Assignment 6

Due Wednesday March 20.

Consider Bessel's equation with $p=0$,

$$
\begin{equation*}
t^{2} x^{\prime \prime}+t x^{\prime}+t^{2} x=0 \quad(t>0) \tag{1}
\end{equation*}
$$

We have seen that the equation has a power series solution of the form

$$
J_{0}(t)=\sum_{k=0}^{\infty} a_{k} t^{k}
$$

given by the recursion formula

$$
\begin{equation*}
k^{2} a_{k}+a_{k-2}=0 \quad(k \geq 2) \tag{2}
\end{equation*}
$$

and with $a_{k}=0$ for odd k.
Since it is a second order linear equation, the solution space is two dimensional. The purpose of this exercise is to find a solution independent of J_{0}.
(a) Show that with $a_{0}=1$ we have

$$
a_{2 n}=\frac{(-1)^{n}}{2^{2 n}(n!)^{2}} .
$$

(b) Let B denote the differential operator

$$
\mathrm{B}=t^{2} \frac{d^{2}}{d t^{2}}+t \frac{d}{d t}+t^{2}
$$

Show that

$$
\mathrm{B}(\ln (t) x)=\ln (t) \mathrm{B} x+2 t x^{\prime}
$$

for every two times differentiable function $x=x(t)$. Conclude that if x solves the Bessel equation $B x=0$ and y is a solution to the inhomogeneous equation $\mathrm{B} y=-2 t x^{\prime}$, then $\ln (t) x+y$ also solves the Bessel equation.
(c) Let $x(t)=J_{0}(t)=\sum_{k=0}^{\infty} a_{k} t^{k}$ and consider the Ansatz

$$
y(t)=\sum_{k=1}^{\infty} b_{k} t^{k}, \quad \mathrm{~B} y=-2 t x^{\prime} .
$$

Show that if termwise differentiation is allowed in the series for y, then

$$
k^{2} b_{k}+b_{k-2}=-2 k a_{k} \quad(k \geq 2)
$$

and $b_{1}=0$.
(d) Conclude that $b_{k}=0$ when k is odd, and show that

$$
\left|b_{2 n}\right| \leq \frac{1}{(n!)^{2}}
$$

for $n=1,2,3, \ldots$. Conclude that y exists, that y solves the inhomogeneous equation B $y=-2 t x^{\prime}$, and finally that $\ln (t) J_{0}+y$ solves the Bessel equation with $p=0$.
(e) Determine the behaviour of $\ln (t) J_{0}(t)+y(t)$ for $t \rightarrow 0$, and show that as a function of t, it is linearly independent of J_{0}. Determine the complete solution of the Bessel equation for $p=0$ on $(0, \infty)$.
(f) Determine also the complete solution on $(-\infty, 0)$. (Hint: apply the transformation $t \mapsto$ $-t$).

