
Solution. Assignment 5

We consider the linear homogeneous differential equation

x′′ + x = 0. (1)

1. From

x(t) =
∞∑

n=0

ant
n

we obtain by termwise differentiation and substitution into (1)
∞∑

n=2

ann(n− 1)tn−2 +
∞∑

n=0

ant
n = 0.

We shift the index in the first sum and obtain
∞∑

n=0

an+2(n+ 2)(n+ 1)tn +
∞∑

n=0

ant
n = 0,

hence
∞∑

n=0

(an+2(n+ 2)(n+ 1) + an) t
n = 0,

and by the identity principle

an+2 =
−an

(n+ 2)(n+ 1)
, n ≥ 0.

Forn = 2k even it follows by induction that

a2k =
(−1)k

(2k)!
a0

and forn = 2k + 1 odd

a2k+1 =
(−1)k

(2k + 1)!
a1.

The initial value problemx(0) = 1, x′(0) = 0 is solved by takinga0 = 1 anda1 = 0,
and hence

cs(t) =
∞∑

k=0

(−1)k

(2k)!
t2k.

The initial value problemx(0) = 0, x′(0) = 1 is solved by takinga0 = 0 anda1 = 1,
and hence

sn(t) =
∞∑

k=0

(−1)k

(2k + 1)!
t2k+1.

These series have infinite radius of convergence by the ratiotest, since

|an/an+2| = (n+ 2)(n+ 1) → ∞

asn → ∞.



2. sn is odd because the defining power series has only odd powers oft. Likewise cs
is even because its series has only even powers. The derivatives of the functions are
determined by termwise differentiation:

sn′(t) =
∞∑

k=0

(−1)k

(2k + 1)!
(2k + 1)t2k

=
∞∑

k=0

(−1)k

(2k)!
t2k = cs(t).

The equation
cs′(t) = − sn(t)

is seen in the same way.

3. Let s be fixed. The functionx1(t) = sn(s + t) satisfies (1) because the equation is
autonomous andt 7→ sn(t) solves it. Furthermorex1(0) = sn(s) andx′

1(0) = cs(s)
(by the previous item). The functionx2(t) = sn(s) cs(t) + cs(s) sn(t) solves (1)
since it is a linear combination of the two solutionscs(t) and sn(t). Furthermore,
x2(0) = sn(s) andx′

2(0) = cs(s) (again by the previous item). Hencex1 = x2 by the
uniqueness theorem for linear equations, that is,

sn(s+ t) = sn(s) cs(t) + cs(s) sn(t).

The formula
cs(s+ t) = cs(s) cs(t)− sn(s) sn(t)

is proved in the same fashion.

4. If we takes = −t in the last formula above, we obtain

cs2(t) + sn2(t) = 1

(by use of item 2).

5. Letf : R → R be aC2-function for whichf ′(t) > 0 andf ′′(t) ≥ 0 for all t > 0. By
Taylor’s formula with remainder

f(t) = f(1) + (t− 1)f ′(1) +
1

2
f ′′(t1)

for t > 1, wheret1 is some number between1 andt. Sincef ′′ ≥ 0 it follows that

f(t) ≥ f(1) + (t− 1)f ′(1)

and sincef ′(1) > 0 it follows thatf(t) → ∞ for t → ∞.

6. Claim: There existsb > 0 such thatcs(b) = 0. Otherwise, sincecs is continuous and
c(0) = 1, it follows thatcs(t) > 0 for all t. Sincesn′ = cs it then follows thatsn(t) is
strictly increasing fort ≥ 0, hencesn(t) > sn(0) = 0 for all t > 0. Applying item 5
with f = − cs we infer thatcs(t) → −∞ for t → ∞, and this contradicts item 4.



7. Let̟ be defined by̟
2
:= inf{b > 0 | cs(b) = 0}. It follows from item 6 that the

infimum is taken over a non-empty set, and hence̟ is well-defined. We have

cs(
̟

2
) = 0

sincecs is continuous. Moreover,cs(t) > 0 for 0 ≤ t < ̟

2
, and this implies thatsn is

increasing in this interval, and hencesn(̟
2
) > 0. By item 4 it then follows that

sn(
̟

2
) = 1.

Now
cs(̟) = −1, sn(̟) = 0

follows by takings = t = ̟

2
in item 2. By takings = ̟ in item 3 we conclude

sn(t + ̟) = − sn(t) and cs(t + ̟) = − cs(t), and it follows thatcs and sn are
periodic with period2̟.


