Note 3. An intrinsic formula for geodesic curvature. MAT 3GE, F2005

Let (σ, U) be an orthogonal surface parametrization (orthogonal means that $F=0$), and let $\gamma(s)=\sigma(u(s), v(s))$ be a unit speed curve on σ. We will establish a formula for the geodesic curvature $\kappa_{g}(s)$ of γ, which involves only the first fundamental form of σ.

Let $\theta(t)$ be the angle from σ_{u}^{\prime} to $\gamma^{\prime}(s)$ in the tangent space $T_{(u, v)} \sigma$ (with respect to the orientation determined by σ). Then $\theta(s)$ is uniquely determined up to integral multiples of 2π. We assume that $s \mapsto \theta(s)$ is chosen to be differentiable (this can always be attained in a neighborhood of each s, since σ_{u}^{\prime} and $\gamma^{\prime}(s)$ depend differentiably on s).

Theorem. The geodesic curvature is intrinsic and is given by

$$
\kappa_{g}=\theta^{\prime}-\frac{1}{2 \sqrt{E G}}\left\{u^{\prime} E_{v}^{\prime}-v^{\prime} G_{u}^{\prime}\right\} .
$$

Proof. We will first establish the following lemma. Let

$$
\mathbf{X}=\frac{\sigma_{u}^{\prime}}{\sqrt{E}} \quad \text { and } \quad \mathbf{Y}=\frac{\sigma_{v}^{\prime}}{\sqrt{G}}
$$

so that $(\mathbf{X}, \mathbf{Y}, \mathbf{N})$ is an orthonormal basis for \mathbb{R}^{3} (depending on $\left.(u, v) \in U\right)$.

Lemma.

$$
\begin{array}{rlrl}
\mathbf{X}_{u}^{\prime} & =-\frac{E_{v}^{\prime}}{2 \sqrt{E G}} \mathbf{Y}+\frac{L}{\sqrt{E}} \mathbf{N}, & \mathbf{X}_{v}^{\prime}=\frac{G_{u}^{\prime}}{2 \sqrt{E G}} \mathbf{Y}+\frac{M}{\sqrt{E}} \mathbf{N}, \\
\mathbf{Y}_{u}^{\prime}=\frac{E_{v}^{\prime}}{2 \sqrt{E G}} \mathbf{X}+\frac{M}{\sqrt{G}} \mathbf{N}, & \mathbf{Y}_{v}^{\prime}=-\frac{G_{u}^{\prime}}{2 \sqrt{E G}} \mathbf{X}+\frac{N}{\sqrt{G}} \mathbf{N} .
\end{array}
$$

Proof. Since \mathbf{X} is a unit vector, the derivatives \mathbf{X}_{u}^{\prime} and \mathbf{X}_{v}^{\prime} are perpendicular to \mathbf{X}. Likewise, \mathbf{Y}_{u}^{\prime} and \mathbf{Y}_{v}^{\prime} are perpendicular to \mathbf{Y}. Since $(\mathbf{X}, \mathbf{Y}, \mathbf{N})$ is an orthonormal basis, it follows that

$$
\begin{array}{ll}
\mathbf{X}_{u}^{\prime}=\left(\mathbf{X}_{u}^{\prime} \cdot \mathbf{Y}\right) \mathbf{Y}+\left(\mathbf{X}_{u}^{\prime} \cdot \mathbf{N}\right) \mathbf{N}, & \mathbf{X}_{v}^{\prime}=\left(\mathbf{X}_{v}^{\prime} \cdot \mathbf{Y}\right) \mathbf{Y}+\left(\mathbf{X}_{v}^{\prime} \cdot \mathbf{N}\right) \mathbf{N}, \\
\mathbf{Y}_{u}^{\prime}=\left(\mathbf{Y}_{u}^{\prime} \cdot \mathbf{X}\right) \mathbf{X}+\left(\mathbf{Y}_{u}^{\prime} \cdot \mathbf{N}\right) \mathbf{N}, & \mathbf{Y}_{v}^{\prime}=\left(\mathbf{Y}_{v}^{\prime} \cdot \mathbf{X}\right) \mathbf{X}+\left(\mathbf{Y}_{v}^{\prime} \cdot \mathbf{N}\right) \mathbf{N} .
\end{array}
$$

It follows from the definition $\mathbf{X}=E^{-1 / 2} \sigma_{u}^{\prime}$ that

$$
\mathbf{X}_{u}^{\prime}=-\frac{1}{2} E^{-3 / 2} E_{u}^{\prime} \sigma_{u}^{\prime}+E^{-1 / 2} \sigma_{u u}^{\prime \prime}
$$

and hence, since \mathbf{Y} and \mathbf{N} are both perpendicular to σ_{u}^{\prime},

$$
\begin{aligned}
& \mathbf{X}_{u}^{\prime} \cdot \mathbf{Y}=E^{-1 / 2} \sigma_{u u}^{\prime \prime} \cdot \mathbf{Y}=(E G)^{-1 / 2} \sigma_{u u}^{\prime \prime} \cdot \sigma_{v}^{\prime}, \\
& \mathbf{X}_{u}^{\prime} \cdot \mathbf{N}=E^{-1 / 2} \sigma_{u u}^{\prime \prime} \cdot \mathbf{N}=E^{-1 / 2} L .
\end{aligned}
$$

From $\sigma_{u}^{\prime} \cdot \sigma_{v}^{\prime}=0$ and $\sigma_{u}^{\prime} \cdot \sigma_{u}^{\prime}=E$ we get by differentiation with respect to u and v, respectively, that $\sigma_{u u}^{\prime \prime} \cdot \sigma_{v}^{\prime}=-\sigma_{u}^{\prime} \cdot \sigma_{v u}^{\prime \prime}=-\frac{1}{2} E_{v}^{\prime}$. The equation for \mathbf{X}_{u}^{\prime} follows, and the proof of the other three equations is similar.

In order to establish the formula for κ_{g} we use the equations in the lemma to derive an expression for the dot product of $\mathbf{X}(u(s), v(s))$ with the derivative \mathbf{Y}^{\prime} of $s \mapsto \mathbf{Y}(u(s), v(s))$. By the chain rule $\mathbf{Y}^{\prime}=u^{\prime} \mathbf{Y}_{u}^{\prime}+v^{\prime} \mathbf{Y}_{v}^{\prime}$, and hence the equations of the previous lemma imply that

$$
\mathbf{X} \cdot \mathbf{Y}^{\prime}=u^{\prime} \frac{E_{v}^{\prime}}{2 \sqrt{E G}}-v^{\prime} \frac{G_{u}^{\prime}}{2 \sqrt{E G}}
$$

We now come to the proof of the formula. By definition, the angle $\theta(s)$ is determined up to constant multiples of 2π by

$$
\gamma^{\prime}(s)=\cos \theta(s) \mathbf{X}+\sin \theta(s) \mathbf{Y}
$$

The multiples of 2π play no role, as the assertion only involves the derivative of θ.
Since $\mathbf{N}=\mathbf{X} \times \mathbf{Y}$ we obtain

$$
\mathbf{N} \times \gamma^{\prime}=-\sin \theta \mathbf{X}+\cos \theta \mathbf{Y}
$$

Furthermore, by differentiation with respect to s,

$$
\gamma^{\prime \prime}(s)=-\theta^{\prime} \sin \theta \mathbf{X}+\cos \theta \mathbf{X}^{\prime}+\theta^{\prime} \cos \theta \mathbf{Y}+\sin \theta \mathbf{Y}^{\prime}
$$

so that

$$
\begin{aligned}
\kappa_{g} & =\left(\mathbf{N} \times \gamma^{\prime}\right) \cdot \gamma^{\prime \prime} \\
& =(-\sin \theta \mathbf{X}+\cos \theta \mathbf{Y}) \cdot\left(-\theta^{\prime} \sin \theta \mathbf{X}+\cos \theta \mathbf{X}^{\prime}+\theta^{\prime} \cos \theta \mathbf{Y}+\sin \theta \mathbf{Y}^{\prime}\right) \\
& =\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \theta^{\prime}-\sin ^{2} \theta \mathbf{X} \cdot \mathbf{Y}^{\prime}+\cos \theta^{2} \mathbf{X}^{\prime} \cdot \mathbf{Y}
\end{aligned}
$$

where in the last step ioot is used that $\mathbf{X} \cdot \mathbf{Y}=\mathbf{X} \cdot \mathbf{X}^{\prime}=\mathbf{Y} \cdot \mathbf{Y}^{\prime}=0$. Since $\mathbf{X} \cdot \mathbf{Y}=0$ we also have by differentiation that $\mathbf{X}^{\prime} \cdot \mathbf{Y}=-\mathbf{X} \cdot \mathbf{Y}^{\prime}$. Application of the identity $\cos ^{2}+\sin ^{2}=1$ now yields

$$
\kappa_{g}=\theta^{\prime}-\mathbf{X} \cdot \mathbf{Y}^{\prime}
$$

The theorem follows immediately.
For example, we can determine the geodesic curvature along the coordinate curve $u \mapsto \sigma(u, v)$ as follows. If $t \mapsto \sigma(u(t), v)$ is a unit speed reparametrization, then $\left\|u^{\prime} \sigma_{u}\right\|=1$. Thus $u^{\prime}=1 / \sqrt{E}$. Moreover, $\theta=0$ and $v^{\prime}=0$, so we obtain from the formula above

$$
\kappa_{g}=-\frac{E_{v}^{\prime}}{2 E \sqrt{G}}
$$

Similarly, the geodesic curvature along $v \mapsto \sigma(u, v)$ is found to be

$$
\kappa_{g}=\frac{G_{u}^{\prime}}{2 G \sqrt{E}}
$$

