This note contains some improvements to Theorems 1.1 and 1.2.
Theorem 1.1a. Let $f: U \rightarrow \mathbb{R}$ be a smooth function, where $U \subseteq \mathbb{R}^{2}$ is open. Let

$$
\mathcal{C}=\{(x, y) \in U \mid f(x, y)=0\}
$$

Let $P \in \mathcal{C}$ and assume that $\partial f / \partial x$ and $\partial f / \partial y$ are not both zero at P.
Then there exists an open neighborhood $W \subseteq U$ of P, an open interval $I \subseteq \mathbb{R}$ around 0 , and a regular parametrized curve $\gamma: I \rightarrow \mathbb{R}^{2}$ which maps I bijectively onto $\mathcal{C} \cap W$. Moreover the inverse map $\gamma^{-1}: \mathcal{C} \cap W \rightarrow I$ is continuous.

That is, in a neighborhood of the point P, the level curve \mathcal{C} can be parametrized as a regular curve without selfintersection. The shortcoming of the statement in Theorem 1.1 is that it only asserts that γ maps into \mathcal{C}.

The theorem is an easy consequence of the following result, after a possible interchange of x and y.

Theorem 1.1b. (The implicit function theorem.) Let $f: U \rightarrow \mathbb{R}$ be a smooth function, where $U \subseteq \mathbb{R}^{2}$ is open. Let $\mathcal{C}=\{(x, y) \in U \mid f(x, y)=0\}$ and let $P=\left(x_{0}, y_{0}\right) \in \mathcal{C}$. Assume that $\partial f / \partial y \neq 0$ at P.

Then there exist open intervals I and J around x_{0} and y_{0}, respectively, such that $W=I \times J \subseteq U$, and a smooth map $h: I \rightarrow J$ such that

$$
\begin{equation*}
\mathcal{C} \cap W=\{(x, h(x)) \mid x \in I\} \tag{1}
\end{equation*}
$$

that is, in a neighborhood of P the set \mathcal{C} is the graph of h.
Proof. Assume for simplicity that $P=(0,0)$ and that the value of $\frac{\partial f}{\partial y}$ at P is positive (the latter can be arranged by replacing f with $-f$, if necessary). Choose $\delta>0$ such that the closed square $[-\delta, \delta] \times[-\delta, \delta]$ lies inside U and such that $\frac{\partial f}{\partial y} \geq c$ on this square, for some constant $c>0$ (using the continuity of $\frac{\partial f}{\partial y}$). Then $y \mapsto f(x, y)$ is strictly increasing on $J=(-\delta, \delta)$ for each fixed $x \in J$.

In particular, since $P=(0,0) \in \mathcal{C}$ we have $f(0,0)=0$, and hence $f(0,-\delta)<0$ and $f(0, \delta)>0$. By continuity of f there exists a positive number $\eta \leq \delta$ such that $f(x,-\delta)<0$ and $f(x, \delta)>0$ for all $x \in I=(-\eta, \eta)$.

Let $x \in I$. Since $y \mapsto f(x, y)$ is strictly increasing and continuous, there exists a unique y between $-\delta$ and δ where $f(x, y)=0$. This value of y is denoted $h(x)$. Then $h: I \rightarrow J$ clearly satisfies (1), it remains to be seen that it is smooth.

We first prove that h is continuous. Fix $x \in I$ and let $y=h(x)$, then $f(x, y)=0$. Let Δx be sufficiently small so that $x+\Delta x \in I$. Associated to Δx we define Δy such that $y+\Delta y=h(x+\Delta x)$, then also $f(x+\Delta x, y+\Delta y)=0$.

The asserted continuity amounts to the statement that $\Delta y \rightarrow 0$ when $\Delta x \rightarrow 0$. The function

$$
t \mapsto \varphi(t)=f(x+t \Delta x, y+t \Delta y)
$$

is zero both for $t=0$ and $t=1$. By the mean value theorem (Rolle's theorem) there exists a number $\theta \in(0,1)$ (depending on $\Delta x)$ such that

$$
\varphi^{\prime}(\theta)=0
$$

Differentiating φ by means of the chain rule we thus obtain

$$
\frac{\partial f}{\partial x}(x+\theta \Delta x, y+\theta \Delta y) \Delta x+\frac{\partial f}{\partial y}(x+\theta \Delta x, y+\theta \Delta y) \Delta y=0 .
$$

Since $\left|\frac{\partial f}{\partial x}\right|$ is bounded, and since $\frac{\partial f}{\partial y} \geq c>0$, it follows that $\Delta y \rightarrow 0$ when $\Delta x \rightarrow 0$, as claimed.

Next we prove that h is differentiable, which with the notation from above amounts to the convergence of $\Delta y / \Delta x$ as $\Delta x \rightarrow 0$. In fact, this follows immediately from the equation above, moreover the limit is given by

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=-\frac{\frac{\partial f}{\partial x}(x, y)}{\frac{\partial f}{\partial y}(x, y)}
$$

Hence h is differentiable and satisfies

$$
\begin{equation*}
h^{\prime}(x)=-\frac{\frac{\partial f}{\partial x}(x, h(x))}{\frac{\partial f}{\partial y}(x, h(x))} . \tag{1}
\end{equation*}
$$

Finally, we prove by induction that h is smooth. Assuming that $h \in C^{r}(I)$ for some natural number r, we see from equation (1) that also h^{\prime} belongs to $C^{r}(I)$. Hence $h \in C^{r+1}(I)$.

Example 1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=x y$. Then $\partial f / \partial x\left(x_{0}, y_{0}\right)=y_{0}$ and $\partial f / \partial y\left(x_{0}, y_{0}\right)=x_{0}$. Hence both derivatives are zero only at the origin $P=(0,0)$. Thus the theorem tells that the level curve $f(x, y)=0$ can be parametrized as a regular curve near all its points, except possibly $P=(0,0)$. Obviously, this level curve is the union of the two axes, and the conclusion of the above theorem does indeed fail at the origin.
Example 2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=y^{4}-y^{2}+x^{2}$, and consider the level curve $\mathcal{C}=\{(x, y) \mid f(x, y)=0\}$. The derivatives $\partial f / \partial x=2 x$ and $\partial f / \partial y=4 y^{3}-2 y$ are zero if and only if $x=0$ and $y=0$ or $y= \pm 1 / \sqrt{2}$. Of the three points $(0,0)$, $(0,1 / \sqrt{2}),(0,-1 / \sqrt{2})$, only the first one belongs to \mathcal{C}. Hence \mathcal{C} can be parametrized as a regular curve near all its points, except possibly the origin. In fact, it can be shown that \mathcal{C} is a curve that has the shape of the figure 8 , with the intersection placed at the origin.

Remark Theorem 1.1b and the proof above is easily generalized to functions of more variables, say $f(x, y)$ where $(x, y)=\left(x_{1}, \ldots, x_{n-1}, y\right) \in U \subseteq \mathbb{R}^{n}$ with $\partial f / \partial y \neq$ 0 at P. The conclusion is, that there exists a neighborhood $I \times J \subseteq U$ of P, where $I \subseteq \mathbb{R}^{n-1}$ and $J \in \mathbb{R}$ are open sets, such that the set of solutions $(x, y) \in I \times J$ to the equation $f(x, y)=0$ is the graph of a smooth function $y=h(x)$, defined on I.

The conclusion of Theorem 1.2 can be similarly improved, so that γ actually maps an interval containing t_{0} onto a neighborhood of $\left(x_{0}, y_{0}\right)$ in the level curve. This follows immediately form the proof of Theorem 1.2 given in the book.
Theorem 1.2a. Let $\gamma: I \rightarrow \mathbb{R}^{2}$ be a parametrized plane curve, regular at $t_{0} \in I$. Then, there exist a neighborhood U of $P=\gamma\left(t_{0}\right)$, a smooth function $f: U \rightarrow \mathbb{R}$ with $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \neq(0,0)$ at P, and an open interval $J \subset I$ around t_{0} such that $\gamma: J \rightarrow\{(x, y) \in U \mid f(x, y)=0\}$ is bijective.

