Assignment 2
Due Wednesday, February 20.

In this assignment we consider the differential equation
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onR x R.

(a) Apply the temporal substitution of variables= sinh ¢ to rewrite (1) as the linear inho-
mogeneous differential equation
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onR x R, wherex = u o sinh. Hint: use the identity
cosh? t — sinh?t = 1. 3)
to determineosh t in terms ofs.

(b) Rewrite (2) as a first order differential equation of therfo
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onR x R?, whereA is a2 x 2-matrix andb : R — R?2.

(c) Show that
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Hint: Use the power series feinh andcosh:
inht = L ht = Lk
sinht = Z E , cosht = Z E )
k odd>0 k even>0

or use the result from Exercise 6.9.

(d) Find a particular maximal solution of (4). Hint: Use tlwerhula fory, in Theorem 6.28,
but take the factoe’” outside of the integral. Use théttanh s ds = In(cosh s).

(e) Determine all maximal solutions of (4).

() Determine all maximal solutions of (1).



