In this note we will consider some basic results related to the differentiation of functions of several variables.

Let $U \subseteq \mathbb{R}^{n}$ be an open set, and let f be a map $U \rightarrow \mathbb{R}^{m}$. The map f has the components $f_{1}, \ldots, f_{m}: U \rightarrow \mathbb{R}$. We say that f is C^{1} if each component is continuously differentiable, i.e. the first order partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ exist and are continuous on U. More generally, f is said to be C^{r} if it has continuous partial derivatives of all orders $\leq r$, and it is called C^{∞} or smooth if it is C^{r} for all r. In this course we will mainly be concerned with smooth maps, but the notion of C^{r} for $r \in \mathbb{N}$ is sometimes useful.

The first order partial derivatives are conveniently arranged in the Jacobian matrix

$$
J f(p)=\left(\frac{\partial f_{i}}{\partial x_{j}}(p)\right)_{i=1, \ldots, m, j=1, \ldots, n}
$$

which is the $m \times n$ matrix that has the partial derivatives of f_{i} in its i-th row.
Definition The differential of f at $p \in U$ is the linear map $d f_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ which in the canonical bases is represented by the Jacobi matrix $J f(p)$.

Example. If $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is given by $f(x, y, z)=\left(x^{2}+y^{2}+z^{2}, z\right)$ then

$$
J f(p)=\left(\begin{array}{ccc}
2 p_{1} & 2 p_{2} & 2 p_{3} \\
0 & 0 & 1
\end{array}\right)
$$

and $d f_{p}$ is the linear map $x=\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(2 p \cdot x, x_{3}\right)$.
The notation is particularly useful when it comes to composition of maps. The rule for differentiation of a composed map is as follows.

Theorem 1. The chain rule. Let $f: U \rightarrow \mathbb{R}^{m}$ and $g: V \rightarrow \mathbb{R}^{l}$ be smooth maps, where $U \subseteq \mathbb{R}^{n}$ and $V \subseteq \mathbb{R}^{m}$ are open sets with $f(U) \subseteq V$. Then $g \circ f: U \rightarrow \mathbb{R}^{l}$ is smooth and satisfies

$$
\begin{equation*}
d(g \circ f)_{p}=d g_{f(p)} \circ d f_{p} \tag{1}
\end{equation*}
$$

Proof. The equality (1) between linear maps is equivalent with the matrix equation

$$
\begin{equation*}
J(g \circ f)(p)=J g(f(p)) \cdot J f(p) \tag{2}
\end{equation*}
$$

This is a standard result from multivariable calculus.
However, in many calculus books the statement concerns maps that are C^{1}, not C^{∞} as here. It thus remains to be seen that if f and g are C^{∞}, then so is $g \circ f$. In fact, it can be proved by induction on $r \in \mathbb{N}$ that if f and g are C^{r}, then so is $g \circ f$. This statement is clearly true for $r=0$. For the general case, it is sufficient to prove that the entries of $J(g \circ f)$ are C^{r-1}. In the rule (2) these entries are expressed by the matrix product of $J g \circ f$ and $J f$. By the induction hypothesis,
the entries of the composed map $J g \circ f$ are C^{r-1}, and since the entries of $J f$ are also C^{r-1}, we are done.

Example. Let $m=1, k=2$ and $n=3$. Write the coordinates of $f(u, v) \in \mathbb{R}^{3}$ as $(x(u, v), y(u, v), z(u, v))$. Then the composed function is $g(x(u, v), y(u, v), z(u, v))$. According to the theorem this is a differentiable function of u and v with

$$
\frac{\partial g}{\partial u}=\frac{\partial g}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial g}{\partial y} \frac{\partial y}{\partial u}+\frac{\partial g}{\partial z} \frac{\partial z}{\partial u}
$$

and similarly for the differentiation w.r.t. v.
Recall from Note 1 the implicit function theorem for functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (see also the remark in Note 1). It is convenient to write elements in \mathbb{R}^{n} as (x, y) where $x=\left(x_{1}, \ldots, x_{n-1}\right) \in \mathbb{R}^{n-1}$ and $y \in \mathbb{R}$.

Theorem 2. Let $f: U \rightarrow \mathbb{R}$ be a smooth function, where $U \subseteq \mathbb{R}^{n}$ is open. Let

$$
\mathcal{C}=\{(x, y) \in U \mid f(x, y)=0\}
$$

and let $p=\left(x_{0}, y_{0}\right) \in \mathcal{C}$. Assume that $\partial f / \partial y \neq 0$ at p.
Then there exist open neighborhoods $I \subseteq \mathbb{R}^{n-1}$ and $J \subseteq \mathbb{R}$ around x_{0} and y_{0}, respectively, such that $W=I \times J \subseteq U$, and a smooth map $h: I \rightarrow J$ such that

$$
\mathcal{C} \cap W=\{(x, h(x)) \mid x \in I\},
$$

that is, in a neighborhood of p the set \mathcal{C} is the graph of h.
Differentiating the expression $f(x, h(x))=0$ by means of the chain rule we obtain $\frac{\partial f}{\partial x_{j}}(x, h(x))+\frac{\partial f}{\partial y}(x, h(x)) \frac{\partial h}{\partial x_{j}}(x)=0$, and hence

$$
\begin{equation*}
\frac{\partial h}{\partial x_{j}}(x)=-\frac{\frac{\partial f}{\partial x_{j}}(x, h(x))}{\frac{\partial f}{\partial y}(x, h(x))} \tag{3}
\end{equation*}
$$

(this expression is also derived in Note 1).
We will now generalize Theorem 2 to functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, that is, to the case where the set \mathcal{C} consists of the simultaneous solutions to m equations. It is then convenient to write elements in \mathbb{R}^{n} as (x, y) where $x=\left(x_{1}, \ldots, x_{n-m}\right) \in \mathbb{R}^{n-m}$ and $y=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$.
Theorem 3. The implicit function theorem. Let $f: U \rightarrow \mathbb{R}^{m}$ be a smooth function, where $U \subseteq \mathbb{R}^{n}$ is open. Let

$$
\mathcal{C}=\{(x, y) \in U \mid f(x, y)=0\}
$$

and let $p=\left(x_{0}, y_{0}\right) \in \mathcal{C}$. Assume that the determinant of the $m \times m$ matrix

$$
A=\frac{\partial f_{i}}{\partial y_{j}}(p)
$$

consisting of the last m columns of the jacobian $J f(p)$, is non-zero.
Then there exist open neighborhoods $I \subseteq \mathbb{R}^{n-m}$ and $J \subseteq \mathbb{R}^{m}$ around x_{0} and y_{0}, respectively, such that $W=I \times J \subseteq U$, and a smooth map $h: I \rightarrow J$ such that

$$
\mathcal{C} \cap W=\{(x, h(x)) \mid x \in I\},
$$

that is, in a neighborhood of P the set \mathcal{C} is the graph of $h: \mathbb{R}^{n-m} \rightarrow \mathbb{R}^{m}$.
Proof. The theorem is proved by induction from the special case $m=1$ already obtained in Theorem 2. Thus, we assume that the conclusion of the theorem is valid for functions into \mathbb{R}^{m-1}.

Since $\operatorname{det} A$ is non-zero, A is invertible. We want to replace $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by the function $A^{-1} \circ f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, obtained by multiplying all image vectors $f(x, y) \in \mathbb{R}^{m}$ with the constant matrix A^{-1}. Since multiplication by A^{-1} is a bijection, the solution sets for the equations $f(x, y)=0$ and $A^{-1} f(x, y)=0$ are identical, and it follows from the chain rule (2) that

$$
J\left(A^{-1} \circ f\right)(p)=A^{-1} \cdot J f(p),
$$

from which we see that the last m columns of $J\left(A^{-1} \circ f\right)(p)$ comprise a unit matrix $\delta_{k j}$. The effect of the replacement is thus that we may assume that A itself is a unit matrix. This we assume from now on, that is, $\partial f_{k} / \partial y_{j}=\delta_{k j}$.

In particular, for the function f_{m} whose derivatives are in the last row of $J f$, we have that $\partial f_{m} / \partial y_{j}(p)=0$ for $j<m$ and $\partial f_{m} / \partial y_{m}(p)=1$. It follows from Theorem 2, applied with the last variable y_{m} as y, that there exists a neighborhood of p in which the set of solutions to $f_{m}(x, y)=0$ is the graph of a smooth function $h: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$, that is, $f_{m}(x, y)=0$ if and only if

$$
y_{m}=h\left(x, y^{\prime}\right), \quad y^{\prime}=\left(y_{1}, \ldots, y_{m-1}\right) .
$$

Moreover, by (3) the derivatives of h at p are given by

$$
\frac{\partial h}{\partial x_{i}}(p)=-\frac{\partial f_{m}}{\partial x_{i}}(p), \quad \text { and } \quad \frac{\partial h}{\partial y_{j}}(p)=-\frac{\partial f_{m}}{\partial y_{j}}(p)=0
$$

for $i=1, \ldots, n-m$ and $j=1, \ldots, m-1$.
Let the function $F: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{m-1}$ be defined (on a neighborhood of $\left(x_{0}, y_{0}^{\prime}\right)$) by

$$
\begin{equation*}
F_{k}\left(x, y^{\prime}\right)=f_{k}\left(x, y^{\prime}, h\left(x, y^{\prime}\right)\right) \tag{4}
\end{equation*}
$$

for $k=1, \ldots, m-1$, where as before $y^{\prime}=\left(y_{1}, \ldots, y_{m-1}\right)$. The partial derivatives of F_{k} are obtained by applying the chain rule to (4):

$$
\frac{\partial F_{k}}{\partial y_{j}}=\frac{\partial f_{k}}{\partial y_{j}}+\frac{\partial f_{k}}{\partial y_{m}} \frac{\partial h}{\partial y_{j}}
$$

and at p we thus have $\partial F_{k} / \partial y_{j}=\partial f_{k} / \partial y_{j}=\delta_{k j}$. The determinant of this matrix being non-zero, we can apply our induction hypothesis to F, and we obtain the
existence of a function $g: \mathbb{R}^{n-m} \rightarrow \mathbb{R}^{m-1}$ such that the solution set for the equation $F\left(x, y^{\prime}\right)=0$ is the graph of g in a neighborhood of $\left(x_{0}, y_{0}^{\prime}\right)$, that is, $F\left(x, y^{\prime}\right)=0$ if and only if $y^{\prime}=g(x)$.

We now see that (in a neighborhood of p) with $y=\left(y^{\prime}, y_{m}\right)$

$$
f(x, y)=0
$$

if and only if

$$
f_{k}(x, y)=0, \quad k=1, \ldots, m
$$

if and only if

$$
f_{k}(x, y)=0, \quad k=1, \ldots, m-1 \quad \text { and } \quad y_{m}=h\left(x, y^{\prime}\right)
$$

if and only if

$$
F\left(x, y^{\prime}\right)=0 \quad \text { and } \quad y_{m}=h\left(x, y^{\prime}\right)
$$

if and only if

$$
y^{\prime}=g(x) \quad \text { and } \quad y_{m}=h\left(x, y^{\prime}\right)
$$

if and only if

$$
y=(g(x), h(x, g(x))) .
$$

The function $x \mapsto(g(x), h(x, g(x)))$ is thus seen to be the desired function whose graph is \mathcal{C} in a neighborhood of p.
Definition Let $U, V \subseteq \mathbb{R}^{m}$ be open sets. A map $f: U \rightarrow V$ is called a diffeomorphism if

1. f is smooth,
2. $f: U \rightarrow V$ is bijective, and
3. $f^{-1}: V \rightarrow U$ is also smooth.

Proposition. If $f: U \rightarrow V$ is a diffeomorphism, then its differential df $f_{q}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is bijective at each $q \in U$ (equivalently, $\operatorname{det} J f(q) \neq 0$). Moreover, the differential of f^{-1} at $z=f(q)$ is given by

$$
d\left(f^{-1}\right)_{z}=\left(d f_{q}\right)^{-1} .
$$

Proof. Follows immediately from the chain rule by differentiation of the expression $f \circ f^{-1}=I$.

The following fundamental result from multivariable calculus plays a very prominent role in differential geometry.
Theorem 4. The inverse function theorem. Let $F: U \rightarrow \mathbb{R}^{m}$ be smooth, where $U \subseteq \mathbb{R}^{m}$ is open. Suppose that at a given point $q \in U$ the differential $d F_{q}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is bijective. Then there exists an open set $W \subseteq U$ containing q and an open set $V \subseteq \mathbb{R}^{m}$ containing $F(q)$ such that $V=F(W)$ and F is a diffeomorphism of W onto V.

Proof. We shall apply the implicit function theorem with $n=2 m$ to the map $f: \mathbb{R}^{m} \times U \rightarrow \mathbb{R}^{m}$ given by $f(x, y)=-x+F(y)$ where $x \in \mathbb{R}^{m}, y \in U$. Notice that $f(x, y)=0$ if and only if $F(y)=x$, hence if we can exhibit the solution set to this equation as the graph $y=h(x)$ of a function h, then h will be inverse to F.

Let $y_{0} \in \mathbb{R}^{m}$ denote the given point q, and let $x_{0}=F\left(y_{0}\right)$. The matrix A of Theorem 3 is exactly $J F(q)$, hence it has a non-vanishing determinant. Thus, according to the theorem there exist open neighborhoods I and J of x_{0} and y_{0}, respectively, and a smooth map $h: I \rightarrow J$ such that $f(x, y)=0$ if and only if $y=h(x)$, for all $(x, y) \in I \times J$. Let $W=J \cap F^{-1}(I)$, then W is open (since F is continuous). It is now seen, as remarked above, that $F: W \rightarrow I$ and $h: I \rightarrow W$ are the inverse maps of each other. Hence F is a diffeomorphism of W onto $V=I$.
Remark There is a fundamental difference between the inverse function theorem for functions of one variable and those of several variables. The theorem we have proved is local, as it only asserts the existence of an inverse to f in a neighborhood of $f(p)$. Even if the condition, that $d f_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is bijective, is satisfied everywhere in U, a global inverse of f need not exist, as seen in the example below. This contrasts the situation for $n=1$: If $f^{\prime}(x) \neq 0$ on an interval, then f is monotone on that interval, hence bijective.

Example Let $U \subseteq \mathbb{R}^{2}$ denote the right half plane

$$
U=\left\{(r, \theta) \in \mathbb{R}^{2} \mid r>0\right\}
$$

and let $f: U \rightarrow \mathbb{R}^{2}$ be given by

$$
f(r, \theta)=(r \cos \theta, r \sin \theta)
$$

that is, $f(r, \theta)$ is the point having polar coordinates (r, θ). The Jacobian of f,

$$
J f(r, \theta)=\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right),
$$

is regular for all $(r, \theta) \in U$, hence the inverse function theorem implies that f is locally invertible. Since $f(r, \theta+2 \pi)=f(r, \theta), f$ is not globally injective. However, it follows from the corollary below, that the restriction of f to $\{(r, \theta) \mid r>0, \theta \in I\}$, where I is any open interval of length $\leq 2 \pi$, has a differentiable inverse.

Corollary. Let $F: U \rightarrow \mathbb{R}^{m}$ be injective and smooth, where $U \subseteq \mathbb{R}^{m}$ is open. Suppose that $d F_{q}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is bijective for each $q \in U$. Then $F(U)$ is open and F is a diffeomorphism of U onto $F(U)$.
Proof. Since F is injective, it has an inverse map $F^{-1}: F(U) \rightarrow U$. Let $F(q) \in F(U)$ be given, then according to Thm. 4 there exists an open neighborhood $V=F(W)$ of $F(q)$ in $F(U)$, and the restriction of F^{-1} to that neigborhood is smooth. It follows that F^{-1} is smooth.

