Assignment 3

Due Wednessday, February 27.

For $\alpha > 0$, define $X_{\alpha} : R \times \mathbf{R}_{>0}$ by

$$X_{\alpha}(t,y) = \frac{\cosh(t)|y^2 - 1|^{\alpha}}{y} \qquad ((t,y) \in \mathbf{R} \times \mathbf{R}_{>0}).$$

- (a) For which $\alpha > 0$ is X_{α} locally Lipschitz on $\mathbf{R} \times \mathbf{R}_{>0}$?
- (b) For which $\alpha > 0$ is X_{α} Lipschitz on $\mathbf{R} \times \mathbf{R}_{>0}$?
- (c) Prove that X_{α} is locally Lipschitz on $\mathbf{R} \times ((0, 1) \cup (1, \infty))$.
- (d) Let $(t_0, y_0) \in \mathbf{R} \times ((0, 1) \cup (1, \infty))$. Prove that there exists a solution (I, y) of

$$\frac{dy}{dt} = X_{\alpha}(t, y) \tag{1}$$

such that $t_0 \in I$ and $y(t_0) = y_0$.

- (e) Let (I, y) be the solution in (d). Prove that there exists a neighborhood U of t_0 such that $(I \cap U, y|_{I \cap U})$ is the unique solution of (1) on $(I \cap U) \times \mathbf{R}_{>0}$ with $y(t_0) = y_0$.
- (f) Discuss how all of this relates to Exercise 1 in the first assignment (which was due February 13).