It follows from Theorem 8.2 that if a unit-speed curve is a shortest path on a smooth surface \mathcal{S}, then the curve is a geodesic. The converse is false, as is easily seen from the following example:

Let P and Q be two points on S^{2} which are not antipodal. Then there is a unique great circle through P and Q, and by separating this circle at P and Q we obtain two geodesics which both join P to Q. Only one of these will be shortest.

However, using geodesic coordinates we can prove the following
Theorem. Let μ be a unit-speed geodesic on \mathcal{S}, and let P be a point on it, say $P=\mu(0)$. Then there exists $\epsilon>0$ such that for for all $Q=\mu(t)$ where $t \in(-\epsilon, \epsilon)$, μ is the unique shortest regular curve on \mathcal{S} from P to Q (uniqueness being up to reparametrization).

Proof. Let $\mathbf{t} \in T_{P} \mathcal{S}$ be a unit vector orthogonal to the tangent vector $\dot{\mu}(0)$ to μ at $P(\mathbf{t}$ is unique up to change of sign), and let γ be the unique geodesic through P with tangent vector \mathbf{t}. Let $\sigma(u, v),(u, v) \in U$, be a system of geodesic coordinates around P, constructed from the curve γ as in Proposition 8.7. It follows from that construction that $\gamma(t)=\sigma(0, t)$. Moreover, the geodesic $t \mapsto \sigma(t, 0)$, is perpendicular to γ at P, hence identical with μ (up to change of direction).

By Prop. 8.7 the first fundamental form satisfies $E=1, F=0$ and $G(0, v)=1$. In particular, $G=1$ at P, so by shrinking U we may assume $G \geq \frac{1}{2}$ on $\sigma(U)$. Let $\epsilon>0$ be such that the ball in \mathbb{R}^{2} of radius 2ϵ around $(0,0)$ is contained in U.

Let $t_{0} \in(-\epsilon, \epsilon)$ and let $Q=\mu\left(t_{0}\right)=\sigma\left(t_{0}, 0\right)$. Let α be an arbitrary regular smooth curve on \mathcal{S} from $P=\alpha(a)$ to $Q=\alpha(b)$. At first we assume that α is contained in $\sigma(U)$, say $\alpha(t)=\sigma(u(t), v(t))$ for $a \leq t \leq b$. Then $(u(a), v(a))=(0,0)$ and $(u(b), v(b))=\left(t_{0}, 0\right)$. Now

$$
\ell(\alpha)=\int_{a}^{b}\|\dot{\alpha}(t)\| d t
$$

and since $\dot{\alpha}=\dot{u} \sigma_{u}+\dot{v} \sigma_{v}$ and $E=1, F=0$, we have

$$
\begin{equation*}
\|\dot{\alpha}\|=\left(\dot{u}^{2}+G \dot{v}^{2}\right)^{1 / 2} \geq|\dot{u}| . \tag{1}
\end{equation*}
$$

Hence

$$
\ell(\alpha) \geq \int_{a}^{b}|\dot{u}(t)| d t \geq\left|\int_{a}^{b} \dot{u}(t) d t\right|=|u(b)-u(a)|=\left|t_{0}\right|
$$

Since $t \mapsto \gamma(t)=\sigma(t, 0)$ is unit-speed, $\left|t_{0}\right|$ is exactly the length of γ from P to Q. We have thus shown $\ell(\alpha) \geq \ell(\gamma)$.

The inequality (1) is strict unless $\dot{v}=0$, hence $\ell(\alpha)>\ell(\mu)$ unless $v=$ constant along α. Since $v(a)=v(b)=0$ this would imply that $v=0$ everywhere, so that α has the same trace as γ. This proves the asserted uniqueness.

It remains to be seen that a path α from P to Q, which is not contained in $\sigma(U)$, must be strictly longer. Such a path must necessarily cross the image by σ of the circle of radius 2ϵ. Let $c \in(a, b]$ be the smallest value of t for which $\alpha(t)$ belongs to this image, and put $Q_{1}=\alpha(c)$. The length of α from P to Q is \geq the length of
α from P to Q_{1}, and by a computation similar to the one above, the length of the latter part of α is

$$
\int_{a}^{c}\left(E \dot{u}(t)^{2}+G \dot{v}(t)^{2}\right)^{1 / 2} d t \geq\left(\frac{1}{2}\right)^{1 / 2} \int_{a}^{c}\left(\dot{u}^{2}+\dot{v}^{2}\right)^{1 / 2} d t
$$

Here we used that $E=1 \geq \frac{1}{2}$ and $G \geq \frac{1}{2}$. The integral on the right is the length of the curve $(u(t), v(t))$ in \mathbb{R}^{2} which joins $(0,0)$ with $(u(c), v(c))$ on the circle of radius 2ϵ. Hence that integral is $\geq 2 \epsilon$, and we conclude that $\ell(\alpha) \geq\left(\frac{1}{2}\right)^{1 / 2} 2 \epsilon>\epsilon$.

For example on S^{2} a geodesic of length $<\pi$ is the unique shortest path between its end points, hence $\epsilon=\pi$ can be used in the theorem above. Likewise, on a cylinder of radius 1 the value $\epsilon=\pi$ can be used.

