Note 10. Geodesics as shortest curves, 2. MAT 3GE, F2003

It follows from Theorem 8.2 that if a unit-speed curve is a shortest path on a
smooth surface &, then the curve is a geodesic. The converse is false, as is easily
seen from the following example:

Let P and @ be two points on S? which are not antipodal. Then there is a
unique great circle through P and @), and by separating this circle at P and ) we
obtain two geodesics which both join P to ). Only one of these will be shortest.

However, using geodesic coordinates we can prove the following

Theorem. Let i be a unit-speed geodesic on S, and let P be a point on it, say
P = ;4(0). Then there exists € > 0 such that for for all Q = p(t) where t € (—e¢,¢€),
i is the unique shortest regular curve on S from P to () (uniqueness being up to
reparametrization).

Proof. Let t € TpS be a unit vector orthogonal to the tangent vector ;1(0) to u
at P (t is unique up to change of sign), and let 7 be the unique geodesic through
P with tangent vector t. Let o(u,v), (u,v) € U, be a system of geodesic coor-
dinates around P, constructed from the curve v as in Proposition 8.7. It follows
from that construction that v(t) = ¢(0,t). Moreover, the geodesic t — o(t,0), is
perpendicular to 7 at P, hence identical with p (up to change of direction).

By Prop. 8.7 the first fundamental form satisfies £ = 1, F' = 0 and G(0,v) = 1.
In particular, G =1 at P, so by shrinking U we may assume G > 3 on o(U). Let
€ > 0 be such that the ball in R? of radius 2¢ around (0, 0) is contained in U.

Let tg € (—e¢,€) and let Q@ = u(ty) = o(to,0). Let a be an arbitrary regular
smooth curve on § from P = «a(a) to @ = «(b). At first we assume that « is
contained in o (U), say a(t) = o(u(t),v(t)) for a <t < b. Then (u(a),v(a)) = (0,0)
and (u(b),v(b)) = (t0,0). Now

b
t) = [ o))
and since & = uo, + vo, and =1, F' = 0, we have
lé]| = (2% + G*)'/? > [ul. (1)

Hence
b b
fa) = [ la(olde= | [ a(t)dt] = fu(b) - u(a)| = o

Since t — v(t) = o(t,0) is unit-speed, |to| is exactly the length of v from P to Q.
We have thus shown £(a) > (7).

The inequality (1) is strict unless © = 0, hence ¢(«) > ¢(u) unless v =constant
along a. Since v(a) = v(b) = 0 this would imply that v = 0 everywhere, so that «
has the same trace as . This proves the asserted uniqueness.

It remains to be seen that a path « from P to @), which is not contained in o(U),
must be strictly longer. Such a path must necessarily cross the image by o of the
circle of radius 2e. Let ¢ € (a,b] be the smallest value of ¢ for which «(t) belongs
to this image, and put Q1 = a(c). The length of « from P to @ is > the length of
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a from P to Q1, and by a computation similar to the one above, the length of the
latter part of « is

/C(Eit(t)Q + Gl}(t)2)1/2 dt > (%)1/2 /c<u2 + 1}2)1/2 dt.

Here we used that £ =1 > % and G > % The integral on the right is the length of
the curve (u(t),v(t)) in R? which joins (0,0) with (u(c),v(c)) on the circle of radius
2¢. Hence that integral is > 2¢, and we conclude that £(a) > (3)1/%2e > e. O

For example on S? a geodesic of length < 7 is the unique shortest path between
its end points, hence ¢ = 7 can be used in the theorem above. Likewise, on a
cylinder of radius 1 the value ¢ = 7w can be used.
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