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Suppose some tangent vectors v ∈ TPS and w ∈ TQS at different points P,Q
of a surface are given. It is a natural question to ask when v and w should be
considered parallel. If S is a plane, the answer is obvious, the tangent vectors are
parallel if and only if they are parallel when considered as vectors in R

3. However,
for other surfaces the tangent spaces TPS and TQS are not equal, and a more
sophisticated notion has to be introduced. In fact, a reasonable definition only
exists if a curve is given that connects P and Q. The notion of parallelism between
vectors in TPS and TQS will in general depend on the curve.

Let γ be a regular parametrized curve on S. A (tangent) vector field V along γ is
a smooth map which to each t assigns a vector V(t) ∈ R

3 such that V(t) ∈ Tγ(t)S.
We will define the notion of parallelism of such a vector field. For simplicity we
consider only vector fields of constant length ‖V(t)‖.

Definition 1. A vector field V(t) along γ of constant length is called parallel if
the derivative V′(t) is normal to the tangent plane TPS at each point P = γ(t) of
the curve.

The idea is that since the tangent space varies along γ, the vector field is forced
to vary too, but we require that this variation is invisible from the surface. Thus
a parallel vector field will be conceived as constant by a resident of the surface (a
surface bug).

Notice that the condition that V′(t) is normal to the tangent plane for each t

implies that d
dt

(V · V) = 2V′ · V = 0. The condition of constant length is thus
actually a consequence of the other condition.

In our further analysis we will assume throughout that S is oriented, so that a
unit normal vector N is given at each point.

Example. The unit tangent vectors to a great circle on a sphere form a parallel
vector field. This is easily seen by simple geometric considerations, but it also
follows from the next lemma.

Lemma 1. A unit speed curve γ on a surface S is a geodesic if and only if its
tangent vectors γ′(t) form a parallel field.

Proof. Immediate from Pressley’s Definition 8.1. �

The definition of a parallel vector field makes use of the extrinsic concept of the
normal to the surface. However, the discussion after Definition 1 suggests that it
is intrinsic. Indeed, this follows from the next proposition, since it expresses the
concept in terms of the first fundamental form alone.
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Proposition 1. Let γ be a regular curve on an orthogonal parametrized surface
(σ, U), and let V(t) be a vector field along γ with constant non-zero length. Let ϕ(t)
denote the angle from σu to V(t) (determined up to multiples of 2π), and assume
that it depends differentiably on t.

Then V is parallel if and only if

ϕ′ =
1

2
√
EG

{u′E′

v − v′G′

u} (1)

at each point of the curve.

Proof. As in Note 3, let

X =
σ′

u√
E

and Y =
σ′

v√
G
,

then at each point P of σ(U), the triple (X,Y,N) constitutes a positively oriented
orthonormal basis for R

3. It was shown in Note 3, that X · Y′ is equal to the
expression on the right side of (1).

Let
V̂(t) = N(t) × V(t),

then (V, V̂,N) is also a positively oriented orthonormal basis for R
3, at each point

of γ. Since V has constant length, V′ ⊥ V. Hence V′ is a linear combination of V̂

and N, and it is perpendicular to the tangent space if and only if the component
along V̂ vanishes. Therefore, V is parallel if and only if V′ · V̂ = 0.

We claim that
V′ · V̂ = −X · Y′ + ϕ′,

clearly this implies the statement of the proposition, in view of the preceding re-
marks.

By definition of ϕ(t) we have

V = cosϕX + sinϕY. (2)

Hence
V̂ = − sinϕX + cosϕY. (3)

By differentiating (2) with respect to t and inserting (3) we obtain

V′ = −ϕ′ sinϕX + cosϕX′ + ϕ′ cosϕY + sinϕY′ = ϕ′V̂ + cosϕX′ + sinϕY′
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Using that X′ ⊥ X and Y′ ⊥ Y we conclude

V′ · V̂ = ϕ′ + (cosϕX′ + sinϕY′) · (− sinϕX + cosϕY)

= ϕ′ + cos2 ϕX′ · Y − sin2 ϕY′ · X.

Notice that from X · Y = 0 we obtain X′ · Y + X · Y′ = 0. Hence

V′ · V̂ = ϕ′ − cos2 ϕX ·Y′ − sin2 ϕY′ · X = ϕ′ − X · Y′. �

Corollary 1. Let V and W be vector fields along γ of constant non-zero length,
and suppose that V is parallel. Then W is parallel if and only if its angle with V

is constant.

Proof. If the vector fields make the angles ϕ(t) and ψ(t) with σ′

u, then ϕ satisfies
equation (1). Hence ψ satisfies the same equation if and only if ψ′ = ϕ′, that is, if
and only if the difference ψ−ϕ is constant. The angle between V and W is exactly
measured by that difference. �

Corollary 2. If γ is a geodesic, then a vector field W is parallel along γ if and
only if its angle with γ ′ is constant.

Proof. Combine Lemma 1 and Corollary 1 with V = γ ′. �

The last corollary tells us exactly which vector fields are parallel along a geodesic.
In the following proposition we generalize to other curves.

Proposition 2. Let γ be a unit speed curve on σ, and let V(t) be a vector field
along γ of constant non-zero length. Let δ(t) denote the angle from γ ′(t) to V(t),
and assume that it depends differentiably on t. Then V is parallel if and only if

δ′ = −κg

at each point of the curve.

Proof. We consider the curve in a neighborhood of a given point, and we may
assume that this neighborhood is contained in an orthogonal patch. As in Prop. 1,
let ϕ be the angle from σu to V(t), then θ = ϕ− δ measures the angle from σ′

u to
γ′(t). The proposition is obtained by combining Proposition 1 with the theorem in
Note 3. �

We will now show that parallel vector fields exist. In fact, we can uniquely
determine a parallel vector field along γ from any given tangent vector at some
initial point:



4

Proposition 3. Let γ : I → S be a unit speed curve on S, and let t0 ∈ I, v ∈
Tγ(t0)S be given. Then there exists a unique parallel vector field V(t) along γ of
constant length and with V(t0) = v.

Proof. We may assume v 6= 0 (otherwise take V(t) = 0). Let δ0 be the angle from
γ′(t0) to v and define

δ(t) = δ0 −
∫ t

t0

κg(s) ds.

Let V(t) be the unit vector field along γ(t) which makes the angle δ(t) with γ ′(t).
Then it follows from Prop. 2 that V is parallel. The uniqueness is seen similarly. �

Let P = γ(t0) and Q = γ(t1) be points on γ. Using Prop. 3 we define the map

T : TPS → TQS,
which assigns to v ∈ TPS the vector T(v) = V(t1) ∈ TQS, where V is the parallel
vector field with V(t0) = v. The map is called parallel transport along γ.

Definition 2. Two vectors v ∈ TPS and w ∈ TQS are said to be parallel with
respect to γ if w is the parallel transport along γ of v.

Lemma 2. Parallel transport is linear TPS → TQS.

Proof. It suffices to prove the following. If V and W are parallel vector fields along
the same curve γ, then the vector field t 7→ λV(t) + µW(t) is also parallel, for all
λ, µ ∈ R. This follows easily from Definition 1. �

Example Let S = S2, and let γ be the parallel circle of constant latitude u = u0

(see p. 61), where σ(u, v) = (cosu cos v, cosu sin v, sinu). Let a = cosu0, b = sinu0

then
γ(t) = σ(u0, t) = (a cos t, a sin t, b)

is a (non unit speed) parametrization of γ. Let P = γ(0) = σ(u0, 0) = (a, 0, b). We
will determine the parallel transport along γ of the vector v = σu = (−b, 0, a) ∈
TPS. If ϕ is the angle from σ′

u(γ(t)) to the vector V(t) of the parallel field, then
by Prop. 1

ϕ′ = b = sinu0

(because u(t) = u0, v(t) = t, E = 1, G = cos2 u). Since ϕ(0) = 0 we obtain

ϕ(t) = bt.

In particular, when at t = 2π the curve returns to the initial point P , the vector v

has been displaced by the angle

ϕ(2π) − ϕ(0) = 2πb = 2π sinu0.


