. (7)

To obtain the necessary majorization we proceed as follows. Let 0 < ρ < 1 and
consider

Ωρ = {(x, y) | x2 + y2 < ρ2}.
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On this set we have |x± iy| < ρ and hence the series (7) are dominated by
∑

n∈Z,n 6=0

|cn||n|ρ
|n|−1.

The dominating sum converges, since

Cρ := sup
n∈N

nρn−1 < ∞

for 0 < ρ < 1 so that
∑

n∈Z,n 6=0

|cn||n|ρ
|n|−1 ≤ Cρ

∑

n∈Z,n 6=0

|cn|.

It follows that u(x, y) is differentiable in Ωρ as a function of x, with a derivative
which is obtained by termwise differentiation. Since ρ was arbitrary, we arrive at
the same conclusion for all of Ω.

A similar argument applies to differentiation with respect to y, and also to
consequtive differentiations with x and/or y. It follows that the sum is two times
(in fact infinitely often) differentatible in the open disk, and that all differenti-
ations can be done termwise in the series. This proves the second item. Since
termwise differentiation has been justified, and since each term is already known
to satisfy Laplace’s equation (by the analysis preceding the theorem), the third
item follows as well.

Only the asserted uniqueness remains to be established. Assume v : Ω → C

is a function which also satisfies all items marked •. For 0 < r ≤ 1 we let cn(r)
denote the n-th Fourier coefficient

cn(r) =
1

2π

∫ π

−π

v(r cos θ, r sin θ)e−inθ dθ

of θ 7→ v(r cos θ, r sin θ). Then

v(r, θ) =
∞
∑

n=−∞
cn(r)e

inθ.

Since v is a C2-function, the theorem of differentiation under the integral
permits us to conclude that cn is two times differentiable as a function of r ∈ (0, 1),
and that the derivatives can be determined by differentiation inside the integral.
It follows that

r2c′′n(r) + rc′n(r) =
1

2π

∫ π

−π

(r2
∂2

∂r2
+ r

∂

∂r
)v(r, θ)e−inθ dθ.

Moreover

n2cn(r) = −
1

2π

∫ π

−π

v(r, θ)
∂2e−inθ

∂θ2
dθ = −

1

2π

∫ π

−π

∂2v(r, θ)

∂2θ
e−inθ dθ
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by partial integration (twice). Hence

r2c′′n(r) + rc′n(r)− n2cn(r) =
1

2π

∫ π

−π

[

(r2
∂2

∂r2
+ r

∂

∂r
+

∂2

∂θ2
)v(r, θ)

]

e−inθ dθ = 0

since v(r, θ) satisfies the Laplace equation.
This equation for cn(r) was solved in our analysis prior to the theorem, and

from there we can conclude that cn(r) is a linear combination of rn and r−n

(respectively of r0 = 1 and ln r if n = 0). The fact that v is continuous at
the origin implies that cn(r) is bounded as r ց 0, and we conclude (as in the
preceding analysis) that cn(r) is proportional to r|n|. Furthermore, from the fact
that v is continuous on the compact set Ω̄ we infer that it is uniformly continuous.
This implies that the following limit can be taken

lim
rր1

cn(r) =
1

2π

∫ π

−π

lim
rր1

u(r, θ)e−inθ dθ =
1

2π

∫ π

−π

f(θ)e−inθ dθ = cn.

We have already seen that cn(r) is proportional to r|n|, and this limit relation
then implies that

cn(r) = cnr
|n|.

This means that we have established the identity of v with u from (4).
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Exercises

1 Exercise. Consider the wave equation

∂2

∂t2
u(x, t) =

∂2

∂x2
u(x, t)

on [0, π]× [0,∞) with the so-called Neumann boundary conditions

∂

∂x
u(0, t) =

∂

∂x
u(π, t) = 0 (t > 0)

and initial condition

u(x, 0) = f(x),
∂

∂t
u(x, 0) = g(x) (x ∈ [0, π])

for functions f ∈ C3([0, π]) and g ∈ C2([0, π]), with

df

dx
(0) =

df

dx
(π) =

d3f

dx3
(0) =

d3f

dx3
(π) = 0

and
dg

dx
(0) =

dg

dx
(π) = 0.

a. Extend the functions f , g, and u (in the first variable), to even functions ũ,
f̃ and g̃ on [−π, π]. Prove that f̃ and g̃ are C3 and C2 respectively. Under
the assumption that ũ is sufficiently smooth, show that ũ, f̃ and g̃ can be
written as cos-series.

b. Why did we take even functions instead of odd in (a)?

c. Determine the coefficients of the cos-series of ũ in terms of the coefficients
of the cos-series of f and g.

d. Prove that the sum of the cos-series with the coefficients determined in (c),
is twice differentiable and gives a solution of the boundary value problem.

e. Prove that this solution is unique.

f. Apply the above obtained results to the case where f = sin4 and g = cos2.

2 Exercise. Let ∆ = ∂
∂x2 + ∂

∂y
. Verify the following identity of differential

operators
(

x
∂

∂x
+ y

∂

∂y

)2

+

(

x
∂

∂y
− y

∂

∂x

)2

= (x2 + y2)∆
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Let the polar coordinate map Φ : R>0 × R → R
2 be given by

Φ(r, θ) = (r cos θ, r sin θ) .

Prove that

r
∂

∂r
(f ◦ Φ) =

(

x
∂f

∂x
+ y

∂f

∂y

)

◦ Φ

and
∂

∂θ
(f ◦ Φ) =

(

x
∂f

∂y
− y

∂f

∂x

)

◦ Φ

for f differentiable.

Use these results to conclude that

(∆f) ◦ Φ =
1

r2

(

(

r
∂

∂r

)2

+
∂2

∂θ2

)

(f ◦ Φ) =

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)

(f ◦ Φ)

for f two times differentiable.

3 Exercise. Solve the Laplace equation on the unit disk with the boundary value
f(θ) = sin(2θ) on the circle.

4 Exercise. 1. Generalize the solution to Laplace’s equation on the unit disk
so that it allows a disk with arbitrary radius δ > 0.

2. Consider the Laplace equation on an annulus

{(x, y) ∈ R
2 | γ2 < x2 + y2 < δ2}

of inner radius γ > 0 and outer radius δ > γ. Solve it for an arbitrary pair
of boundary functions f and g (assumed to be continuous and piecewise
C1) on the outer and inner boundary circle, respectively.


