Assignment 5

Due March 13

In this exercise we take the viewpoint that the sine and cosine functions have not yet been defined. We consider the linear homogeneous differential equation

$$
\begin{equation*}
x^{\prime \prime}+x=0 . \tag{1}
\end{equation*}
$$

1. Let $\operatorname{cs}(t), t \in \mathbf{R}$ denote the solution with $\operatorname{cs}(0)=1, \operatorname{cs}^{\prime}(0)=0$ and $\operatorname{sn}(t), t \in \mathbf{R}$, the solution with $\operatorname{sn}(0)=0, \operatorname{sn}^{\prime}(0)=1$. Determine the power series of these functions and their radius of convergence.
2. Prove that sn is an odd function, cs is even, and that $\mathrm{sn}^{\prime}=\mathrm{cs}, \mathrm{cs}^{\prime}=-\mathrm{sn}$.
3. Prove the addition formulas

$$
\operatorname{sn}(s+t)=\operatorname{sn}(s) \operatorname{cs}(t)+\operatorname{cs}(s) \operatorname{sn}(t), \quad \operatorname{cs}(s+t)=\operatorname{cs}(s) \operatorname{cs}(t)-\operatorname{sn}(s) \operatorname{sn}(t)
$$

by showing that for fixed s both sides solve (1) as functions of t with the same initial condition at $t=0$.
4. Prove that $\mathrm{cs}^{2}(t)+\mathrm{sn}^{2}(t)=1$.
5. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a C^{2}-function for which $f^{\prime}(t)>0$ and $f^{\prime \prime}(t) \geq 0$ for all $t>0$. Show that $f(t) \rightarrow \infty$ for $t \rightarrow \infty$.
6. Prove there exists $b>0$ such that $\operatorname{cs}(b)=0$.
(Hint: Otherwise a contradiction can be reached with $f=-\operatorname{cs}$ in the previous item).
7. Let ϖ be defined by $\frac{\varpi}{2}:=\inf \{b>0 \mid \operatorname{cs}(b)=0\}$. Find

$$
\operatorname{cs}\left(\frac{\varpi}{2}\right), \operatorname{sn}\left(\frac{\varpi}{2}\right), \operatorname{cs}(\varpi), \operatorname{sn}(\varpi), \operatorname{cs}(2 \varpi), \operatorname{sn}(2 \varpi)
$$

and show that cs and sn are periodic with period 2ϖ.

