Assignment 4

Due Wednesday, March 6.

Consider the differential equation

$$
\frac{d y}{d t}-2 y \frac{d^{2} y}{d t^{2}}=-1
$$

on $\mathbf{R} \times \mathbf{R}$.
(a) Prove that there exists a solution (I, y), with I containing 0 and y satisfying the initial conditions $y(0)=1$ and $\frac{d y}{d t}(0)=0$. Prove that this solution is locally unique at $t=0$, in the sense that if $\left(I^{\prime}, y^{\prime}\right)$ is another solution such that $0 \in I^{\prime}$ and y^{\prime} satisfies the initial value conditions, then y^{\prime} equals y on $I \cap I^{\prime}$. (Hint: rewrite the differential equation to a first order differential equation and use that $y(0)>0$.)
(b) Show that there exists an $\epsilon>0$ such that y is increasing on $(0, \epsilon)$.

