Note 4. Parallel vector fields.

Suppose some tangent vectors $\mathbf{v} \in T_P \mathcal{S}$ and $\mathbf{w} \in T_Q \mathcal{S}$ at different points P, Qof a surface are given. It is a natural question to ask when \mathbf{v} and \mathbf{w} should be considered parallel. If \mathcal{S} is a plane, the answer is obvious, the tangent vectors are parallel if and only if they are parallel when considered as vectors in \mathbb{R}^3 . However, for other surfaces the tangent spaces $T_P \mathcal{S}$ and $T_Q \mathcal{S}$ are not equal, and a more sophisticated notion has to be introduced. In fact, a reasonable definition only exists if a curve is given that connects P and Q. The notion of parallelism between vectors in $T_P \mathcal{S}$ and $T_Q \mathcal{S}$ will in general depend on the curve.

Let γ be a regular parametrized curve on S. A (tangent) vector field \mathbf{V} along γ is a smooth map which to each t assigns a vector $\mathbf{V}(t) \in \mathbb{R}^3$ such that $\mathbf{V}(t) \in T_{\gamma(t)}S$. We will define the notion of parallelism of such a vector field. For simplicity we consider only vector fields of constant length $\|\mathbf{V}(t)\|$.

Definition 1. A vector field $\mathbf{V}(t)$ along γ of constant length is called *parallel* if the derivative $\mathbf{V}'(t)$ is normal to the tangent plane $T_P \mathcal{S}$ at each point $P = \gamma(t)$ of the curve.

The idea is that since the tangent space varies along γ , the vector field is forced to vary too, but we require that this variation is invisible from the surface. Thus a parallel vector field will be conceived as constant by a resident of the surface (a surface bug).

Notice that the condition that $\mathbf{V}'(t)$ is normal to the tangent plane for each t implies that $\frac{d}{dt}(\mathbf{V} \cdot \mathbf{V}) = 2\mathbf{V}' \cdot \mathbf{V} = 0$. The condition of constant length is thus actually a consequence of the other condition.

In our further analysis we will assume throughout that S is oriented, so that a unit normal vector **N** is given at each point.

Example. The unit tangent vectors to a great circle on a sphere form a parallel vector field. This is easily seen by simple geometric considerations, but it also follows from the next lemma.

Lemma 1. A unit speed curve γ on a surface S is a geodesic if and only if its tangent vectors $\gamma'(t)$ form a parallel field.

Proof. Immediate from Pressley's Definition 8.1. \Box

The definition of a parallel vector field makes use of the extrinsic concept of the normal to the surface. However, the discussion after Definition 1 suggests that it is *intrinsic*. Indeed, this follows from the next proposition, since it expresses the concept in terms of the first fundamental form alone.

Proposition 1. Let γ be a regular curve on an orthogonal parametrized surface (σ, U) , and let $\mathbf{V}(t)$ be a vector field along γ with constant non-zero length. Let $\varphi(t)$ denote the angle from σ_u to $\mathbf{V}(t)$ (determined up to multiples of 2π), and assume that it depends differentiably on t.

Then \mathbf{V} is parallel if and only if

$$\varphi' = \frac{1}{2\sqrt{EG}} \left\{ u'E'_v - v'G'_u \right\} \tag{1}$$

at each point of the curve.

Proof. As in Note 3, let

$$\mathbf{X} = \frac{\sigma'_u}{\sqrt{E}}$$
 and $\mathbf{Y} = \frac{\sigma'_v}{\sqrt{G}}$

then at each point P of $\sigma(U)$, the triple $(\mathbf{X}, \mathbf{Y}, \mathbf{N})$ constitutes a positively oriented orthonormal basis for \mathbb{R}^3 . It was shown in Note 3, that $\mathbf{X} \cdot \mathbf{Y}'$ is equal to the expression on the right side of (1).

Let

$$\mathbf{V}(t) = \mathbf{N}(t) \times \mathbf{V}(t),$$

then $(\mathbf{V}, \hat{\mathbf{V}}, \mathbf{N})$ is also a positively oriented orthonormal basis for \mathbb{R}^3 , at each point of γ . Since \mathbf{V} has constant length, $\mathbf{V}' \perp \mathbf{V}$. Hence \mathbf{V}' is a linear combination of $\hat{\mathbf{V}}$ and \mathbf{N} , and it is perpendicular to the tangent space if and only if the component along $\hat{\mathbf{V}}$ vanishes. Therefore, \mathbf{V} is parallel if and only if $\mathbf{V}' \cdot \hat{\mathbf{V}} = 0$.

We claim that

$$\mathbf{V}' \cdot \hat{\mathbf{V}} = -\mathbf{X} \cdot \mathbf{Y}' + arphi',$$

clearly this implies the statement of the proposition, in view of the preceding remarks.

By definition of $\varphi(t)$ we have

$$\mathbf{V} = \cos\varphi \mathbf{X} + \sin\varphi \mathbf{Y}.$$
 (2)

Hence

$$\hat{\mathbf{V}} = -\sin\varphi \mathbf{X} + \cos\varphi \mathbf{Y}.$$
(3)

By differentiating (2) with respect to t and inserting (3) we obtain

$$\mathbf{V}' = -\varphi' \sin \varphi \mathbf{X} + \cos \varphi \mathbf{X}' + \varphi' \cos \varphi \mathbf{Y} + \sin \varphi \mathbf{Y}' = \varphi' \hat{\mathbf{V}} + \cos \varphi \mathbf{X}' + \sin \varphi \mathbf{Y}'$$

Using that $\mathbf{X}' \perp \mathbf{X}$ and $\mathbf{Y}' \perp \mathbf{Y}$ we conclude

$$\mathbf{V}' \cdot \hat{\mathbf{V}} = \varphi' + (\cos \varphi \mathbf{X}' + \sin \varphi \mathbf{Y}') \cdot (-\sin \varphi \mathbf{X} + \cos \varphi \mathbf{Y})$$
$$= \varphi' + \cos^2 \varphi \mathbf{X}' \cdot \mathbf{Y} - \sin^2 \varphi \mathbf{Y}' \cdot \mathbf{X}.$$

Notice that from $\mathbf{X} \cdot \mathbf{Y} = 0$ we obtain $\mathbf{X}' \cdot \mathbf{Y} + \mathbf{X} \cdot \mathbf{Y}' = 0$. Hence

$$\mathbf{V}' \cdot \hat{\mathbf{V}} = \varphi' - \cos^2 \varphi \mathbf{X} \cdot \mathbf{Y}' - \sin^2 \varphi \mathbf{Y}' \cdot \mathbf{X} = \varphi' - \mathbf{X} \cdot \mathbf{Y}'. \quad \Box$$

Corollary 1. Let \mathbf{V} and \mathbf{W} be vector fields along γ of constant non-zero length, and suppose that \mathbf{V} is parallel. Then \mathbf{W} is parallel if and only if its angle with \mathbf{V} is constant.

Proof. If the vector fields make the angles $\varphi(t)$ and $\psi(t)$ with σ'_u , then φ satisfies equation (1). Hence ψ satisfies the same equation if and only if $\psi' = \varphi'$, that is, if and only if the difference $\psi - \varphi$ is constant. The angle between **V** and **W** is exactly measured by that difference. \Box

Corollary 2. If γ is a geodesic, then a vector field **W** is parallel along γ if and only if its angle with γ' is constant.

Proof. Combine Lemma 1 and Corollary 1 with $\mathbf{V} = \gamma'$. \Box

The last corollary tells us exactly which vector fields are parallel along a geodesic. In the following proposition we generalize to other curves.

Proposition 2. Let γ be a unit speed curve on σ , and let $\mathbf{V}(t)$ be a vector field along γ of constant non-zero length. Let $\delta(t)$ denote the angle from $\gamma'(t)$ to $\mathbf{V}(t)$, and assume that it depends differentiably on t. Then \mathbf{V} is parallel if and only if

$$\delta' = -\kappa_g$$

at each point of the curve.

Proof. We consider the curve in a neighborhood of a given point, and we may assume that this neighborhood is contained in an orthogonal patch. As in Prop. 1, let φ be the angle from σ_u to $\mathbf{V}(t)$, then $\theta = \varphi - \delta$ measures the angle from σ'_u to $\gamma'(t)$. The proposition is obtained by combining Proposition 1 with the theorem in Note 3. \Box

We will now show that parallel vector fields exist. In fact, we can uniquely determine a parallel vector field along γ from any given tangent vector at some initial point:

Proposition 3. Let $\gamma : I \to S$ be a unit speed curve on S, and let $t_0 \in I$, $\mathbf{v} \in T_{\gamma(t_0)}S$ be given. Then there exists a unique parallel vector field $\mathbf{V}(t)$ along γ of constant length and with $\mathbf{V}(t_0) = \mathbf{v}$.

Proof. We may assume $\mathbf{v} \neq 0$ (otherwise take $\mathbf{V}(t) = 0$). Let δ_0 be the angle from $\gamma'(t_0)$ to \mathbf{v} and define

$$\delta(t) = \delta_0 - \int_{t_0}^t \kappa_g(s) \, ds$$

Let $\mathbf{V}(t)$ be the unit vector field along $\gamma(t)$ which makes the angle $\delta(t)$ with $\gamma'(t)$. Then it follows from Prop. 2 that \mathbf{V} is parallel. The uniqueness is seen similarly. \Box

Let $P = \gamma(t_0)$ and $Q = \gamma(t_1)$ be points on γ . Using Prop. 3 we define the map

$$T: T_P \mathcal{S} \to T_Q \mathcal{S},$$

which assigns to $\mathbf{v} \in T_P \mathcal{S}$ the vector $T(\mathbf{v}) = \mathbf{V}(t_1) \in T_Q \mathcal{S}$, where \mathbf{V} is the parallel vector field with $\mathbf{V}(t_0) = \mathbf{v}$. The map is called *parallel transport* along γ .

Definition 2. Two vectors $\mathbf{v} \in T_P \mathcal{S}$ and $\mathbf{w} \in T_Q \mathcal{S}$ are said to be *parallel* with respect to γ if \mathbf{w} is the parallel transport along γ of \mathbf{v} .

Lemma 2. Parallel transport is linear $T_P S \to T_Q S$.

Proof. It suffices to prove the following. If **V** and **W** are parallel vector fields along the same curve γ , then the vector field $t \mapsto \lambda \mathbf{V}(t) + \mu \mathbf{W}(t)$ is also parallel, for all $\lambda, \mu \in \mathbb{R}$. This follows easily from Definition 1. \Box

Example Let $S = S^2$, and let γ be the parallel circle of constant latitude $u = u_0$ (see p. 61), where $\sigma(u, v) = (\cos u \cos v, \cos u \sin v, \sin u)$. Let $a = \cos u_0, b = \sin u_0$ then

$$\gamma(t) = \sigma(u_0, t) = (a \cos t, a \sin t, b)$$

is a (non unit speed) parametrization of γ . Let $P = \gamma(0) = \sigma(u_0, 0) = (a, 0, b)$. We will determine the parallel transport along γ of the vector $\mathbf{v} = \sigma_u = (-b, 0, a) \in T_P S$. If φ is the angle from $\sigma'_u(\gamma(t))$ to the vector $\mathbf{V}(t)$ of the parallel field, then by Prop. 1

$$\varphi' = b = \sin u_0$$

(because $u(t) = u_0$, v(t) = t, E = 1, $G = \cos^2 u$). Since $\varphi(0) = 0$ we obtain

$$\varphi(t) = bt$$

In particular, when at $t = 2\pi$ the curve returns to the initial point P, the vector **v** has been displaced by the angle

$$\varphi(2\pi) - \varphi(0) = 2\pi b = 2\pi \sin u_0$$