
Note 9. Intrinsic geometry. MAT 3GE, F2003

As mentioned in Pressley, p. 229, a geometric property of a surface which ‘can
be measured by a bug living on the surface’ is called intrinsic. This means that it
should be possible to express the property using only arc lengths on the surface.
The idea is that the bug is capable of measuring such lengths, but that it cannot
detect the three-dimensional space in which the surface lies.

The surface bug is able to use local coordinates on the surface in much the
same fashion as us. It associates a point σ(u, v) on the surface to each pair of
coordinates (u, v), but it does not know the (x, y, z)-coordinates of σ(u, v). A curve
on the surface is then described by means of its coordinates (u(t), v(t)). Having
chosen a coordinate system σ(u, v), the bug can determine the quantities E, F, G
of the first fundamental form, as functions of u and v, as follows. It measures the
arclength s(t) along the parameter curve (u(t), v(t)) = (u0 + t, v0) where u0, v0

are fixed, and cleverly differentiates s with respect to t. Then E(u0, v0) = ṡ(0)2.
Indeed, if γ(t) = σ(u0 + t, v0) then γ̇ = u̇σu + v̇σv = σu and hence

ṡ(t) = ‖γ̇(t)‖ = ‖σu‖ =
√

E.

The determination of G is similar, and after that F is determined from the arc
length along, for example, (u(t), v(t)) = (u0 + t, v0 + t).

On the other hand, knowing the first fundamental form, we can determine all
arc lengths by means of the equation on p. 98. Therefore, an intrinsic property is

a property which for any given patch can be determined from the first fundamental

form alone.
Examples of intrinsic properties, besides lengths of curves, are angles (see p.

106-107) and areas (see p. 113). The property of a curve on the surface, that it is a
geodesic, is also intrinsic, since the geodesic equations are expressed with E, F, G,
hence can be verified by the bug for a given curve (u(t), v(t)).

Examples of extrinsic properties (properties which are not intrinsic) are the
x, y, z-coordinates of a point, the principal curvatures κ1 and κ2, and the corre-
sponding principal directions. Thus, the surface bug is unable to determine these.

It is from this point view, that it is remarkable that the Gauss curvature

K = κ1κ2 =
LN −M2

EG− F 2

is intrinsic, as stated in Theorem 10.1, Theorema egregium. The mean curvature
H = 1

2
(κ1 + κ2) on the other hand is extrinsic.

Here follows a short proof of the Gauss theorem. In contrast to the proof in the
book, we will employ the fact that an orthogonal surface patch can be chosen in a
neighborhood of each point of the surface, see Proposition 7.2. In fact, it can also
be arranged that M = 0, but this does not lead to any major simplification. Our
aim is to prove the formula in Corollary 10.2 (i), from which the theorem follows,
since it exhibits K as a function of E and G alone.

The proof is based on the following lemma, in which we assume that (σ, U) is an
orthogonal patch on S, that is, it has F = 0.
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Lemma. Let

X =
σu√
E

and Y =
σv√
G

so that (X,Y,N) is an orthonormal basis for R
3. Then

Xu = − Ev

2
√

EG
Y +

L√
E

N, Xv =
Gu

2
√

EG
Y +

M√
E

N,

Yu =
Ev

2
√

EG
X +

M√
G

N, Yv = − Gu

2
√

EG
X +

N√
G

N.

Proof. Since X is a unit vector, the derivatives Xu and Xv are perpendicular to X.
Likewise, Yu and Yv are perpendicular to Y. Since (X,Y,N) is an orthonormal
basis, it follows that

Xu = (Xu ·Y)Y + (Xu ·N)N, Xv = (Xv ·Y)Y + (Xv ·N)N,

Yu = (Yu ·X)X + (Yu ·N)N, Yv = (Yv ·X)X + (Yv ·N)N.

It follows from the definition X = E−1/2σu that

Xu = −1

2
E−3/2Euσu + E−1/2σuu

and hence, since Y and N are both perpendicular to σu,

Xu ·Y = E−1/2σuu ·Y = (EG)−1/2σuu · σv,

Xu ·N = E−1/2σuu ·N = E−1/2L.

From σu · σv = 0 and σu · σu = E we get by differentiation with respect to u and
v, respectively, that σuu · σv = −σu · σvu = − 1

2
Ev. The equation for Xu follows.

The proof of the other three equations is similar. �

In order to establish the formula for K we use the equations in the lemma to
derive two expressions for Xu ·Yv −Xv ·Yu.

On the one hand, if we insert directly from the lemma, and use that (X,Y,N)
is orthonormal

Xu ·Yv −Xv ·Yu =
LN −M2

√
EG

=
√

EG K. (1)

On the other hand,

Xu ·Yv −Xv ·Yu = (X ·Yv)u − (X ·Yu)v (2)

by cancellation of terms X ·Yvu = X ·Yuv. Furthermore, again by insertion from
the lemma

(X ·Yv)u − (X ·Yu)v = −
(

Gu

2
√

EG

)

u

−
(

Ev

2
√

EG

)

v

. (3)

The formula for K in Corollary 10.2 follows at once from these three equations. �

We end this note with a formula from which it follows that the geodesic curvature
κg of a curve on a surface is intrinsic. We have already argued that the property
κg = 0, which is equivalent with the curve being a geodesic, is intrinsic. What we
are claiming now is stronger. The formula is a generalization of that in Proposition
2.2 for plane curves.
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Proposition. Let γ be a unit speed curve on S, and let γ(t) = σ(u(t), v(t)) be its

expression in an orthogonal patch. Let θ(t) denote a differentiable determination

of the angle from σu to γ̇(t), in the orientation given by N. Then

κg = θ̇ − 1

2
√

EG
{u̇Ev − v̇Gu} .

Proof. Let X and Y be as above, then θ(t) is determined up to constant multiples
of 2π by

γ̇(t) = cos θ(t)X + sin θ(t)Y.

The multiples of 2π play no role, as the assertion only involves the derivative of θ.
The asserted formula for κg is essentially given in the proof of Theorem 11.1. In

that proof we can take e′ = X and e′′ = Y. Then it is shown on p. 250 that

κg = θ̇ − e′ · ė′′ = θ̇ −X · Ẏ,

so all we have to do is to compute X · Ẏ. By the chain rule Ẏ = u̇Yu + v̇Yv, and
hence the equations of the previous lemma imply that

X · Ẏ = u̇
Ev

2
√

EG
− v̇

Gu

2
√

EG
. �

For example, we can determine the geodesic curvature along the coordinate curve
u 7→ σ(u, v) as follows. If t 7→ σ(u(t), v) is a unit speed reparametrization, then

‖u̇σu‖ = 1. Thus u̇ = 1/
√

E. Moreover, θ = 0 and v̇ = 0, so we obtain from the
formula above

κg = − Ev

2E
√

G
.

Similarly, the geodesic curvature along v 7→ σ(u, v) is found to be

κg =
Gu

2G
√

E
.


