Solution. Assignment 6

We know that

$$
\begin{equation*}
t^{2} x^{\prime \prime}+t x^{\prime}+t^{2} x=0 \quad(t>0) \tag{1}
\end{equation*}
$$

has a power series solution of the form $J_{0}(t)=\sum_{k=0}^{\infty} a_{k} t^{k}$, where $a_{k}=0$ for odd k and

$$
\begin{equation*}
k^{2} a_{k}+a_{k-2}=0 \tag{2}
\end{equation*}
$$

for even $k \geq 2$.
(a) Let $a_{0}=1$. Then

$$
\begin{equation*}
a_{2 n}=\frac{(-1)^{n}}{2^{2 n}(n!)^{2}} \tag{3}
\end{equation*}
$$

is valid for $n=0$. Now (3) follows from (2) by induction:

$$
a_{2 n}=-\frac{1}{(2 n)^{2}} a_{2 n-2}=-\frac{1}{(2 n)^{2}} \frac{(-1)^{n-1}}{2^{2 n-2}((n-1)!)^{2}}=\frac{(-1)^{n}}{2^{2 n}(n!)^{2}}
$$

(b) Let $\mathrm{B}=t^{2} \frac{d^{2}}{d t^{2}}+t \frac{d}{d t}+t^{2}$. Since

$$
\frac{d(\ln (t) x(t))}{d t}=\ln (t) \frac{d x}{d t}(t)+\frac{1}{t} x(t)
$$

and

$$
\frac{d^{2}(\ln (t) x(t))}{d t^{2}}=\ln (t) \frac{d^{2} x}{d t^{2}}(t)+\frac{2}{t} \frac{d x}{d t}(t)-\frac{1}{t^{2}} x(t)
$$

we find

$$
\begin{aligned}
\mathrm{B} & (\ln (t) x(t)) \\
& =t^{2} \frac{d^{2}(\ln (t) x(t))}{d t^{2}}+t \frac{d(\ln (t) x(t))}{d t}+t^{2} \ln (t) x(t) \\
& =t^{2}\left(\ln (t) \frac{d^{2} x}{d t^{2}}(t)+\frac{2}{t} \frac{d x}{d t}(t)-\frac{1}{t^{2}} x(t)\right)+t\left(\ln (t) \frac{d x}{d t}(t)+\frac{1}{t} x(t)\right)+\ln (t) x(t) \\
& =\ln (t)\left(t^{2} \frac{d^{2} x}{d t^{2}}(t)+t \frac{d x}{d t}(t)+t^{2} x(t)\right)+2 t \frac{d x}{d t}(t) \\
& =\ln (t) \mathrm{B}(x(t))+2 t \frac{d x}{d t}(t) .
\end{aligned}
$$

Hence if $B x=0$ and $\mathrm{B} y=-2 t \frac{d x}{d t}$,

$$
\begin{aligned}
\mathrm{B}(\ln (t) x(t)+y(t)) & =\mathrm{B}(\ln (t) x(t))+\mathrm{B}(y(t)) \\
& =\ln (t) \mathrm{B}(x(t))+2 t \frac{d x}{d t}(t)-2 t \frac{d x}{d t}(t)=0
\end{aligned}
$$

which shows that $\ln (t) x+y$ solves (1).
(c) Let $x(t)=J_{0}(t)=\sum_{k=0}^{\infty} a_{k} t^{k}$ and

$$
y(t)=\sum_{k=1}^{\infty} b_{k} t^{k}, \quad \mathrm{~B} y=-2 t \frac{d x}{d t} .
$$

Assume that two termwise differentiations are allowed in the series for y. Then

$$
\begin{aligned}
\mathrm{B} y=t^{2} \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+t^{2} y & =\sum_{k=1}^{\infty}\left(b_{k} k(k-1) t^{k}+b_{k} k t^{k}+b_{k} t^{k+2}\right) \\
& =\sum_{k=1}^{\infty} b_{k} k^{2} t^{k}+\sum_{k=3}^{\infty} b_{k-2} t^{k} .
\end{aligned}
$$

Furthermore, as termwise differentiation is allowed in the series for x,

$$
-2 t \frac{d x}{d t}=-2 \sum_{k=1}^{\infty} a_{k} k t^{k}
$$

By the identity principle for power series we conclude that

$$
b_{1}=-2 a_{1}=0, \quad 4 b_{2}=-4 a_{2}=1
$$

and

$$
k^{2} b_{k}+b_{k-2}=-2 k a_{k} \quad(k \geq 3) .
$$

Since $b_{1}=0$ and $a_{k}=0$ for k odd, we find by induction that $b_{k}=0$ for all odd k.
(d) We now define b_{k} for $k \geq 1$ by $b_{k}=0$ for all odd k, by $b_{2}=\frac{1}{4}$ and, recursively, by

$$
b_{k}=-\frac{b_{k-2}+2 k a_{k}}{k^{2}}
$$

for $k \geq 4$ even.
The inequality

$$
\begin{equation*}
\left|b_{2 n}\right| \leq \frac{1}{(n!)^{2}} \tag{4}
\end{equation*}
$$

is valid for $n=1$ since $b_{2}=\frac{1}{4}$. For $n>1$ we find

$$
\left|b_{2 n}\right|=\left|\frac{b_{2 n-2}+2(2 n) a_{2 n}}{(2 n)^{2}}\right| \leq\left|\frac{b_{2 n-2}}{(2 n)^{2}}\right|+\frac{2(2 n)}{2^{2 n}(n!)^{2}(2 n)^{2}}=\left|\frac{b_{2 n-2}}{(2 n)^{2}}\right|+\frac{1}{2^{2 n}(n!)^{2} n} .
$$

Assuming (4) with n replaced by for $n-1$ we obtain

$$
\left|b_{2 n}\right| \leq \frac{1}{((n-1)!)^{2}(2 n)^{2}}+\frac{1}{2^{2 n}(n!)^{2} n}=\frac{1}{4(n!)^{2}}+\frac{1}{2^{2 n}(n!)^{2} n} \leq \frac{1}{(n!)^{2}}
$$

so we conclude by induction that (4) holds for all n.
It follows that the power series for y has infinite radius of convergence. Since termwise differentiations are allowed in a power series, it follows from (c) that y solves the inhomogeneous equation $\mathrm{B} y=-2 t x^{\prime}$. As seen in (b), it follows that $\ln (t) J_{0}+y$ solves (1).
(e) Since $\ln (t) \rightarrow-\infty, J_{0}(t) \rightarrow J_{0}(0)=1$ and $y(t) \rightarrow y(0)=0$ for $t \rightarrow 0^{+}$, it follows that

$$
\begin{equation*}
\ln (t) J_{0}(t)+y(t) \rightarrow-\infty . \tag{5}
\end{equation*}
$$

The functions $J_{0}(t)$ and $\ln (t) J_{0}(t)+y(t)$ are linearly independent, for if a linear combination

$$
\begin{equation*}
c_{1} J_{0}(t)+c_{2}\left(\ln (t) J_{0}(t)+y(t)\right) \tag{6}
\end{equation*}
$$

is zero for all $t>0$, then

$$
\lim _{t \rightarrow 0^{+}} c_{2}\left(\ln (t) J_{0}(t)+y(t)\right)=-\lim _{t \rightarrow 0^{+}} c_{1} J_{0}(t)=0
$$

and hence $c_{2}=0$ since otherwise (5) would be contradicted. But then (6) implies $c_{1}=0$ since $J_{0} \neq 0$.
Since the space of maximal solutions is known to be a two-dimensional vector space, it follows that the set of all linear combinations (6) comprise the complete solution of (1) on $(0, \infty)$
(f) The transformation $t \mapsto-t$ changes (1) to the same equation, but on $\{t \in \mathbf{R} \mid t<0\}$. Since J_{0} and y are even functions of t, the complete solution on this set is given by (6) with $\ln (t)$ replaced by $\ln |t|$.

