Solution. Assignment 4

We consider the initial value problem

$$
\begin{equation*}
\dot{y}-2 y \ddot{y}=-1, \quad y(0)=1, \dot{y}(0)=0 \tag{1}
\end{equation*}
$$

on $\mathcal{D}=\mathbf{R} \times \mathbf{R}$.
(a) On $\mathcal{D}_{+}=\mathbf{R} \times(0, \infty)$ the equation is equivalent with

$$
\begin{equation*}
\ddot{y}=\frac{\dot{y}+1}{2 y} \tag{2}
\end{equation*}
$$

which in turn is equivalent with the first order equation

$$
\dot{u}=X(t, u)=\binom{u_{2}}{\frac{u_{2}+1}{2 u_{1}}}
$$

on $\mathbf{R} \times\left\{u=\left(u_{1}, u_{2}\right) \in \mathbf{R}^{2} \mid u_{1}>0\right\}$.
As it is C^{1} with respect to y, the function X is locally Lipschitz. It follows from Corollary 8.5 that there exists a unique maximal solution (I, u) to the first order system with initial condition $u(0)=(1,0)$. Then $(I, y)=\left(I, u_{1}\right)$ solves (1) in \mathcal{D}_{+}and hence also in \mathcal{D}. It is the unique maximal solution in \mathcal{D}_{+}, but not necessarily in \mathcal{D}.
Let $\left(I^{\prime}, y^{\prime}\right)$ be another solution to (1) in \mathcal{D}, and assume that $y^{\prime} \neq y$ on $I^{\prime} \cap I$. As (I, y) is unique in \mathcal{D}_{+}, it follows that $y^{\prime}(t) \leq 0$ for some $t \in I \cap I^{\prime}$. Assume for example that this t is >0 (the argument if $t<0$ is similar), and let

$$
t_{1}=\inf \left\{t>0, t \in I \cap I^{\prime} \mid y^{\prime}(t) \leq 0\right\}
$$

For $t \in I_{1}=\left[0, t_{1}\right)$ we have $y^{\prime}(t)>0$, and hence $\left(I_{1}, y^{\prime}\right)$ solves (1) in \mathcal{D}_{+}. Then $y^{\prime}=y$ in I_{1} by the uniqueness of y, and by continuity of y and y^{\prime} we conclude that also at the endpoint of I_{1} we have equality $y^{\prime}\left(t_{1}\right)=y\left(t_{1}\right)$. Hence $y^{\prime}\left(t_{1}\right)>0$. On the other hand, it follows from the definition of t_{1} that $y^{\prime}\left(t_{1}\right) \leq 0$. We have reached a contradiction.
(b) It follows from (2) that \ddot{y} is continuous and that $\ddot{y}(0)=\frac{\dot{y}(0)+1}{2 y(0)}=\frac{1}{2}$. Hence there exists $\epsilon>0$ such that $\epsilon \in I$ and $\ddot{y}(t)>0$ for $0 \leq t \leq \epsilon$. It follows that \dot{y} is strictly increasing on this interval. Since $\dot{y}(0)=0$ it then follows that $\dot{y}(t)>0$ for $0<t \leq \epsilon$. Hence y is strictly increasing on $[0, \epsilon]$.

