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Let (σ, U) be an orthogonal surface parametrization (orthogonal means that
F = 0), and let γ(s) = σ(u(s), v(s)) be a unit speed curve on σ. We will estab-
lish a formula for the geodesic curvature κg(s) of γ, which involves only the first
fundamental form of σ.

Let θ(t) be the angle from σ′

u to γ′(s) in the tangent space T(u,v)σ (with respect
to the orientation determined by σ). Then θ(s) is uniquely determined up to
integral multiples of 2π. We assume that s 7→ θ(s) is chosen to be differentiable
(this can always be attained in a neighborhood of each s, since σ′

u and γ′(s) depend
differentiably on s).

Theorem. The geodesic curvature is intrinsic and is given by

κg = θ′ − 1

2
√

EG
{u′E′

v − v′G′

u} .

Proof. We will first establish the following lemma. Let
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so that (X,Y,N) is an orthonormal basis for R
3 (depending on (u, v) ∈ U).
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Proof. Since X is a unit vector, the derivatives X′

u and X′

v are perpendicular to X.
Likewise, Y′

u and Y′

v are perpendicular to Y. Since (X,Y,N) is an orthonormal
basis, it follows that

X′

u = (X′

u · Y)Y + (X′

u · N)N, X′

v = (X′

v · Y)Y + (X′

v · N)N,

Y′

u = (Y′

u · X)X + (Y′

u ·N)N, Y′

v = (Y′

v · X)X + (Y′

v · N)N.

It follows from the definition X = E−1/2σ′

u that
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and hence, since Y and N are both perpendicular to σ′

u,

X′

u · Y = E−1/2σ′′

uu · Y = (EG)−1/2σ′′

uu · σ′

v,

X′

u · N = E−1/2σ′′

uu · N = E−1/2L.
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From σ′

u ·σ′

v = 0 and σ′

u ·σ′

u = E we get by differentiation with respect to u and v,
respectively, that σ′′

uu · σ′

v = −σ′

u · σ′′

vu = − 1
2
E′

v. The equation for X′

u follows, and
the proof of the other three equations is similar. �

In order to establish the formula for κg we use the equations in the lemma to
derive an expression for the dot product of X(u(s), v(s)) with the derivative Y′ of
s 7→ Y(u(s), v(s)). By the chain rule Y′ = u′Y′

u + v′Y′

v, and hence the equations
of the previous lemma imply that
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We now come to the proof of the formula. By definition, the angle θ(s) is
determined up to constant multiples of 2π by

γ′(s) = cos θ(s)X + sin θ(s)Y.

The multiples of 2π play no role, as the assertion only involves the derivative of θ.
Since N = X × Y we obtain

N × γ′ = − sin θX + cos θY.

Furthermore, by differentiation with respect to s,

γ′′(s) = −θ′ sin θX + cos θX′ + θ′ cos θY + sin θY′

so that

κg = (N× γ′) · γ′′

= (− sin θX + cos θY) · (−θ′ sin θX + cos θX′ + θ′ cos θY + sin θY′)

= (sin2 θ + cos2 θ)θ′ − sin2 θX ·Y′ + cos θ2X′ · Y

where in the last step ioot is used that X ·Y = X ·X′ = Y ·Y′ = 0. Since X ·Y = 0
we also have by differentiation that X′ · Y = −X · Y′. Application of the identity
cos2 + sin2 = 1 now yields

κg = θ′ − X · Y′.

The theorem follows immediately. �

For example, we can determine the geodesic curvature along the coordinate curve
u 7→ σ(u, v) as follows. If t 7→ σ(u(t), v) is a unit speed reparametrization, then

‖u′σu‖ = 1. Thus u′ = 1/
√

E. Moreover, θ = 0 and v′ = 0, so we obtain from the
formula above

κg = − E′

v
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Similarly, the geodesic curvature along v 7→ σ(u, v) is found to be

κg =
G′

u
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