
Note 2. Differentiation MAT 3GE, F2004

In this note we will consider some basic results related to the differentiation of
functions of several variables.

Let U ⊆ R
n be an open set, and let f be a map U → R

m. The map f has
the components f1, . . . , fm: U → R. We say that f is C1 if each component is
continuously differentiable, i.e. the first order partial derivatives ∂fi

∂xj
exist and are

continuous on U . More generally, f is said to be Cr if it has continuous partial
derivatives of all orders ≤ r, and it is called C∞ or smooth if it is Cr for all r. In
this course we will mainly be concerned with smooth maps, but the notion of Cr

for r ∈ N is sometimes useful.
The first order partial derivatives are conveniently arranged in the Jacobian

matrix

Jf(p) =

(

∂fi

∂xj

(p)

)

i=1,...,m,j=1,...,n

,

which is the m × n matrix that has the partial derivatives of fi in its i-th row.

Definition The differential of f at p ∈ U is the linear map dfp: R
n → R

m which in
the canonical bases is represented by the Jacobi matrix Jf(p).

Example. If f : R3 → R
2 is given by f(x, y, z) = (x2 + y2 + z2, z) then

Jf(p) =

(

2p1 2p2 2p3

0 0 1

)

and dfp is the linear map x = (x1, x2, x3) 7→ (2p · x, x3).

The notation is particularly useful when it comes to composition of maps. The
rule for differentiation of a composed map is as follows.

Theorem 1. The chain rule. Let f : U → R
m and g: V → R

l be smooth maps,
where U ⊆ R

n and V ⊆ R
m are open sets with f(U) ⊆ V . Then g ◦ f : U → R

l is
smooth and satisfies

d(g ◦ f)p = dgf(p) ◦ dfp. (1)

Proof. The equality (1) between linear maps is equivalent with the matrix equation

J(g ◦ f)(p) = Jg(f(p)) · Jf(p). (2)

This is a standard result from multivariable calculus.
However, in many calculus books the statement concerns maps that are C1, not

C∞ as here. It thus remains to be seen that if f and g are C∞, then so is g ◦ f .
In fact, it can be proved by induction on r ∈ N that if f and g are Cr, then so is
g ◦ f . This statement is clearly true for r = 0. For the general case, it is sufficient
to prove that the entries of J(g ◦ f) are Cr−1. In the rule (2) these entries are
expressed by the matrix product of Jg ◦ f and Jf . By the induction hypothesis,
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the entries of the composed map Jg ◦ f are Cr−1, and since the entries of Jf are
also Cr−1, we are done. �

Example. Let m = 1, k = 2 and n = 3. Write the coordinates of f(u, v) ∈ R
3 as

(x(u, v), y(u, v), z(u, v)). Then the composed function is g(x(u, v), y(u, v), z(u, v)).
According to the theorem this is a differentiable function of u and v with

∂g

∂u
=

∂g

∂x

∂x

∂u
+

∂g

∂y

∂y

∂u
+

∂g

∂z

∂z

∂u

and similarly for the differentiation w.r.t. v.

Recall from Note 1 the implicit function theorem for functions f : Rn → R (see
also the remark in Note 1). It is convenient to write elements in R

n as (x, y) where
x = (x1, . . . , xn−1) ∈ R

n−1 and y ∈ R.

Theorem 2. Let f : U → R be a smooth function, where U ⊆ R
n is open. Let

C = {(x, y) ∈ U | f(x, y) = 0}

and let p = (x0, y0) ∈ C. Assume that ∂f/∂y 6= 0 at p.
Then there exist open neighborhoods I ⊆ R

n−1 and J ⊆ R around x0 and y0,
respectively, such that W = I × J ⊆ U , and a smooth map h: I → J such that

C ∩ W = {(x, h(x)) | x ∈ I},

that is, in a neighborhood of p the set C is the graph of h.

Differentiating the expression f(x, h(x)) = 0 by means of the chain rule we obtain
∂f
∂xj

(x, h(x)) + ∂f
∂y

(x, h(x)) ∂h
∂xj

(x) = 0, and hence

∂h

∂xj

(x) = −

∂f
∂xj

(x, h(x))

∂f
∂y

(x, h(x))
(3)

(this expression is also derived in Note 1).
We will now generalize Theorem 2 to functions f : Rn → R

m, that is, to the case
where the set C consists of the simultaneous solutions to m equations. It is then
convenient to write elements in R

n as (x, y) where x = (x1, . . . , xn−m) ∈ R
n−m and

y = (y1, . . . , ym) ∈ R
m.

Theorem 3. The implicit function theorem. Let f : U → R
m be a smooth

function, where U ⊆ R
n is open. Let

C = {(x, y) ∈ U | f(x, y) = 0}

and let p = (x0, y0) ∈ C. Assume that the determinant of the m × m matrix

A =
∂fi

∂yj

(p),
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consisting of the last m columns of the jacobian Jf(p), is non-zero.
Then there exist open neighborhoods I ⊆ R

n−m and J ⊆ R
m around x0 and y0,

respectively, such that W = I × J ⊆ U , and a smooth map h: I → J such that

C ∩ W = {(x, h(x)) | x ∈ I},

that is, in a neighborhood of P the set C is the graph of h: Rn−m → R
m.

Proof. The theorem is proved by induction from the special case m = 1 already
obtained in Theorem 2. Thus, we assume that the conclusion of the theorem is
valid for functions into R

m−1.
Since det A is non-zero, A is invertible. We want to replace f : Rn → R

m by the
function A−1◦f : Rn → R

m, obtained by multiplying all image vectors f(x, y) ∈ R
m

with the constant matrix A−1. Since multiplication by A−1 is a bijection, the
solution sets for the equations f(x, y) = 0 and A−1f(x, y) = 0 are identical, and it
follows from the chain rule (2) that

J(A−1 ◦ f)(p) = A−1 · Jf(p),

from which we see that the last m columns of J(A−1 ◦f)(p) comprise a unit matrix
δkj . The effect of the replacement is thus that we may assume that A itself is a
unit matrix. This we assume from now on, that is, ∂fk/∂yj = δkj .

In particular, for the function fm whose derivatives are in the last row of Jf ,
we have that ∂fm/∂yj(p) = 0 for j < m and ∂fm/∂ym(p) = 1. It follows from
Theorem 2, applied with the last variable ym as y, that there exists a neighborhood
of p in which the set of solutions to fm(x, y) = 0 is the graph of a smooth function
h: Rn−1 → R, that is, fm(x, y) = 0 if and only if

ym = h(x, y′), y′ = (y1, . . . , ym−1).

Moreover, by (3) the derivatives of h at p are given by

∂h

∂xi

(p) = −
∂fm

∂xi

(p), and
∂h

∂yj

(p) = −
∂fm

∂yj

(p) = 0

for i = 1, . . . , n − m and j = 1, . . . , m − 1.
Let the function F : Rn−1 → R

m−1 be defined (on a neighborhood of (x0, y
′

0)) by

Fk(x, y′) = fk(x, y′, h(x, y′)) (4)

for k = 1, . . . , m − 1, where as before y′ = (y1, . . . , ym−1). The partial derivatives
of Fk are obtained by applying the chain rule to (4):

∂Fk

∂yj

=
∂fk

∂yj

+
∂fk

∂ym

∂h

∂yj

and at p we thus have ∂Fk/∂yj = ∂fk/∂yj = δkj . The determinant of this matrix
being non-zero, we can apply our induction hypothesis to F , and we obtain the
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existence of a function g: Rn−m → R
m−1 such that the solution set for the equation

F (x, y′) = 0 is the graph of g in a neighborhood of (x0, y
′

0), that is, F (x, y′) = 0 if
and only if y′ = g(x).

We now see that (in a neighborhood of p) with y = (y′, ym)

f(x, y) = 0

if and only if
fk(x, y) = 0, k = 1, . . . , m

if and only if

fk(x, y) = 0, k = 1, . . . , m − 1 and ym = h(x, y′)

if and only if
F (x, y′) = 0 and ym = h(x, y′)

if and only if
y′ = g(x) and ym = h(x, y′)

if and only if
y = (g(x), h(x, g(x))).

The function x 7→ (g(x), h(x, g(x))) is thus seen to be the desired function whose
graph is C in a neighborhood of p. �

Definition Let U, V ⊆ R
m be open sets. A map f : U → V is called a diffeomor-

phism if
1. f is smooth,
2. f : U → V is bijective, and
3. f−1: V → U is also smooth.

Proposition. If f : U → V is a diffeomorphism, then its differential dfq: R
m → R

m

is bijective at each q ∈ U (equivalently, det Jf(q) 6= 0). Moreover, the differential
of f−1 at z = f(q) is given by

d(f−1)z = (dfq)
−1.

Proof. Follows immediately from the chain rule by differentiation of the expression
f ◦ f−1 = I. �

The following fundamental result from multivariable calculus plays a very promi-
nent role in differential geometry.

Theorem 4. The inverse function theorem. Let F : U → R
m be smooth, where

U ⊆ R
m is open. Suppose that at a given point q ∈ U the differential dFq: R

m → R
m

is bijective. Then there exists an open set W ⊆ U containing q and an open set
V ⊆ R

m containing F (q) such that V = F (W ) and F is a diffeomorphism of W
onto V .
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Proof. We shall apply the implicit function theorem with n = 2m to the map
f : Rm × U → R

m given by f(x, y) = −x + F (y) where x ∈ R
m, y ∈ U . Notice that

f(x, y) = 0 if and only if F (y) = x, hence if we can exhibit the solution set to this
equation as the graph y = h(x) of a function h, then h will be inverse to F .

Let y0 ∈ R
m denote the given point q, and let x0 = F (y0). The matrix A

of Theorem 3 is exactly JF (q), hence it has a non-vanishing determinant. Thus,
according to the theorem there exist open neighborhoods I and J of x0 and y0,
respectively, and a smooth map h: I → J such that f(x, y) = 0 if and only if
y = h(x), for all (x, y) ∈ I × J . Let W = J ∩ F−1(I), then W is open (since F is
continuous). It is now seen, as remarked above, that F : W → I and h: I → W are
the inverse maps of each other. Hence F is a diffeomorphism of W onto V = I. �

Remark There is a fundamental difference between the inverse function theorem
for functions of one variable and those of several variables. The theorem we have
proved is local, as it only asserts the existence of an inverse to f in a neighborhood of
f(p). Even if the condition, that dfp: R

n → R
n is bijective, is satisfied everywhere

in U , a global inverse of f need not exist, as seen in the example below. This
contrasts the situation for n = 1: If f ′(x) 6= 0 on an interval, then f is monotone
on that interval, hence bijective.

Example Let U ⊆ R
2 denote the right half plane

U = {(r, θ) ∈ R
2 | r > 0}

and let f : U → R
2 be given by

f(r, θ) = (r cos θ, r sin θ)

that is, f(r, θ) is the point having polar coordinates (r, θ). The Jacobian of f ,

Jf(r, θ) =

(

cos θ −r sin θ
sin θ r cos θ

)

,

is regular for all (r, θ) ∈ U , hence the inverse function theorem implies that f is
locally invertible. Since f(r, θ + 2π) = f(r, θ), f is not globally injective. However,
it follows from the corollary below, that the restriction of f to {(r, θ) | r > 0, θ ∈ I},
where I is any open interval of length ≤ 2π, has a differentiable inverse.

Corollary. Let F : U → R
m be injective and smooth, where U ⊆ R

m is open.
Suppose that dFq: R

m → R
m is bijective for each q ∈ U . Then F (U) is open and F

is a diffeomorphism of U onto F (U).

Proof. Since F is injective, it has an inverse map F−1: F (U) → U . Let F (q) ∈ F (U)
be given, then according to Thm. 4 there exists an open neighborhood V = F (W )
of F (q) in F (U), and the restriction of F−1 to that neigborhood is smooth. It
follows that F−1 is smooth. �
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