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Smooth maps

The concept of a smooth map between two smooth surfaces is defined on p. 69.
The definition can be phrased as follows:

Definition 1. Let S1,S2 be smooth surfaces. A continuous map f :S1 → S2 is
called smooth if the map

σ−1
2 ◦ f ◦ σ1 : R

2 → R
2

is smooth for all patches (U1, σ1) and (U2, σ2) in some smooth atlases on S1 and S2,
respectively. To be more precise, the map is defined on σ−1

1 (f−1(σ2(U2))) ⊆ R
2;

the assumption of continuity of f implies that this is an open set.

The formula at the bottom of p. 69 shows that if f is smooth then σ−1
2 ◦ f ◦ σ1

is smooth for all regular patches on S1 and S2, also those which do not belong to
the chosen atlases. Thus, the notion is independent of that choice.

Similar definitions can be given for maps R
n → S, and for maps S → R

n:

Definition 2. A continuous map f : W → S or S → R
n, where W ⊆ R

n is open,
is called smooth if

σ−1 ◦ f : R
n → R

2, respectively f ◦ σ : R
2 → R

n

is smooth (on its proper domain of definition) for all patches (U, σ) in some smooth
atlas on S.

In particular, it makes sense to speak of smooth curves and smooth functions on
a surface:

A smooth curve on S is a smooth map γ: (α, β) → S. According to Definition 2
this is a continuous curve γ: (α, β) → S whose intersection with any regular patch
(U, σ) can written as

γ(t) = σ(β(t)),

where β is a smooth plane curve in U . This expression is called the local expression
for γ. Likewise, a smooth function on S is a smooth map S → R.

It is easily seen that composition of the various types of smooth maps in Defini-
tions 1 and 2 yield maps which are again smooth.

The following three lemmas offer different characterizations of the smoothness
of a map from, into or between smooth surfaces.

Lemma 1. Let f :S → R
n be a continuous map. The following conditions are

equivalent.
(a) f is smooth (Definition 2).
(b) Around each point P ∈ S there is an open neighborhood V ⊆ R

3 of P and a
smooth map F : V → R

n such that f |V ∩S = F |V ∩S .

Thus, f is smooth if and only if it may be locally extended to a smooth map
on open sets in R

3. In particular, the coordinate functions x, y and z are smooth
S → R, and so is the inclusion map ι:S → R

3.
1
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Proof. (b)⇒(a). This is clear, since in the neighborhood of P , f ◦ σ is equal to the
smooth map F ◦ σ: U → R

n.
(a)⇒(b). Let (U, σ) be a graph-patch (see Note 3, Thm. 1) covering a neigh-

borhood of P in S, and let π: R3 → R
2 be the projection on the plane over which

σ exhibits S as a graph. The image σ(U) is open in S, hence equal to W ∩ S for
some open subset W in R

3. Let V = π−1(U) ∩ W , and let F = f ◦ σ ◦ π. Then F

is smooth and equals f on V ∩ S. �

Lemma 2. Let f : W ⊆ R
n → S be a continuous map. The following conditions

are equivalent.
(a) f is smooth (Definition 2)
(b) f is smooth, considered as a map W → R

3.

Proof. Choose a smooth atlas of S. Then f(W ) ⊆ S = ∪σ(U), union over all charts
σ from the atlas, and hence W is the union of the open sets f−1(σ(U)).

(a)⇒(b). If f is smooth into S, then by definition σ−1 ◦ f is smooth into R
2 for

all σ. Hence σ ◦ (σ−1 ◦ f) = f : f−1(σ(U)) → R
3 is smooth for all σ, and hence

f : W → R
3 is smooth.

(b)⇒(a). We may assume that the chosen atlas consists of graph-patches. Let
(U, σ) be an arbitrary patch in this atlas. We must prove that σ−1 ◦ f is smooth.
Let π denote the projection on the plane over which σ exhibits S as a graph. Then
σ−1 is the restriction of π to σ(U) ⊆ S. Since π is smooth R

3 → R
2, we conclude

that σ−1 ◦ f = π ◦ f is smooth f−1(σ(U)) → R
2. �

Remark. The lemma above shows, in particular, that a smooth curve on S is the
same as a smooth curve in R

3 whose image is contained in S.

Lemma 3. Let f :S1 → S2 be a continuous map. The following conditions are
equivalent.

(a) f is smooth (Definition 1).
(b) f is smooth, considered as a map from S1 to R

3 (Definition 2).
(c) Around each point P ∈ S1 there is an open neighborhood V ⊆ R

3 of P and a
smooth map F : V → R

3 such that f |V ∩S1
= F |V ∩S1

.

A smooth map F as in (c) is called a local smooth extension of f at P .

Proof. (a) ⇔ (b): Apply Lemma 2 to f ◦ σ1 : U1 ⊆ R
2 → S2 for each (σ1, U1).

(b) ⇔ (c): Immediate from Lemma 1. �

Examples. 1. The identity map of a smooth surface to itself is smooth. This is
essentially the content of Proposition 4.1, but it also follows from (c)⇒(a) (choose
F to be the identity map on R

3).
2. Let S1 = S2 be the unit sphere given by x2 + y2 + z2 = 1, and let S2 be

the ellipsoid given by x2

a2 + y2

b2
+ z2

c2 = 1 (see Exercise 4.9). The map f : (x, y, z) 7→

(ax, by, cz) is smooth S1 → S2 since it is the restriction of the smooth map F : R3 →
R

3 given by the same expression.
3. The antipodal map P 7→ −P of S2 to itself is a smooth map, since it is the

restriction of the smooth map, multiplication by −1, on R
3.

4. If S is a surface of revolution, the rotations about its axis are smooth S → S
since they are restrictions of rotations of R

3.
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The differential of a map

In differential geometry one wants to extend the notions of calculus to surfaces.
We have extended the notion of smoothness of a map, but what is the proper
generalization of the derivative of such a map? Recall that for a smooth map
f : Rn → R

m, the notion of the derivative at a point q is expressed in the Jacobian
matrix Jf(q), or equivalently, in the differential dfq which is the linear map R

n →
R

m having Jf(q) as its matrix.
Let S1 and S2 be smooth surfaces, and let f :S1 → S2 be smooth. Let P ∈

S1 be given. We denote by TPS1 and Tf(P )S2 the tangent spaces of S1 and S2,
respectively, at P and f(P ) (see p. 74). Recall that these are 2-dimensional linear
subspaces of R

3.

Lemma 4. Let P ∈ S1 and let v ∈ TPS1. If F is a local smooth extension of f at
P , as in Lemma 3(c), then dFP (v) ∈ Tf(P )S2.

Furthermore, if γ is a smooth curve γ on S1 with tangent vector γ̇(0) = v at
P = γ(0), then

dFP (v) = (f ◦ γ)
.
(0).

Proof. Let v ∈ TPS1, then by definition there exists a smooth curve γ on S1 with
γ(0) = P and γ̇(0) = v. It follows that

dFP (v) = dFP (γ̇(0)) = (F ◦ γ)
.
(0) = (f ◦ γ)

.
(0),

the second equality by the chain rule. Since f ◦γ is a smooth curve on S2 it follows
that (f ◦ γ).(0) belongs to Tf(P )S2. �

Definition 3. The differential (or tangent map) of f at P ∈ S1 is the linear map

dfP : TPS1 → Tf(P )S2

given by v 7→ dFP (v), where F is a local smooth extension of f at P .

It follows from Lemma 4 that

dfP (v) = (f ◦ γ)
.
(0),

where γ is any smooth curve on S1 with γ(0) = P and γ̇(0) = v. Hence dfP (v) does
not depend on the choice of the local extension F .

A similar definition of the differential of f can be given in each of the situations
in Definition 2.

Example 5. Let F : R3 → R
3 be given by F (q) = Aq + b for q ∈ R

3 where A is a
linear map and b a fixed vector. The differential dFP of F at P is the linear map A,
for all P ∈ R

3. If S1,S2 are such that F (S1) ⊆ S2, then f = F |S1
is a smooth map

S1 → S2, and it follows that the differential dfP : TPS1 → Tf(P )S2 is the restriction
of dFP = A to TPS1, for each P ∈ S1.
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