## Solution. Assignment 1

1. Let $D=\mathbf{R} \times(0, \infty)$ and let $X: D \rightarrow \mathbf{R}$ be given by

$$
X(t, y)=\frac{\cosh (t) \sqrt{\left|y^{2}-1\right|}}{y}
$$

Let $D_{1}=(0, \infty) \times(0, \infty)$ and let $X_{1}$ be the restriction of $X$ to $D_{1}$.
(a) Give the maximal solution to the initial value problem

$$
\frac{d y}{d t}=X_{1}(y, t), \quad y(1)=\cosh (1)
$$

SOLUTION: When $y>0$ and $y \neq 1$ we can apply the method of separation of variables. We find

$$
\frac{y}{\sqrt{\left|y^{2}-1\right|}} \frac{d y}{d t}=\cosh (t)
$$

and hence

$$
\int \frac{y}{\sqrt{\left|y^{2}-1\right|}} d y=\int \cosh (t) d t
$$

We substitute $u=y^{2}-1$ and obtain on the left side

$$
\frac{1}{2} \int|u|^{-\frac{1}{2}} d u=\operatorname{sign}(u)|u|^{1 / 2}
$$

and on the other side

$$
\int \cosh (t) d t=\sinh (t)
$$

with addition of arbitrary constants. Hence $u= \pm(\sinh (t)+c)^{2}$ and $y=y_{1}$ or $y=y_{2}$ where

$$
y_{1}=\sqrt{1+(\sinh (t)+c)^{2}}, \quad y_{2}=\sqrt{1-(\sinh (t)+c)^{2}} .
$$

The initial condition $y(1)=\cosh (1)>1$ implies that we need the solution $y_{1}$ with $\sqrt{1+(\sinh (1)+c)^{2}}=\cosh (1)$, and from the relation $\cosh ^{2} t-\sinh ^{2} t=1$ we deduce $c=0$ and

$$
y_{1}=\cosh (t) .
$$

We observe that $y_{1}>1$ and hence the steps performed above are valid for all $t>0$. It follows that $\left((0, \infty), y_{1}\right)$ is a solution. It satisfies the initial condition and it is obviously maximal in $D_{1}$.
(b) Show that

$$
\begin{aligned}
& (\mathbf{R}, t \mapsto 1) \\
& \left(\mathbf{R}, t \mapsto\left\{\begin{array}{ll}
1 & t \leq 0 \\
y_{1}(t) & t>0
\end{array}\right)\right. \\
& \left((-\operatorname{arsinh}(1), \infty), t \mapsto\left\{\begin{array}{ll}
\sqrt{1-\sinh ^{2}(t)} & t \leq 0 \\
y_{1}(t) & t>0
\end{array}\right)\right.
\end{aligned}
$$

are maximal solutions of $\frac{d y}{d t}=X(y, t)$. (Recall that arsinh is the inverse function of $\sinh$.) Conclude that the initial value problem

$$
\frac{d y}{d t}=X(t, y), \quad y(0)=1
$$

does not have a unique solution.
SOLUTION: All the mentioned functions are defined on $\mathbf{R}$, so if they solve the equation they are maximal solutions.
It is clear that the constant function 1 solves the equation.
The function $y_{1}(t)=\cosh (t)$ is a solution to $\dot{y}=X(t, y)$ also when its domain of definition is extended to $[0, \infty)$, since its right derivative at $t=0$ is 0 which equals $X(0, \cosh (0))$. The gluing lemma implies that the second mentioned function is a solution.
The function $y_{2}(t)=\sqrt{1-\sinh ^{2}(t)}$ is defined for $|\sinh (t)|<1$. Since

$$
\dot{y}_{2}(t)=\frac{-\cosh (t) \sinh (t)}{\sqrt{1-\sinh ^{2}(t)}}
$$

while

$$
X\left(t, y_{2}\right)=\frac{\cosh (t)|\sinh (t)|}{\sqrt{1-\sinh ^{2}(t)}}
$$

it solves the equation when in addition $t \leq 0$. Again the gluing lemma implies that the third mentioned function is a solution.
As all three solutions satisfy the initial condition $y(0)=1$, there is not a unique maximal solution.
2. Let $D=(0, \infty) \times \mathbf{R}$ and let $X: D \rightarrow \mathbf{R}$ be given by

$$
X(t, y)=\frac{2 y}{\sinh (2 t)}+\sinh (t)
$$

(a) Show that

$$
\frac{\tanh ^{\prime}(t)}{\tanh (t)}=\frac{2}{\sinh (2 t)}
$$

(b) Give all maximal solutions of

$$
\frac{d y}{d t}=X(y, t) .
$$

## SOLUTION

(a) follows from the facts that $\tanh ^{\prime}(t)=\frac{1}{\cosh ^{2}(t)}$ and $\sinh (2 t)=2 \sinh (t) \cosh (t)$.
(b) The equation is linear, and hence we can solve by the formula

$$
y=e^{G(t)} \int e^{-G(s)} b(s) d s
$$

where $G(t)$ is a primitive of $\frac{2}{\sinh (2 t)}$. From (a) we find

$$
G(t)=\int \frac{\tanh ^{\prime}(t)}{\tanh (t)} d t=\ln (\tanh (t))
$$

and hence

$$
\begin{aligned}
y & =e^{\ln (\tanh (t))} \int e^{-\ln (\tanh (s))} \sinh (s) d s \\
& =\tanh (t) \int \frac{\sinh (s)}{\tanh (s)} d s \\
& =\tanh (t) \int \cosh (s) d s=\tanh (t)(\sinh (t)+c)
\end{aligned}
$$

with $t \in \mathbf{R}$.

