Assignment 2

Due Wednesday, February 20.

In this assignment we consider the differential equation

$$
\begin{equation*}
\left(1+s^{2}\right) \frac{d^{2} u}{d s^{2}}+s \frac{d u}{d s}-u=\frac{1}{\sqrt{1+s^{2}}} \tag{1}
\end{equation*}
$$

on $\mathbf{R} \times \mathbf{R}$.
(a) Apply the temporal substitution of variables $s=\sinh t$ to rewrite (1) as the linear inhomogeneous differential equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=x+\frac{1}{\cosh t} \tag{2}
\end{equation*}
$$

on $\mathbf{R} \times \mathbf{R}$, where $x=u \circ \sinh$. Hint: use the identity

$$
\begin{equation*}
\cosh ^{2} t-\sinh ^{2} t=1 \tag{3}
\end{equation*}
$$

to determine $\cosh t$ in terms of s.
(b) Rewrite (2) as a first order differential equation of the form

$$
\begin{equation*}
\frac{d y}{d t}=A y+b(t) \tag{4}
\end{equation*}
$$

on $\mathbf{R} \times \mathbf{R}^{2}$, where A is a 2×2-matrix and $b: \mathbf{R} \rightarrow \mathbf{R}^{2}$.
(c) Show that

$$
e^{t A}=\left(\begin{array}{cc}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right) .
$$

Hint: Use the power series for sinh and cosh:

$$
\sinh t=\sum_{k \text { odd } \geq 0} \frac{1}{k!} t^{k}, \quad \cosh t=\sum_{k \text { even } \geq 0} \frac{1}{k!} t^{k},
$$

or use the result from Exercise 6.9.
(d) Find a particular maximal solution of (4). Hint: Use the formula for y_{0} in Theorem 6.28, but take the factor $e^{t A}$ outside of the integral. Use that $\int \tanh s d s=\ln (\cosh s)$.
(e) Determine all maximal solutions of (4).
(f) Determine all maximal solutions of (1).

