Solution. Assignment 3

(a) The function $x \mapsto|x|^{\alpha},(x \in \mathbf{R})$, is locally Lipschitz when $\alpha \geq 1$. Hence so is X_{α} by Lemma 7.16 (for $\alpha>1$ one could also argue by the fact that it is C^{1}). If $0<\alpha<1$, then $X_{\alpha}(t, y)$ is not locally Lipschitz at $\left(t_{0}, 1\right)$ for any $t_{0} \in \mathbf{R}$, since that would imply the existence of $R, L>0$ such that for all t with $\left|t-t_{0}\right|<R$ and y with $|y-1|<R$

$$
\left|X_{\alpha}(t, y)-X_{\alpha}(t, 1)\right|=\frac{\cosh (t)|y+1|^{\alpha}|y-1|^{\alpha}}{y} \leq L|y-1| .
$$

Hence for $y \neq 1$

$$
\cosh (t)|y+1|^{\alpha} \leq L|y-1|^{1-\alpha} y
$$

The right hand side of this inequality tends to 0 as $y \rightarrow 1$, whereas the left side is ≥ 1, a contradiction.
(b) X_{α} is not Lipschitz for any $\alpha>0$. To prove this its suffices to regard $X_{\alpha}(0, y)$ for $0<y<\frac{1}{2}$. If it were Lipschitz, there would exist $R, L>0$ such that for all $y, y^{\prime}>0$ with $\left|y^{\prime}-y\right|<R$ we would have

$$
\begin{equation*}
\left|X_{\alpha}(0, y)-X_{\alpha}\left(0, y^{\prime}\right)\right| \leq L\left|y-y^{\prime}\right| \tag{1}
\end{equation*}
$$

Take $y^{\prime}=2 y$. Then

$$
X_{\alpha}(0, y)-X_{\alpha}(0,2 y)=\frac{\left(1-y^{2}\right)^{\alpha}}{y}-\frac{\left(1-4 y^{2}\right)^{\alpha}}{2 y}=y^{-1}\left(\left(1-y^{2}\right)^{\alpha}-\frac{1}{2}\left(1-4 y^{2}\right)^{\alpha}\right)
$$

and

$$
\left(1-y^{2}\right)^{\alpha}-\frac{1}{2}\left(1-4 y^{2}\right)^{\alpha} \geq\left(1-y^{2}\right)^{\alpha}-\frac{1}{2}
$$

If y is sufficiently small then $\left(1-y^{2}\right)^{\alpha} \geq \frac{3}{4}$ and hence

$$
X_{\alpha}(0, y)-X_{\alpha}(0,2 y) \geq \frac{1}{4} y^{-1}
$$

Since we also have

$$
\left|y-y^{\prime}\right|=|y-2 y|=y<R
$$

for y sufficiently small, we then obtain from (1)

$$
\frac{1}{4} y^{-1} \leq L y
$$

for all such y, which is a contradiction.
(c) X_{α} is C^{1} on $\mathbf{R} \times((0,1) \cup(1, \infty))$, since $y^{2}-1 \neq 0$ on this domain. Hence it is locally Lipschitz.
(d) It follows from (c) and Corollary 8.5 that there exists a unique maximal solution (I, y) in $\mathbf{R} \times((0,1) \cup(1, \infty))$ with $y\left(t_{0}\right)=y_{0}$. Note that (I, y) is also a solution in $\mathbf{R} \times(0, \infty)$ (but as such it is not necessarily maximal).
(e) Let (I, \tilde{y}) be a solution in $\mathbf{R} \times(0, \infty)$ with $\tilde{y}\left(t_{0}\right)=y_{0}$ and with the same interval I as in (d). Assume $\tilde{y} \neq y$. Then \tilde{y} must attain the value 1 somewhere, since (I, y) is the unique $(0,1) \cup(1, \infty)$-valued solution to the initial value problem. Say for example that 1 is attained in $I \cap\left(t_{0}, \infty\right)$ (the other case is similar), and let $b=\inf \left\{t>t_{0} \mid \tilde{y}(t)=1\right\}$. By continuity $\tilde{y}(b)=1$. On the other hand, since $\tilde{y}(t) \neq 1$ for all $t \in\left[t_{0}, b\right)$, we have $\tilde{y}(t)=y(t)$ for $t \in\left[t_{0}, b\right)$ by uniqueness of the $(0,1) \cup(1, \infty)$-valued solutions. By continuity of \tilde{y} and y we conclude $\tilde{y}(b)=y(b) \neq 1$, a contradiction. Hence $\tilde{y}=y$.
To answer the question we can therefore take $U=I$.
(f) Exercise 1 corresponds to the present exercise with $\alpha=\frac{1}{2}$. The solution denoted y_{1} in Exercise 1(a) corresponds to the solution y of (d) above. The last two of the three solutions in Exercise 1(b) both solve the initial value problem $y(1)=\cosh (1)$ and they both agree with y_{1} on $I=(0, \infty)$. This is in accordance with what we proved in (e) above.

