Assignment 1

Due Wednesday, February 13.

1. Let $D=\mathbf{R} \times(0, \infty)$ and let $X: D \rightarrow \mathbf{R}$ be given by

$$
X(t, y)=\frac{\cosh (t) \sqrt{\left|y^{2}-1\right|}}{y}
$$

Let $D_{1}=(0, \infty) \times(0, \infty)$ and let X_{1} be the restriction of X to D_{1}.
(a) Give the maximal solution to the initial value problem

$$
\frac{d y}{d t}=X_{1}(y, t), \quad y(1)=\cosh (1) .
$$

We denote the solution found in (a) by y_{1}.
(b) Show that

$$
\begin{aligned}
& (\mathbf{R}, t \mapsto 1) \\
& \left(\mathbf{R}, t \mapsto\left\{\begin{array}{ll}
1 & t \leq 0 \\
y_{1}(t) & t>0
\end{array}\right)\right. \\
& \left((-\operatorname{arsinh}(1), \infty), t \mapsto\left\{\begin{array}{ll}
\sqrt{1-\sinh ^{2}(t)} & t \leq 0 \\
y_{1}(t) & t>0
\end{array}\right)\right.
\end{aligned}
$$

are maximal solutions of $\frac{d y}{d t}=X(y, t)$. (Recall that arsinh is the inverse function of sinh.) Conclude that the initial value problem

$$
\frac{d y}{d t}=X(t, y), \quad y(0)=1
$$

does not have a unique solution.
2. Let $D=(0, \infty) \times \mathbf{R}$ and let $X: D \rightarrow \mathbf{R}$ be given by

$$
X(t, y)=\frac{2 y}{\sinh (2 t)}+\sinh (t)
$$

(a) Show that

$$
\frac{\tanh ^{\prime}(t)}{\tanh (t)}=\frac{2}{\sinh (2 t)}
$$

(b) Give all maximal solutions of

$$
\frac{d y}{d t}=X(y, t)
$$

