
Note 7. Euler’s theorem. MAT 3GE, F2003

This note contains alternative proofs of Prop. 6.3 and Cor. 6.1. The proofs are
based on formulas (9) and (10) on p. 132, which express the significance of the two
fundamental forms FI and FII :

1. Let t1, t2 ∈ TPS then
t1 · t2 = T t

1
FIT2 (9)

where Ti is the column formed by the coordinates of ti with respect to the basis
vectors σu, σv for TPS.

2. Let t ∈ TPS be a unit vector, then the normal curvature κn of S at P in
direction t is given by

κn = T t
FIIT, (10)

where T is the column of coordinates of t.

Let f : TPS → TPS be the linear transformation, whose matrix with respect to
the basis σu, σv is

W = F
−1

I
FII ,

the so-called Weingarten matrix (note that FI is invertible according to the re-
mark below Prop. 5.2 (p. 113)). Thus, by definition, the coordinates of f(t) are
determined by the column WT .

Lemma 1. The principal curvatures are the eigenvalues of f and the principal

vectors are the corresponding eigenvectors.

Proof. (This is also discussed on p. 133.) Recall that by definition a number κ ∈ C

is a principal curvature if and only if det(FII −κFI ) = 0, and a (non-zero) tangent
vector t ∈ TPS is a principal vector if and only if (FII − κFI)T = 0.

On the other hand, it follows from linear algebra that κ is an eigenvalue of f if
and only if det(W−κI) = 0, and that t is an eigenvector if and only if (W−κI)T = 0
(where I denotes the identity matrix).

Observe that FII−κFI = FI(W−κI). Since FI is invertible, the lemma follows
immediately. �

Lemma 2. The linear operator f is symmetric, that is, for all t, t′ ∈ TPS

f(t) · t′ = t · f(t′).

Proof. Let T, T ′ be the columns of coordinates of t and t
′. Then by (9),

f(t) · t′ = (WT )t
FIT

′ = T t
W

t
FIT

′

and since FI ,FII are symmetric matrices, W t = FIIF
−1

I
, so

f(t) · t′ = T t
FIIT

′. (∗)

Similarly,
t · f(t′) = T t

FI(WT ′) = T t
FIIT

′. �
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Notice that even though the operator f is symmetric, the matrix W that rep-
resents it need not be symmetric, if the basis vectors σu, σv are not orthogonal to
each other.

In order to prove Prop. 6.3 and Cor. 6.1 we will apply to f the spectral theorem
for symmetric linear operators on a finite dimensional space (see Messer p. 325-
327). According to this theorem the eigenvalues of f are real, and eigenvectors for
different eigenvalues are mutually orthogonal. The statements (i) and (iii) in Prop.
6.3 are direct consequences, in view of Lemma 1.

According to the spectral theorem there exists an orthonormal basis t1, t2 for
TPS consisting of eigenvectors for f . By Lemma 1 the corresponding eigenvalues
are the principal curvatures κ1 and κ2, and t1, t2 are principal directions.

The matrix of f with respect to the basis t1, t2 is diagonal with κ1, κ2 in the
diagonal. If κ1 and κ2 have a common value, say κ, then this diagonal matrix is
κI and f is κ times the identity operator. Hence in that case the matrix of f with
respect to any basis is κI, so W = κI. Number (ii) of Prop. 6.3 follows.

Let t be a unit tangent vector, then

t = cos θt1 + sin θt2 (∗∗)

where θ is the angle from t1 to t. The statement in Cor. 6.1 is, that the normal
curvature at P in direction t is given by

κn = κ1 cos2 θ + κ2 sin2 θ.

We shall now prove this. By (10), (∗) and (∗∗)

κn = f(t) · t = f(cos θt1 + sin θt2) · (cos θt1 + sin θt2),

and since f is linear and t1, t2 are eigenvectors

f(cos θt1 + sin θt2) = cos θf(t1) + sin θf(t2) = κ1 cos θt1 + κ2 sin θt2.

Hence

κn = (κ1 cos θt1 + κ2 sin θt2) · (cos θt1 + sin θt2) = κ1 cos2 θ + κ2 sin2 θ,

as claimed.

Remark. Note that the entries of the Weingarten matrixW are given a geometric
interpretation in Prop. 6.4. They express in a certain sense how the normal vector
N varies, which can be seen as a measure of the shape of S. For this reason the
operator f with matrixW is sometimes called the shape operator. This terminology
is also supported by Lemma 1 above.
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