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In this note two different notions of connectedness for sets are discussed. Con-
nectedness appears, for example, in Pressley p. 72.

Let M be a non-empty metric space.

Definition. 1) M is called connected if it cannot be separated in two disjoint non-
empty open subsets, that is, if M = A1 ∪ A2 with A1, A2 open and disjoint, then
A1 or A2 is empty (and A2 or A1 equals M).

2) M is called pathwise (or arcwise) connected if for each pair of points a, b ∈ S
there exists real numbers α ≤ β and a continuous map γ: [α, β] → M such that
γ(α) = a and γ(β) = b (in which case we say that a and b can be joined by a
continuous path in M).

3) A non-empty subset E ⊆ M is called connected or pathwise connected if it has
this property as a metric space with the restriction of the metric of M .

The above definition of ”connected” is standard in the theory of metric spaces
(and more generally in topology). However, the notion of ”pathwise connected” is
sometimes (for example by Pressley) also referred to as ”connected”. The precise
relation between the two notions will be explained in this note.

For example, any convex subset E ⊆ R
n is pathwise connected, since by defi-

nition any two points from E can be joined by a straight line, hence a continuous
curve, inside E. It follows from Theorem 2 below that such a subset is also con-
nected.

It is easy to prove that a subset of R is connected if and only if it is an interval,
and likewise it is pathwise connected if and only if it is an interval. Thus for subsets
of R the two definitions agree. As we shall see, this is not so in general.

The most fundamental property of connected sets is expressed in the following
theorem, which generalizes the well-known fact that a continuous real function
carries intervals to intervals (the intermediate value property).

Theorem 1. Let f : M → N be a continuous map between metric spaces. If M is
connected, then so is the image f(M) ⊆ N . Likewise, if M is pathwise connected
then so is f(M).

Proof. 1) Assume f(M) = B1 ∪ B2 with B1, B2 open and disjoint, and let Ai =
f−1(Bi). Then A1, A2 are open, disjoint and with union M . Hence if M is con-
nected then A1 or A2 is empty, and hence B1 or B2 is empty.

2) If a, b ∈ M can be joined by a continuous path γ, then f(a) and f(b) are
joined by the continuous path γ ◦ f . �

Theorem 2. A pathwise connected metric space is also connected.

Proof. Suppose M were pathwise connected but not connected. Then M = A ∪ B
with A, B open, disjoint and nonempty. Let a ∈ A, b ∈ B, then there exists a
continuous map γ: [α, β] → M joining a to b. The image C = γ([α, β]) is the
disjoint union of C ∩A and C ∩B. These sets are open relative to C, and they are
nonempty since they contain a and b, respectively. Hence C is not connected. On
the other hand, it follows from Thm. 1 that C = γ([α, β]) is connected, so that we
have reached a contradiction. �
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The converse statement is false. There exists subsets of, for example R
n (n ≥

2), which are connected but not pathwise connected (an example is given below).
However, for open subsets of R

n the two notions of connectedness agree:

Theorem 3. Each open connected subset E of R
n is also pathwise connected.

Proof. The crucial property of R
n in this respect is that for each point a ∈ R

n, all
the open balls centered at a are pathwise connected.

A metric space is said to be locally pathwise connected if it has the following
property. For each point a ∈ R

n and each ε > 0 there exists an open pathwise
connected set U such that a ∈ U ⊆ K(a, ε). It follows from the observation above
that R

n is locally pathwise connected.
We will prove that in a locally pathwise connected metric space, all open con-

nected sets E are pathwise connected.
For a, b ∈ E we write a ∼ b if a and b can be joined by a continuous path in E.

It is easily seen that this is an equivalence relation. Since E is open there exists
for each a ∈ E an open ball K(a, ε) ⊆ E, hence an open pathwise connected set
U with a ∈ U ⊆ E. For all points x in U we thus have a ∼ x. It follows that
the equivalence classes for ∼ are open. Let A be an arbitrary of these equivalence
classes, and let B denote the union of all other equivalence classes. Then A and B
are open, disjoint and have union E. Since E is connected, A or B is empty. Since
a ∈ A, we conclude that B = ∅ and A = E. Hence all points of E are equivalent
with each other, which means that E is pathwise connected. �

Theorem 4. Let S ⊆ R
3 be a surface. Each open connected subset E of S is also

pathwise connected.

Proof. According to the previous proof it suffices to prove that S is locally pathwise
connected. This follows from the definition of a surface, since it shows that for each
a ∈ S there exists an open neighborhood of a in S which is homeomorphic to an
open set in R

2. �

Example. The graph of the function

f(x) =

{

sin(1/x) x 6= 0

0 x = 0

is connected but not pathwise connected. The proof is left to the reader.
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