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Abstract

We investigate if a unital C(X)-algebra is properly infinite when all its fibres are properly
infinite. We show that this question can be rephrased in several different ways, including
the question of whether every unital properly infinite C∗-algebra is K1-injective. We pro-
vide partial answers to these questions, and we show that the general question on proper
infiniteness of C(X)-algebras can be reduced to establishing proper infiniteness of a specific
C([0, 1])-algebra with properly infinite fibres.
We are interested in whether every unital purely infinite non-simple C∗-algebra is K1-
injective. The question is not answered but we give several conditions that imply K1-
injectivity. It is proved among other things that a unital purely infinite C∗-algebra is
K1-injective, if its maximal ideal space is a finite dimensional compact Hausdorff space
that is closed in the primitive ideal space, with respect to the hull-kernel topology.
K1-injectivity is considered for unital approximately divisible C∗-algebras and for Z-stable
C∗-algebras. It is proved that every unital approximately divisible C∗-algebra and every
C∗-algebra that tensorially absorbs an approximately divisible C∗-algebra is K1-injective.
Also a Z-stable C∗-algebra is K1-injective if it is unital and properly infinite. Moreover
we give a condition that will imply K1-injectivity of a strongly self-absorbing C∗-algebra.

Danish abstract

Vi undersøger om en unital C(X)-algebra er properly infinite, hvis alle dens fibre er prop-
erly infinite. Vi viser, at dette spørgsmål på flere måder kan omformuleres, herunder til
spørgsmålet om enhver unital properly infinite C∗-algebra er K1-injektiv. Vi giver delvise
svar til disse spørgsmål, og vi viser, at det generelle spørgsmål vedrørende proper in-
finiteness af C(X)-algebraer kan reduceres til at afgøre proper infiniteness af en konkret
C([0, 1])-algebra med properly infinite fibre.
Vi er interesserede i, om enhver unital purely infinite ikke-simpel C∗-algebra er K1-injektiv.
Spørgsmålet besvares ikke, men vi giver flere betingelser, der medfører K1-injektivitet. Det
vises bl.a. at en unital purely infinite C∗-algebra er K1-injektiv, hvis dens maksimal ideal
rum er et endeligt dimensionalt kompakt Hausdorffrum, der er afsluttet i primidealrummet
mht. hylster-kerne topologien.
K1-injektivitet betragtes for en unital approksimativ divisibel C∗-algebra og for Z-stabile
C∗-algebraer. Det vises, at enhver unital approksimativ divisibel C∗-algebra og enhver C∗-
algebra, der tensorisk absorberer en approksimativ divisibel C∗-algebra, er K1-injektive.
En Z-stabil C∗-algebra er også K1-injektiv, hvis den er unital og properly infinite. End-
videre giver vi en betingelse, som vil medføre K1-injektivitet af en stærkt selv-absorberende
C∗-algebra.
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Chapter 1

Preface

This thesis is based on my work as a Ph.D. student at the Department of Mathematics
and Computer Science (IMADA), University of Southern Denmark from April 2006 until
Marts 2009. It can be seen as a survey on K1-injectivity of C∗-algebras.

Cuntz studied purely infinite - and in the process also properly infinite C∗-algebras. He was
mainly interested in calculating the K-theory of his algebras On, but among many other
things he also proved that any unital properly infinite C∗-algebra A is K1-surjective, i.e.,
the mapping U(A)/U0(A) → K1(A) is surjective, and that any unital purely infinite simple
C∗-algebra is K1-injective, i.e., the mapping above is injective (and hence an isomorphism).
The latter result is used throughout the thesis, and in the first section of Chapter 3 we
give the proof of the result.
Chapter 3 also includes some of the work done by Rieffel. He is in his papers [25] and [26]
considering different kinds of "ranks" of a Banach algebra, where we are mainly interested
in his proof of K1-injectivity of every unital C∗-algebra having stable rank one. This
property is also used several times in this thesis, but the proof itself is also interesting
since it is used as an inspiration for a construction in Chapter 4.

Chapter 4 is based on the paper [7] which is a joint work with Etienne Blanchard and
Mikael Rørdam. Although Cuntz proved K1-injectivity of unital simple purely infinite C∗-
algebras, he did not address the question of whether any unital properly infinite C∗-algebra
is K1-injective. To our knowledge this question has not been raised before we did it here.
Another question we are concerned with is whether any unital C(X)-algebra with properly
infinite fibres is itself properly infinite. We do not answer those two questions, but we
actually prove that they are equivalent, i.e., every unital properly infinite C∗-algebra is
K1-injective if and only if every C(X)-algebra with properly infinite fibres itself is properly
infinite.

Cuntz’s work also gave inspiration to study unital purely infinite C∗-algebras in the non-
simple case. In Chapter 5 we raise the question whether any unital purely infinite C∗-
algebra is K1-injective. We do not come with an answer to the question, but at least we
are able to prove K1-injectivity if certain conditions are satisfied. For example, it is proved
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that a unital purely infinite C∗-algebra that is an extension of K1-injective C∗-algebras is
itself K1-injective. Moreover K1-injectivity holds for a unital purely infinite C∗-algebra A
if Max(A) is a finite dimensional compact Hausdorff space that is closed in Prim(A) with
respect to the hull-kernel topology. These results are obtained by using some of the ideas
and techniques from Brown and Pedersen’s paper [10]. Therefore their results (together
with proofs) are included in the beginning of Chapter 5. Furthermore for the survey of
K1-injectivity, their result about K1-injectivity of an extremally rich C∗-algebra with weak
cancellation is also interesting.

In Chapter 6 we are considering approximately divisible C∗-algebras. Blackadar, Kumjian
and Rørdam proved that every simple approximately divisible C∗-algebra is K1-injective,
but here we show that it also holds in the unital non-simple case. Moreover we obtain
results about Z-stable C∗-algebras. In particular it is proved that every unital Z-stable
C∗-algebra is K1-injective if it is properly infinite.

In Toms’ and Winter’s paper [37], K1-injectivity has to be assumed for the strongly self-
absorbing C∗-algebras. So in Chapter 7 we raise the question whether K1-injectivity holds
for every strongly self-absorbing C∗-algebra. The question is not answered, but we give
conditions that will imply K1-injectivity.

To become familiar with definitions and notation in the thesis, Chapter 2 is dealing with
back ground material.

During three years as a Ph.D. student, I will first of all thank my supervisor Mikael Rør-
dam, without whom I could not have made this thesis. I am grateful that he was willing
to supervise me and spend time in Odense also after he moved to Copenhagen.
Next, I will thank Eduard Ortega for always having time and being very helpful.
Last but not least, thanks to the employees and students for making IMADA such a nice
place to work.

Randi Rohde
March 2009



Chapter 2

Preliminaries

2.1 Properly infinite C∗-algebras

Two projections p and q in a C∗-algebra A are Murray-von Neumann equivalent, written
p ∼ q, if p = v∗v and q = vv∗ for a partial isometry v ∈ A, and p is subequivalent to q,
written p - q, if p is equivalent to a subprojection of q.

A projection p in a C∗-algebra is said to be infinite if it is equivalent to a proper subpro-
jection of itself, i.e., if there is a projection q in A such that p ∼ q < p. If p is not infinite,
then p is said to be finite.

A unital C∗-algebra A is said to be finite if its unit 1A is a finite projection. Otherwise A
is called infinite. If Mn(A) is finite for all natural numbers n, then A is stably finite.

Definition 2.1.1. A non-zero projection p in a C∗-algebra A is said to be properly infinite
if there are mutually orthogonal projections e, f in A such that e ≤ p, f ≤ p and p ∼ e ∼ f .

A unital C∗-algebra is called properly infinite if its unit 1A is a properly infinite projection.

If p, q are projections in a C∗-algebra A, let p⊕ q denote the projection in M2(A) given by

p⊕ q =

(
p 0
0 q

)
.

Then it follows from [31, Proposition 1.1.2] that a non-zero projection p in a C∗-algebra A
is properly infinite if and only if

p⊕ p - p⊕ 0.

An element in a C∗-algebra A is said to be full if it is not contained in any proper closed
two-sided ideal in A.

It is well known (see for example [35, Exercise 4.9]) that if p is a properly infinite and full
projection in a C∗-algebra A, then e - p for every projection e ∈ A.

3
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2.2 The Murray-von Neumann- and the Cuntz semi-
groups

To a C∗-algebra A we can associate the Murray-von Neumann semigroup V (A) that consists
of Murray-von Neumann equivalence classes of projections in M∞(A) =

⋃∞
n=1Mn(A). This

makes sense, since whenever it is convenient we will identify Mn(A) with its image in the
upper left-hand corner of Mn+k(A) under the mapping:

x 7→
(
x 0
0 0

)
, x ∈Mn(A).

Hence a projection p ∈ Mn(A) can be identified with p ⊕ 0k for any k ∈ N. So V (A) is
defined by

V (A) = P∞(A)/ ∼=
∞⋃
n=1

Pn(A)/ ∼,

where Pn(A) is the projections in Mn(A).

Similarly one can associate the Cuntz semigroup W (A) that consists of equivalence classes
of positive elements in M∞(A). The equivalence relation is defined as follows, due to Cuntz:

Definition 2.2.1. [34] Let a ∈ Mn(A)+ and b ∈ Mm(A)+. Then a - b if there is a
sequence (xk)

∞
k=1 ⊆Mm,n(A) such that

lim
k→∞

x∗kbxk = a.

We define a to be equivalent to b, written a ≈ b, if and only if a - b and b - a. This
defines an equivalence relation on the positive elements in M∞(A), and

W (A) = M∞(A)+/ ≈ .

The sets V (A) and W (A) become ordered abelian semigroups when equipped with the
relations:

〈a〉+ 〈b〉 =

〈(
a 0
0 b

)〉
and

〈a〉 ≤ 〈b〉 ⇐⇒ a - b.

The ordering on V (A) coincides with the algebraic ordering: x ≤ y if and only if there is
a z such that y = x+ z.

Both V (A) and W (A) are positive in the sense that they have a zero-element that is the
smallest element in the semigroup.



5 Purely infinite C∗-algebras

Like we defined properly infinite projections we also define proper infiniteness of positive
elements:
Definition 2.2.2. [22, Definition 3.2] A non-zero positive element in a C∗-algebra is called
properly infinite if

a⊕ a - a.

If a is a properly infinite element in a C∗-algebra A, it follows from [22, Proposition 3.5]
that b - a for every positive element b in the closed two-sided ideal AaA, generated by a.
For each ε > 0, let hε : R+ → R+ be the continuous function defined by

hε(t) = max{t− ε, 0}.
Following the standard convention, we will for each positive element a ∈ A and every ε > 0,
by (a− ε)+ denote the positive element hε(a) ∈ A.
From [29, Section 2] we recall some facts about comparison of two positive elements a, b in
a C∗-algebra A:

(i) a - b if and only if (a− ε)+ - b for every ε > 0.

(ii) a - b if and only if for each ε > 0 there is δ > 0 and x ∈ A such that
x∗(b− δ)+x = (a− ε)+.

(iii) If ‖a− b‖ < ε, then (a− ε)+ - b.

(iv) ((a− ε1)+ − ε2)+ = (a− (ε1 + ε2))+.

2.3 Purely infinite C∗-algebras

There are several equivalent definitions for a simple C∗-algebra to be purely infinite. The
following is one of them:
Definition 2.3.1. [34, Definition 2.3] A simple C∗-algebra A is said to be purely infinite
if every non-zero hereditary sub-C∗-algebra of A contains an infinite projection.

Other equivalent definitions can be seen in [31, Proposition 4.1.1].
In general if A is a (non-simple) C∗-algebra we have the following definition of purely
infiniteness, which is equivalent to Definition 2.3.1 if A is simple:
Definition 2.3.2. [31] A C∗-algebra A is said to be purely infinite if A has no non-zero
abelian quotients and if for every pair of positive elements a, b in A, where b belongs to
AaA, the closed two-sided ideal generated by a, we have that b - a.

Moreover, from [27] there is a result about projections in a unital, simple and purely infinite
C∗-algebra which shall be used later on in the thesis:
Lemma 2.3.3. [27, Lemma A.3.7] Let A be a unital, simple and purely infinite C∗-algebra.
Every non-zero projection in A is properly infinite.
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2.4 The K1-group of a C∗-algebra

For a unital C∗-algebra we let U(A) denote the group of unitary elements in A and we let
Un(A) be equal to U(Mn(A)). Set

U∞(A) =
∞⋃
n=1

Un(A)

and define for u ∈ Un(A), v ∈ Um(A)

u⊕ v =

(
u 0
0 v

)
∈ Un+m(A).

We write u ∼1 v if there exists a natural number k ≥ max{n,m} such that

u⊕ 1k−n ∼h v ⊕ 1k−m in Uk(A)

where ∼h is the homotopy equivalence.

In [35] it is shown that ∼1 is an equivalence relation on U∞(A) and we have the following
definition for the K1-group of a C∗-algebra:

Definition 2.4.1. For a C∗-algebra A we define

K1(A) = U∞(Ã)/ ∼1 .

For a unitary u ∈ U∞(A) we let [u]1 denote the equivalence class in K1(A) containing u,
and we define

[u]1 + [v]1 = [u⊕ v]1, u, v ∈ U(Ã).

One can prove that (K1(A),+) is an abelian group with −[u]1 = [u∗]1 and zero-element
[1]1.

The following proposition is called the standard picture of K1 which is a restatement of
the definition.

Proposition 2.4.2. [35, Proposition 8.1.4] Let A be a C∗-algebra. Then

K1(A) =
{

[u]1 : u ∈ U∞(Ã)
}

and the map [·]1 : U∞(Ã) → K1(A) has the following properties:

(i) [u⊕ v]1 = [u]1 + [v]1.

(ii) If u, v ∈ Un(Ã) and u ∼h v, then [u]1 = [v]1.

(iii) If u, v ∈ Un(Ã), then [uv]1 = [vu]1 = [u]1 + [v]1.
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(iv) For u, v ∈ U∞(Ã), [u]1 = [v]1 if and only if u ∼1 v.

If A is a unital C∗-algebra, then Ã = A+ Cf where f = 1Ã − 1A. Let µ : Ã→ A be given
by

µ(x+ λf) = x, x ∈ A, λ ∈ C.
Then µ is a unital ∗-homomorphism that can be extended to a unital ∗-homomorphism
Mn(Ã) →Mn(A) for each n ∈ N. Thereby we get a map µ : U∞(Ã) → U∞(A).

If A is a unital C∗-algebra the following proposition will imply that we shall often identify
K1(A) with U∞(A)/ ∼1.

Proposition 2.4.3. [35, Proposition 8.1.6] Let A be a unital C∗-algebra. Then there is an
isomorphism ρ : K1(A) → U∞(A)/ ∼1 making the diagram

U∞(Ã)

[·]1
��

µ // U∞(A)

��
K1(A)

ρ // U∞(A)/ ∼1 .

commutative.

Note that Proposition 2.4.3 implies that K1(A) ∼= K1(Ã) for any C∗-algebra A.

Proposition 2.4.4. [35, Proposition 2.1.8] Let A be a unital C∗-algebra and let GL(A) be
the invertible elements in A.

(i) If x ∈ A is invertible then |x| = (x∗x)
1
2 is invertible and ω(x) = x|x|−1 belongs to

U(A).

(ii) The map ω : GL(A) → U(A) defined in (i) is continuous and ω(x) ∼h x in GL(A)
for every x ∈ GL(A).

If we for a C∗-algebra A let GLn(Ã) = GL(Mn(Ã)) and GL∞(Ã) =
⋃∞
n=1 GLn(Ã) it follows

from (ii) that the map [·]1 : U∞(Ã) → K1(A) can be extended to a map

[·]1 : GL∞(Ã) → K1(A),

namely by replacing [x]1 with [ω(x)]1 for every x ∈ GL∞(Ã).
Similarly we have an extension of the map [·]1 : U∞(A) → K1(A) to a map

[·]1 : GL∞(A) → K1(A)

if A is unital.

Below we give examples of K1-groups for some C∗-algebras. See [35, Table of K-groups]
for more examples.

(i) K1(C) = K1(Mn(C)) = K1(B(H)) = 0.
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(ii) If D is a UHF-algebra, then K1(D) = 0.

(iii) K1(On) = 0 for 2 ≤ n ≤ ∞, whereOn is the Cuntz-algebra generated by n isometries.

(iv) K1(C0(R)) = Z.

To a C∗-algebra A one can also associate the K0-group, K0(A) which is defined by equi-
valence of projections instead of equivalence of unitaries. The K0-group will not be used
as frequently as the K1-group in this thesis, so we will not introduce it here. But the
definition and properties of the K0-group can be seen in [35].

2.5 Dimension functions

In the following we will give the definition of a dimension function on a C∗-algebra, which
will be used in later chapters of the thesis. These functions can in some cases be described
by quasi-traces or traces.

Definition 2.5.1. A trace on a C∗-algebra A is a linear function τ : A→ C satisfying

0 ≤ τ(x∗x) = τ(xx∗), x ∈ A.

If ‖τ‖ = 1, then τ is called a tracial state.
Note that if τ is a trace on A, then τn : Mn(A) → C defined by

τn((aij)
n
i=1) =

n∑
i=1

τ(aii), aij ∈ A

is a trace on Mn(A), and if τ is a tracial state, then 1
n
τn is a tracial state on Mn(A). In

the following the extension of a trace τ on a C∗-algebra A to a trace on Mn(A) will also
be denoted by τ .

Definition 2.5.2. [29, Definition 4.2] A quasi-trace on a C∗-algebra A is a function τ :
A→ C satisfying

(i) τ is linear on abelian sub-C∗-algebras of A

(ii) τ(a+ ib) = τ(a) + iτ(b) if a, b are self-adjoint elements

(iii) 0 ≤ τ(x∗x) = τ(xx∗), x ∈ A

(iv) τ extends to a function from Mn(A) → C satisfying (i)-(iii).
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A linear quasi-trace is a trace, but it is an open problem whether all quasi-traces are traces.

Definition 2.5.3. Let A be a C∗-algebra and let d : M∞(A)+ → [0,∞] be a function that
satisfies

d(a⊕ b) = d(a) + d(b)

d(a) ≤ d(b) if a - b

for all a, b ∈ M∞(A)+. Then d is called a dimension function on A. It is said to be lower
semi-continuous if

d(a) ≤ lim inf
n

d(an) whenever lim
n→∞

an = a.

From [29, Proposition 4.1] it follows that d is lower semi-continuous if d = d̄, where

d̄(a) = lim
ε→0+

d((a− ε)+), a ∈M∞(A)+.

Furthermore d̄ is a lower semi-continuous dimension function on A for every dimension
function d on A.

If τ is a quasi-trace on a C∗-algebra A, Blackadar and Handelman showed in [2] that

dτ (a) = lim
ε→0+

τ(fε(a)) = lim
n→∞

τ
(
a

1
n

)
, a ∈M∞(A)+

where fε : R+ → R+ is given by fε(t) = min{ε−1t, 1}, defines a lower semi-continuous
dimension function on A. Moreover it is proved that a lower semi-continuous dimension
function on A is of the form dτ for some quasi-trace τ on A. The function is called the
dimension function induced by τ .
On the other hand Haagerup [15] and Kirchberg [20] proved that quasi-traces on an exact
C∗-algebra are traces. Thus, a lower semi-continuous dimension function on an exact
C∗-algebra A is of the form dτ for some trace τ on A.

2.6 Strongly self-absorbing C∗-algebras

The definition of a strongly self-absorbing C∗-algebra is introduced in [37] by Toms and
Winter, and is given by unitarily equivalence of ∗-homomorphisms.

Definition 2.6.1. Let A and B be separable C∗-algebras. Two ∗-homomorphisms
ϕ, ψ : A → B are called approximately unitarily equivalent if there is a sequence (un)

∞
n=1

of unitaries in M(B) such that

lim
n→∞

‖unϕ(a)u∗n − ψ(a)‖ = 0

for every a ∈ A.



Strongly self-absorbing C∗-algebras 10

Definition 2.6.2. Let D be a unital separable C∗-algebra. Then D is strongly self-
absorbing if D � C and there is a ∗-isomorphism ϕ : D → D ⊗ D such that ϕ is ap-
proximately unitarily equivalent with ψ = idD ⊗ 1, where idD is the identity map on D.

Definition 2.6.3. Let A be a unital separable C∗-algebra. Then A is said to have approx-
imately inner half flip if the ∗-homomorphisms ϕ, ψ : A→ A⊗ A given by

ϕ(a) = a⊗ 1 and ψ(a) = 1⊗ a, a ∈ A

are approximately unitarily equivalent.

By Kirchberg and Phillips [21] it follows that a unital separable C∗-algebra with approxi-
mately inner half flip is simple and nuclear. Furthermore one can easily prove that it has
at most one tracial state (see [27]).

We shall now recall some facts about strongly self-absorbing C∗-algebras that was given in
[37]:

If D is a unital separable strongly self-absorbing C∗-algebra, then

(a) D has approximately inner half flip.

(b) D is nuclear, simple and has at most one tracial state.

(c) D ∼=
⊗k

i=1D
∼=

⊗∞
i=1D for any k ∈ N.

Examples of strongly self-absorbing C∗-algebras are:

(i) The Cuntz-algebras O2 and O∞.

(ii) UHF-algebras of infinite type, i.e., UHF-algebras with associated super natural num-
ber (nj)

∞
j=1 satisfying that nj ∈ {0,∞} for every j ∈ N and nj 6= 0 for at least one

j ∈ N.

(iii) The Jiang-Su algebra Z.

(iv) All finite and infinite combinations of tensor products of the form A ⊗ B where A
and B are one of the examples in (i)-(iii).

The Jiang-Su algebra will be introduced in the next section, and we remind the reader
about that the examples from above are the only known examples of strongly self-absorbing
C∗-algebras.
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2.7 The Jiang-Su algebra

In [18] Jiang and Su are constructing a C∗-algebra from an inductive limit of dimension
drop algebras. This C∗-algebra has later frequently been studied regarding classification
theory and will also be considered in this thesis. We shall now give some facts about the
construction and properties of the Jiang-Su algebra.

For natural numbers n,m we have thatMm(C)⊗Mn(C) ∼= Mmn(C), where the isomorphism
ϕ : Mm(C)⊗Mn(C) 7→Mmn(C) is given by

ϕ(a⊗ b) =


b11a b12a . . . b1na
b21a b22a . . . b2na

...
... . . . ...

bn1a bn2a . . . bnna

 ,

for a ∈Mm(C) and b = (bij)
n
i,j=1 ∈Mn(C).

Let 1n be the identity in Mn(C) og let

Mm(C)⊗ 1n = {a⊗ 1n : a ∈Mm(C)} and 1m ⊗Mn(C) = {1m ⊗ b : b ∈Mn(C)}.

Definition 2.7.1. A dimension drop algebra is a C∗-algebra of the form

I[m0,m,m1] =
{
f ∈ C([0, 1],Mm(C)) : f(0) ∈Mm0(C)⊗ 1 m

m0
, f(1) ∈ 1 m

m1
⊗Mm1(C)

}
,

where m0, m1 and m are natural numbers such that m0 and m1 both divide m.

If m0 og m1 are relatively prime and m = m0m1, then I[m0,m,m1] is called a prime dimen-
sion drop algebra, and is often written as Im0m1 . Jiang and Su proved that I[m0,m,m1]
has no non-trivial projections if and only if I[m0,m,m1] is a prime dimension drop algebra.
In this case

K0(I[m0,m,m1]) ∼= Z and K1(I[m0,m,m1]) = 0.

There exists an inductive sequence of prime dimension drop algebras (An)n∈N, where the
connecting ∗-homomorphisms ϕn : An → An+1 are unital and injective such that the
inductive limit of

A1
ϕ1 // A2

ϕ2 // A3
ϕ3 // . . .

is a unital simple C∗-algebra with a unique tracial state.

In particular, among all inductive limits of dimension drop algebras there is a unique
C∗-algebra Z satisfying that Z is a unital, separable, simple, infinite dimensional and
nuclear C∗-algebra with a unique tracial state such that K0(Z) ∼= Z and K1(Z) = 0. This
C∗-algebra is called the Jiang-Su algebra.

Jiang og Su proved that Z has approximately inner half flip and that

Z ∼= Z ⊗ Z and Z ∼=
∞⊗
i=1

Z.
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In the context of [37] it follows that Z is strongly self-absorbing.
Moreover Jiang and Su proved the existence of C∗-algebras that tensorially absorbs Z:

Theorem 2.7.2. Let A be a unital, purely infinite, simple, and nuclear C∗-algebra. Then
A ∼= A⊗Z.

Theorem 2.7.3. Let A be a unital, infinite dimensional, and simple AF-algebra. Then
A ∼= A⊗Z.



Chapter 3

K1-injectivity

In this chapter we will concentrate on two already known results about K1-injectivity that
will be used later on in the thesis. Namely that a unital purely infinite and simple C∗-
algebra is K1-injective (proved by Cuntz) and that a unital C∗-algebra with stable rank one
is K1-injective (proved by Rieffel). We shall give the proof of both results, and furthermore
it should be mentioned that a C∗-algebra with real rank zero is also K1-injective. This was
proved by Lin in [23] but we will not go into the proof since the result is not used in this
thesis.

For a unital C∗-algebra A, we let U(A) denote the group of unitary elements in A, U0(A)
denotes its connected component containing the unit of A, and Un(A) and U0

n(A) are equal
to U(Mn(A)) and U0(Mn(A)) respectively.

By the First Homomorphism Theorem there is a group homomorphism

ω : U(A)/U0(A) → K1(A)

making the following diagram commutative:

U(A)

��

[·]1

''NNNNNNNNNNN

U(A)/U0(A)
ω //___ K1(A).

The unital C∗-algebra is called K1-injective (K1-surjective) if ω is injective (surjective). In
other words, if A is K1-injective, and u is a unitary element in A, then u ∼h 1 in U(A) if
(and only if) [u]1 = 0 in K1(A).

One could argue that K1-injectivity should entail that the natural mappings

Un(A)/U0
n(A) → K1(A)

13
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be injective for every natural number n. However there seems to be an agreement for
defining K1-injectivity as above. As we shall see later, in Proposition 4.5.2, if A is properly
infinite, then the two definitions agree.

If A is a non-unital C∗-algebra, then A is called K1-injective (surjective) if Ã is K1-injective
(surjective).

3.1 Unital, simple and purely infinite C∗-algebras

As mentioned in the preface, Cuntz was in his paper [12] mainly interested in calculating
the K-theory of the Cuntz-algebras On. But in the process he also proved that every unital
properly infinite C∗-algebra is K1-surjective and that every unital simple purely infinite
C∗-algebra is K1-injective. In this section we shall give Cuntz’s proof of K1-injectivity of
unital simple purely infinite C∗-algebras.

Definition 3.1.1. A C∗-algebra A is said to have property (SP) (small projections) if
every non-zero hereditary sub-C∗-algebra of A contains a non-zero projection.

Note that a simple purely infinite C∗-algebra has property (SP). So in the proof of Theorem
3.1.3 we shall use the following Lemma:

Lemma 3.1.2. Let A be a unital C∗-algebra with property (SP). For every unitary u in
A there is a non-zero projection p ∈ A and a unitary u0 ∈ (1 − p)A(1 − p) such that
u ∼h p+ u0 in U(A).

Proof. If 1 /∈ sp(u), then u ∼h 1 in U(A). Since A has property (SP) there is a projection
p 6= 0 in A, and u0 = 1− p is a unitary in (1− p)A(1− p). Since 1 = p+ u0, it follows that
u ∼h p+ u0 in U(A).

Suppose now that 1 ∈ sp(u). Let ε > 0 and choose continuous functions f, g : sp(u) → [0, 1]
satisfying that

g(1) = 1, f(t)g(t) = g(t), t ∈ sp(u) and f(t) = 0 when |t− 1| > ε.

Since the continuous functional calculus is an isometry, g(u) is a non-zero positive element
in A. Moreover g(u)Ag(u) is a hereditary sub-C∗-algebra of A which implies that there is
a non-zero projection p ∈ g(u)Ag(u). Let

x = (1− p)u(1− p).

First we want to show that ‖(1− p)− x∗x‖ ≤ ε2:
Since f(t)g(t) = g(t) = g(t)f(t) for t ∈ sp(u), it holds that f(u)g(u) = g(u) = g(u)f(u).
Hence f(u)a = a = af(u) for every a ∈ g(u)Ag(u) and in particular

f(u)p = p = pf(u). (3.1)
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Consider t ∈ sp(u). If |t− 1| > ε, then |f(t)t− f(t)| = 0 and if |t− 1| ≤ ε then

|f(t)t− f(t)| ≤ |f(t)||t− 1| ≤ ε.

I.e., |f(t)t− f(t)| ≤ ε for every t ∈ sp(u). Thereby,

‖f(u)u− f(u)‖ ≤ ε. (3.2)

It follows by (3.1) and (3.2) that

‖pu− p‖ = ‖pf(u)u− pf(u)‖ ≤ ‖p‖‖f(u)u− f(u)‖ ≤ ε (3.3)

and similarly
‖up− p‖ ≤ ε. (3.4)

Let z = pu(1− p). We shall prove that (1− p)− x∗x = z∗z and ‖z‖ ≤ ε:
Actually,

(pu− p)(1− p) = pu− pup− p+ p2 = pu− pup = z

so by (3.3)
‖z‖ = ‖(pu− p)(1− p)‖ ≤ ‖pu− p‖‖1− p‖ ≤ ε. (3.5)

Furthermore,

x∗x = (1− p)u∗(1− p)(1− p)u(1− p)

= (1− p)u∗(1− p)u(1− p)

= (1− p)u∗u(1− p)− (1− p)u∗pu(1− p)

= (1− p)− z∗z.

I.e.,
(1− p)− x∗x = z∗z (3.6)

and therefore
‖(1− p)− x∗x‖ = ‖z∗z‖ ≤ ε2. (3.7)

A similar argument gives that

‖(1− p)− xx∗‖ ≤ ε2. (3.8)

If we choose ε sufficiently small (< 1
3
) it follows from (3.7) and (3.8) that there is a unitary

u0 ∈ (1− p)A(1− p) such that ‖x− u0‖ < 1
3

(see Exercise 2.8 [35]).
From (3.4) and (3.5) we get

‖u− (p+ x)‖ = ‖u− p− (1− p)u(1− p)‖
= ‖up− p+ pu− pup‖
≤ ‖up− p‖+ ‖pu(1− p)‖
= ‖up− p‖+ ‖z‖

<
2

3
.
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Clearly, p+ u0 is a unitary in A and

‖u− (p+ u0)‖ ≤ ‖u− (p+ x)‖+ ‖x− u0‖ <
2

3
+

1

3
= 1.

Thus, u ∼h p+ u0.

Theorem 3.1.3. Let A be a unital simple purely infinite C∗-algebra. Then A is K1-
injective.

Proof. Let u ∈ U(A) with [u]1 = 0. Since A is simple and purely infinite, A has property
(SP). Lemma 3.1.2 gives the existence of a non-zero projection p ∈ A and a unitary
u0 ∈ (1 − p)A(1 − p) such that u ∼h p + u0 in U(A). Thus, [p + u0]1 = 0 and there is a
natural number n ∈ N such that (p + u0) ⊕ 1n ∼h 1n+1 in Un+1(A). We can then find a
continuous path t→ wt of unitaries in Un+1(A) with w0 = 1n+1 and w1 = (p+ u0)⊕ 1n.
It follows that p is a properly infinite and full projection since A is purely infinite and
simple. This implies that p ⊕ 1n - p so there is a partial isometry v0 ∈ M1,n+1(A) such
that v∗0v0 = p⊕ 1n and v0v

∗
0 ≤ p. Let

v = (1− p, 0, . . . , 0) + v0 ∈M1,n+1(A)

and
v1 = (1− p, 0, . . . , 0) ∈M1,n+1(A).

Then v1 is a partial isometry with v∗1v1 = (1− p)⊕ 0n and v1v
∗
1 = 1− p. Since v∗0v0 ⊥ v∗1v1

and v0v
∗
0 ⊥ v1v

∗
1, v is a partial isometry with

v∗v = v∗1v1 + v∗0v0 = 1n+1

and
vv∗ = v1v

∗
1 + v0v

∗
0 ≤ 1− p+ p = 1.

Let
zt = vwtv

∗ + (1− vv∗), t ∈ [0, 1].

Hence

z∗t zt = (vw∗t v
∗ + (1− vv∗))(vwtv

∗ + (1− vv∗))

= vw∗t v
∗vwtv

∗ + vw∗t v
∗ − vw∗t v

∗vv∗ + vwtv
∗ + 1− vv∗ − vv∗vwtv

∗ − vv∗ + vv∗vv∗

= vv∗ + vw∗t v
∗ − vw∗t v

∗ + vwtv
∗ + 1− vv∗ − vwtv

∗ − vv∗ + vv∗

= 1

and similarly ztz∗t = 1 so t→ zt is a continuous path of unitaries in A. Moreover,

z0 = vw0v
∗ + (1− vv∗) = v1n+1v

∗ + 1− vv∗ = 1
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and

z1 = vw1v
∗ + 1− vv∗

= v((p+ u0)⊕ 1n)v
∗ + 1− vv∗

= ((1− p, 0, . . . , 0) + v0)((p+ u0)⊕ 1n)((1− p, 0, . . . , 0)T + v∗0) + 1− vv∗

= u0 + v0((p+ u0)⊕ 1n)v
∗
0 + 1− vv∗

= u0 + v0(v
∗
0v0)((p+ u0)⊕ 1n)(v

∗
0v0)v

∗
0 + 1− vv∗

= u0 + v0(p⊕ 1n)v
∗
0 + 1− vv∗

= u0 + v0v
∗
0 + 1− v1v

∗
1 − v0v

∗
0

= p+ u0.

Therefore u ∼h 1 in U(A).

Example 3.1.4. In [11] it is proved that the Cuntz algebras On are unital, simple and
purely infinite C∗-algebras for 2 ≤ n ≤ ∞. This means that these C∗-algebras are K1-
injective.

As mentioned before, Lin proved that a C∗-algebra with real rank zero (i.e., every self-
adjoint element is in the norm limit of self-adjoint elements of finite spectrum) is K1-
injective. Moreover Zhang proved in [38] that a purely infinite simple C∗-algebra has real
rank zero. Thereby Lin’s result become a generalization of Cuntz’s result.

3.2 A C∗-algebra with stable rank one

Rieffel is in his papers [25] and [26] considering different kinds of "stable ranks" of a Banach
algebra; for instance we can mention general stable rank, connected stable rank, and stable
rank. We are in particular interested in the stable rank of a C∗-algebra, and Rieffel actually
proves that a unital C∗-algebra A is K1-injective (and K1-surjective) if it has stable rank
one (i.e., the invertible elements in A are dense in A). The result will be used throughout
the thesis but the proof itself is also interesting for this thesis. In particular it is used as
an inspiration for constructing a specific C∗-algebra B in Example 4.4.5. This C∗-algebra
is important when we are constructing equivalent conditions for a unital properly infinite
C∗-algebra being K1-injective (see Chapter 4).

Let A be a unital C∗-algebra and denote by GLn(A) the invertible elements in Mn(A) and
by GL0

n(A) its connected component containing the unit of Mn(A). Let en denote the last
standard basis vector in the A-module An, and let

Lcn(A) = {xen : x ∈ GLn(A)},
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i.e., Lcn(A) consists of the last columns of the matrices in GLn(A). Define the subset
Lgn(A) ⊆ An by

Lgn(A) =

{
(a1, . . . , an) ∈ An | ∃ (b1, . . . , bn) ∈ An :

n∑
i=1

biai = 1

}
.

It is easily seen that for every y = (ai) ∈ Lgn(A) and every x ∈ GLn(A), then xy ∈ Lgn(A).
Since en ∈ Lgn(A), we get that Lcn(A) ⊆ Lgn(A).
For some natural numbers n ∈ N we may have that Lcn(A) = Lgn(A), which we will
consider in the following.

Definition 3.2.1. [25, Definition 10.1] For a unital C∗-algebra A, the general stable rank
of A, gsr(A) is defined to be the smallest integer m such that GLn(A) acts transitively on
Lgn(A) for all n ≥ m. I.e.,

∀ y1, y2 ∈ Lgn(A) ∃ x ∈ GLn(A) : xy1 = y2.

Lemma 3.2.2. Let A be a unital C∗-algebra. For each n ∈ N, Lcn(A) = Lgn(A) if and
only if GLn(A) acts transitively on Lgn(A).

Proof. Suppose Lcn(A) = Lgn(A) and let y1, y2 ∈ Lgn(A). There exist x1, x2 ∈ GLn(A)
such that x1en = y1 and x2en = y2. Thus, x2x

−1
1 y1 = y2 and GLn(A) acts transitively on

Lgn(A).

Suppose now that GLn(A) acts transitively on Lgn(A) and let y ∈ Lgn(A). Since en ∈
Lgn(A) we can find x ∈ GLn(A) such that y = xen ∈ Lcn(A).

Thereby we get the following result:

Remark 3.2.3. Let A be a unital C∗-algebra. Then gsr(A) is the smallest integer m such
that Lcn(A) = Lgn(A) for all n ≥ m.

Definition 3.2.4. [25, Definition 4.7] Let A be a unital C∗-algebra. The connected stable
rank of A, csr(A) is the smallest integer m such that GL0

n(A) acts transitively on Lgn(A)
for all n ≥ m.

Note by the definition above, we have that gsr(A) ≤ crs(A).

Definition 3.2.5. [25, Definition 1.4] Let A be a unital C∗-algebra. The stable rank of A,
sr(A) is the smallest integer n such that Lgn(A) is dense in An. If no such integer exists,
we set sr(A) = ∞.

The following proposition gives an easier interpretation of the notion stable rank one, which
is almost considered as the definition of a unital C∗-algebra having stable rank one.

Proposition 3.2.6. [25, Proposition 3.1] Let A be a unital C∗-algebra. Then sr(A) = 1 if
and only if GL(A) is dense in A.
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From [25, Corollary 4.10 and Corollary 8.6] we have the following results which we shall
use in the proof of Theorem 3.2.10.

Theorem 3.2.7. Let A be a unital C∗-algebra. Then

csr(A) ≤ sr(A) + 1 and
csr(C(T, A)) ≤ sr(A) + 1.

Let ϕn−1 : GLn−1(A) → GLn(A) be the group homomorphism given by

ϕn−1(x) =

(
x 0
0 1

)
,

and let πn : GLn(A) → GLn(A)/GL0
n(A) be the quotient map. By the First Homomorphism

Theorem there is a unique group homomorphism

ψn−1 : GLn−1(A)/GL0
n−1(A) → GLn(A)/GL0

n(A)

such that the diagram

GLn−1(A)

πn−1

��

ϕn−1 // GLn(A)

πn

��
GLn−1(A)/GL0

n−1(A)
ψn−1 //___ GLn(A)/GL0

n(A).

(3.9)

commutes.

Proposition 3.2.8. [26, Proposition 2.6] Let A be a unital C∗-algebra. For all n ≥ csr(A)
the group homomorphism πn ◦ ϕn−1 : GLn−1(A) → GLn(A)/GL0

n(A) is surjective.

Theorem 3.2.9. [26, Theorem 2.9] Let A be a unital C∗-algebra and let

r = max(csr(A), gsr(C(T, A))).

Then for n ≥ r the group homomorphism ψn−1 : GLn−1(A)/GL0
n−1(A) → GLn(A)/GL0

n(A)
is an isomorphism, and in particular GLn−1(A)/GL0

n−1(A) ∼= K1(A).

Proof. Let n ≥ r and let y ∈ ker(ψn−1) ⊆ GLn−1(A)/GL0
n−1(A). There exists x ∈

GLn−1(A) such that y = πn−1(x) and since

ψn−1(y) = πn(ϕn−1(x)) = πn

((
x 0
0 1

))
,

this implies that diag(x, 1) ∼h 1 in GLn(A). So we can find a continuous path t 7→ u(t) of
elements in GLn(A) such that u(0) = 1 and u(1) = diag(x, 1). Define

γ(t) = u(t)en ∈ Lcn(A) ⊆ Lgn(A).
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Hence γ(0) = γ(1) = en and since we associate C(T, A) with {f ∈ C([0, 1], A) : f(0) =
f(1)}, then γ ∈ C(T, A)n. In fact γ ∈ Lgn(C(T, A)) since γ(t) ∈ Lgn(A). Furthermore
Lcn(C(T, A)) = Lgn(C(T, A)) because n ≥ gsr(C(T, A)), so there is a v ∈ GLn(C(T, A))
such that

ven = γ,

where we consider v : [0, 1] → GLn(A) to be a continuous function with v(0) = v(1) and
v(t)en = γ(t).
Let

w(t) = v(t)v(0)−1.

Then t 7→ w(t) is a continuous path in GLn(A) and

w(t)−1u(t)en = v(0)v(t)−1u(t)en = v(0)v(t)−1γ(t) = v(0)en = γ(0) = en.

Thus, w(t)−1u(t) is on the form

w(t)−1u(t) =

(
z(t) 0
c(t) 1

)
where t 7→ z(t) is a continuous path in GLn−1(A). We have that

w(0)−1u(0) = v(0)v(0)−1u(0) = 1,

which implies that z(0) = 1, and

w(1)−1u(1) = v(0)v(1)−1u(1)

= v(1)v(1)−1u(1)

=

(
x 0
0 1

)
.

I.e., z(1) = x.
Thus x ∼h 1 in GLn−1(A), and therefore ψn−1 is injective since y = πn−1(x) = 0.

By Proposition 3.2.8 the map πn ◦ ϕn−1 is surjective. This implies that ψn−1 is surjective
since the diagram (3.9) commutes.

K1(A) is isomorphic to the inductive limit (K1(A), {µk}, {ψk}) of the inductive sequence

GL(A)/GL0(A)
ψ1 // GL2(A)/GL0

2(A)
ψ2 // GL3(A)/GL0

3(A)
ψ3 // . . . // K1(A).

Since ψn−1 : GLn−1(A)/GL0
n−1(A) → GLn(A)/GL0

n(A) is an isomorphism for n ≥ r, it
follows that µn−1 : GLn−1(A)/GL0

n−1(A) → K1(A) is an isomorphism.

Theorem 3.2.10. Let A be a unital C∗-algebra. For all n ≥ sr(A) the group homomor-
phism ψn : GLn(A)/GL0

n(A) → GLn+1(A)/GL0
n+1(A) is an isomorphism, and in particular

GLn(A)/GL0
n(A) ∼= K1(A).
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Proof. From Theorem 3.2.7 we have that

csr(A) ≤ sr(A) + 1

and
gsr(C(T, A)) ≤ csr(C(T, A)) ≤ sr(A) + 1.

The result now follows from Theorem 3.2.9.

Theorem 3.2.11. Let A be a unital C∗-algebra with sr(A) = 1. Then U(A)/U0(A) ∼=
K1(A).

Proof. Define a unital group homomorphism ω : GL(A) → U(A) by

ω(x) = x|x|−1.

Note that ω(x) is the unitary part of the polar decomposition of the invertible element x.
Furthermore ω is surjective since ω(u) = u for a unitary u ∈ U(A).
By the First Homomorphism Theorem there is a unital surjective group homomorphism
ρ : GL(A)/GL0(A) → U(A)/U0(A) such that the diagram

GL(A)

π1

��

ω // U(A)

π

��
GL(A)/GL0(A)

ρ //___ U(A)/U0(A)

commutes, where π : U(A) → U(A)/U0(A) is the quotient map.
We shall show that ρ is also injective:

Let y ∈ ker(ρ) ⊆ GL(A)/GL0(A), and find an x ∈ GL(A) such that y = π1(x). I.e.,
π(ω(x)) = ρ(y) = 0, and therefore ω(x) ∼h 1 in U(A).
But ω(x) ∼h x in GL(A) (c.f. [35, Proposition 2.1.8]), so x ∼h 1 in GL(A). Hence y = 0,
and ρ is injective.

Therefore U(A)/U0(A) ∼= GL(A)/GL0(A), and by Theorem 3.2.10 GL(A)/GL0(A) ∼=
K1(A).

In [25] Rieffel gives examples of C∗-algebras with stable rank one, and therefore we get
examples of K1-injective (and K1-surjective) C∗-algebras:

3.2.1 Examples of K1-injective C∗-algebras with stable rank one

Invertible elements are dense in Mn(C) for every n ∈ N, so sr(Mn(C)) = 1. Hence every
direct sum of matrix algebras have stable rank one, which implies that sr(A) = 1, when A
is a finite dimensional C∗-algebra.
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Moreover it is shown that stable rank one persists under inductive limits, and thereby
AF-algebras have stable rank one.

From [33, Theorem 6.7] it follows that every simple unital finite Z-absorbing C∗-algebra
has stable rank one. In particular sr(Z) = 1.

By Theorem 3.2.11 it then follows that finite dimensional C∗-algebras, AF-algebras and Z
are examples of K1-injective C∗-algebras with stable rank one.



Chapter 4

Properly infinite C(X)-algebras and
K1-injectivity

This chapter is based on the paper [7] which is a joint work with Mikael Rørdam and
Etienne Blanchard. The problem that we mainly are concerned with is whether any unital
C(X)-algebra with properly infinite fibres is itself properly infinite. An analogous study
was carried out in the recent paper [17] where it was decided when C(X)-algebras, whose
fibres are either stable or absorb tensorially a given strongly self-absorbing C∗-algebra,
themselves have the same property. This was answered in the affirmative in [17] under the
crucial assumption that the dimension of the space X is finite, and counterexamples were
given in the infinite dimensional case.

Along similar lines, Dadarlat, [13], recently proved that C(X)-algebras, whose fibres are
Cuntz algebras, are trivial under some K-theoretical conditions provided that the space X
is finite dimensional.

The property of being properly infinite turns out to behave very differently than the prop-
erty of being stable or of absorbing a strongly self-absorbing C∗-algebra. It is relatively
easy to see (Lemma 4.2.9) that if a fibre Ax of a C(X)-algebra A is properly infinite, then
AF is properly infinite for some closed neighborhood F of x. The (possible) obstruction
to proper infiniteness of the C(X)-algebra is hence not local. Such an obstruction is also
not related to the possible complicated structure of the space X, as we can show that a
counterexample, if it exists, can be taken to be a (specific) C([0, 1])-algebra (Example 4.4.1
and Theorem 4.5.5). The problem appears to be related with some rather subtle internal
structure properties of properly infinite C∗-algebras.

In this chapter we also raise the question whether any properly infinite C∗-algebra is K1-
injective. We show that every properly infinite C∗-algebra is K1-injective if and only if
every C(X)-algebra with properly infinite fibres itself is properly infinite. We also show
that a matrix algebra over any such C(X)-algebra is properly infinite. Examples of unital
C∗-algebras A, where Mn(A) is properly infinite for some natural number n ≥ 2 but where
Mn−1(A) is not properly infinite, are known, see [30] and [32], but still quite exotic.

23
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We relate the question of whether a given properly infinite C∗-algebra is K1-injective to
questions regarding homotopy of projections (Proposition 4.5.1). In particular we show that
our main questions are equivalent to the following question: is any non-trivial projection
in the first copy of O∞ in the full unital universal free product O∞ ∗ O∞ homotopic to
any (non-trivial) projection in the second copy of O∞? The specific C([0, 1])-algebra,
mentioned above, is perhaps not surprisingly a sub-algebra of C([0, 1],O∞ ∗ O∞).

Using ideas implicit in Rieffel’s paper, [26], we construct in Section 4.4 a C(T)-algebra B
for each C∗-algebra A and for each unitary u ∈ A for which diag(u, 1) is homotopic to
1M2(A); and B is non-trivial if u is not homotopic to 1A. In this way we relate our question
about proper infiniteness of C(X)-algebras to a question about K1-injectivity.

4.1 Introduction to C(X)-algebras

Let X be a compact Hausdorff space and let C(X) be the C∗-algebra of continuous func-
tions on X with values in the complex field C.

Definition 4.1.1. A C(X)-algebra is a C∗-algebra A endowed with a unital ∗-homo-
morphism from C(X) to the center of the multiplier C∗-algebra M(A) of A.

If A is as above and Y ⊆ X is a closed subset, then we put IY = C0(X \ Y )A, which is a
closed two-sided ideal in A. We set AY = A/IY and denote the quotient map by πY .

For an element a ∈ A we put aY = πY (a), and if Y consists of a single point x, we will
write Ax, Ix, πx and ax in the place of A{x}, I{x}, π{x} and a{x}, respectively. We say that
Ax is the fibre of A at x.

The function
x 7→ ‖ax‖ = inf{‖ [1− f + f(x)]a‖ : f ∈ C(X)}

is upper semi-continuous for all a ∈ A (as one can see using the right-hand side identity
above). A C(X)-algebra A is said to be continuous (or to be a continuous C∗-bundle over
X) if the function x 7→ ‖ax‖ is actually continuous for all elements a in A.

Example 4.1.2. Let X be a compact Hausdorff space and let D be a unital C∗-algebra.
Then A = C(X,D) is a C(X)-algebra with fibres Ax = D for all x ∈ X.
The C(X)-algebra A is called a trivial C(X)-algebra.

Proof. Since A ∼= C(X)⊗D we define

µ : C(X) → C(X)⊗D

by
µ(f) = f ⊗ 1.
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Since C(X) is a commutative C∗-algebra, µ(C(X)) ⊆ Z(C(X) ⊗ D), so A is a C(X)-
algebra.

Let x ∈ X and let ϕ : A→ D be the surjective ∗-homomorphism given by

ϕ(f) = f(x).

By the First Homomorphism Theorem, there is a ∗-isomorphism ψ : Ax → D such that
the diagram

A

πx

��

ϕ // D

Ax

ψ

>>}
}

}
}

commutes.

Example 4.1.3. Let X be a compact Hausdorff space and let D be a unital C∗-algebra.
For every projection p ∈ C(X,D), then A = pC(X,D)p is a C(X)-algebra with fibres
Ax = p(x)Dp(x) for x ∈ X.

Proof. From Example 4.1.2 there is a unital ∗-homomorphism µ : C(X) → Z(C(X,D)),
so define µ̄ : C(X) → A by

µ̄(f) = pµ(f)p.

Since p is a projection and µ(C(X)) ⊆ Z(C(X,D)) it follows that µ̄(C(X)) ⊆ Z(A). Hence
A is a C(X)-algebra.

Let x ∈ X and let ϕ : A→ p(x)Dp(x) be given by

ϕ(pfp) = p(x)f(x)p(x), f ∈ C(X,D).

Then ϕ is surjective and by the First Homomorphism Theorem, it holds that Ax ∼=
p(x)Dp(x).

As a motivation for the next section, we shall now consider an example of a C(X)-algebra
where proper infiniteness of the fibres ensures proper infiniteness of the C(X)-algebra itself:

Example 4.1.4. Let X be a compact Hausdorff space and let D be a unital C∗-algebra.
If A = C(X,D) is a trivial C(X)-algebra, then A is properly infinite if the fibres Ax = D,
x ∈ X, are properly infinite.

Proof. Since A is isomorphic to C(X)⊗D, and the tensor product of two unital C∗-algebras
is properly infinite if one of the two C∗-algebras is properly infinite, then A is properly
infinite if and only if D is properly infinite.
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4.2 C(X)-algebras with properly infinite fibres

In this section we will study stability properties of proper infiniteness under upper semi-
continuous deformations using the Cuntz-Toeplitz algebra which is defined as follows. For
all integers n ≥ 2 the Cuntz-Toeplitz algebra Tn is the universal C∗-algebra generated by
n isometries s1, . . . , sn satisfying the relation

s1s
∗
1 + · · ·+ sns

∗
n ≤ 1.

Remark 4.2.1. A unital C∗-algebra A is properly infinite if and only if Tn embeds unitally
into A for some n ≥ 2, in which case Tn embeds unitally into A for all n ≥ 2.

A powerful tool in the classification of C∗-algebras is the study of their projections.We
state below more formally three more or less well-known results that will be used frequently
throughout this chapter, the first of which is due to Cuntz, [12].

Proposition 4.2.2 (Cuntz). Let A be a C∗-algebra which contains at least one properly
infinite, full projection.

(i) Let p and q be properly infinite, full projections in A. Then [p]0 = [q]0 in K0(A) if
and only if p ∼ q.

(ii) For each element g ∈ K0(A) there is a properly infinite, full projection p ∈ A such
that g = [p]0.

The second statement is a variation of the Whitehead lemma.

Lemma 4.2.3. Let A be a unital C∗-algebra.

(i) Let v be a partial isometry in A such that 1 − vv∗ and 1 − v∗v are properly infinite
and full projections. Then there is a unitary element u in A such that [u]1 = 0 in
K1(A) and v = uv∗v, i.e., u extends v.

(ii) Let u be a unitary element A such that [u]1 = 0 in K1(A). Suppose there exists a
projection p ∈ A such that ‖up − pu‖ < 1 and p and 1 − p are properly infinite and
full. Then u belongs to U0(A).

Proof. (i). It follows from Proposition 4.2.2 (i) that 1 − v∗v ∼ 1 − vv∗, so there is a
partial isometry w such that 1 − v∗v = w∗w and 1 − vv∗ = ww∗. Now, z = v + w is a
unitary element in A with zv∗v = v. The projection 1 − v∗v is properly infinite and full,
so 1 - 1 − v∗v, which implies that there is an isometry s in A with ss∗ ≤ 1 − v∗v. As
−[z]1 = [z∗]1 = [sz∗s∗ + (1 − ss∗)]1 in K1(A) (see eg. [35, Exercise 8.9 (i)]), we see that
u = z(sz∗s∗ + (1− ss∗)) is as desired.

(ii). Put x = pup+(1−p)u(1−p) and note that ‖u−x‖ < 1. It follows that x is invertible
in A and that u ∼h x in GL(A). Let x = v|x| be the polar decomposition of x, where
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|x| = (x∗x)1/2 and v = x|x|−1 is unitary. Then u ∼h v in U(A) (c.f. Proposition 2.4.4), and
pv = vp. We proceed to show that v belongs to U0(A) (which will entail that u belongs to
U0(A)).

Write v = v1v2, where

v1 = pvp+ (1− p), v2 = p+ (1− p)v(1− p).

As 1− p - p we can find a symmetry t in A such that t(1− p)t ≤ p. As t belongs to U0(A)
(being a symmetry), we conclude that v2 ∼h tv2t, and one checks that tv2t is of the form
w + (1− p) for some unitary w in pAp. It follows that v is homotopic to a unitary of the
form v0 + (1− p), where v0 is a unitary in pAp. We can now apply eg. [35, Exercise 8.11]
to conclude that v ∼h 1 in U(A).

We remind the reader that if p, q are projections in a unital C∗-algebra A, then p and q are
homotopic, in symbols p ∼h q, (meaning that they can be connected by a continuous path
of projections in A) if and only if q = upu∗ for some u ∈ U0(A), eg. cf. [35, Proposition
2.2.6].

Proposition 4.2.4. Let A be a unital C∗-algebra. Let p and q be two properly infinite,
full projections in A such that p ∼ q. Suppose that there exists a properly infinite, full
projection r ∈ A such that p ⊥ r and q ⊥ r. Then p ∼h q.

Proof. Take a partial isometry v0 ∈ A such that v∗0v0 = p and v0v
∗
0 = q. Take a subprojec-

tion r0 of r such that r0 and r − r0 both are properly infinite and full. Put v = v0 + r0.
Then vpv∗ = q and vr0 = r0 = r0v. Note that 1 − v∗v and 1 − vv∗ are properly infi-
nite and full (because they dominate the properly infinite, full projection r − r0). Use
Lemma 4.2.3 (i) to extend v to a unitary u ∈ A with [u]1 = 0 in K1(A). Now, upu∗ = q
and ur0 = vr0 = r0 = r0v = r0u. Hence u ∈ U0(A) by Lemma 4.2.3 (ii), and so p ∼h q as
desired.

Let A1, A2, and B be C∗-algebras, let π1 : A1 → B and π2 : A2 → B be ∗-homomorphisms.
We seek a C∗-algebra A and ∗-homomorphisms ϕ1 : A→ A1 and ϕ2 : A→ A2 making the
following diagram commutative:

A
ϕ1

~~}}
}}

}}
}} ϕ2

  A
AA

AA
AA

A

A1

π1   A
AA

AA
AA

A2

π2~~}}
}}

}}
}

B

and which is universal in the sense that if C is any C∗-algebra and ω1 : C → A1, ω2 :
C → A2 are ∗-homomorphisms satisfying that π1 ◦ ω1 = π2 ◦ ω2, then there is a unique
∗-homomorphism θ : C → A such that ωi = ϕi ◦ θ, i = 1, 2.
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Any such A is unique up to isomorphism. One way of constructing A is as

{(a1, a2) : π1(a1) = π2(a2)} ⊆ A1 ⊕ A2.

Definition 4.2.5. [1, Definition II.8.4.9] With the notation from above, A is called the
pull-back of (A1, A2) along (π1, π2).

Proposition 4.2.6. Let A be a unital C∗-algebra that is the pull-back of two unital, properly
infinite C∗-algebras A1 and A2 along the ∗-epimorphisms π1 : A1 → B and π2 : A2 → B:

A
ϕ1

~~}}
}}

}}
}} ϕ2

  A
AA

AA
AA

A

A1

π1   A
AA

AA
AA

A2

π2~~}}
}}

}}
}

B

Then M2(A) is properly infinite. Moreover, if B is K1-injective, then A itself is properly
infinite.

Proof. Take unital embeddings σi : T3 → Ai for i = 1, 2, where T3 is the Cuntz-Toeplitz
algebra (defined earlier), and put

v =
2∑
j=1

(π1 ◦ σ1)(tj)(π2 ◦ σ2)(t
∗
j),

where t1, t2, t3 are the canonical generators of T3. Note that v is a partial isometry with
(π1 ◦ σ1)(tj) = v(π2 ◦ σ2)(tj) for j = 1, 2. As (π1 ◦ σ1)(t3t

∗
3) ≤ 1− vv∗ and (π2 ◦ σ2)(t3t

∗
3) ≤

1 − v∗v, Lemma 4.2.3 (i) yields a unitary u ∈ B with [u]1 = 0 in K1(B) and with (π1 ◦
σ1)(tj) = u(π2 ◦ σ2)(tj) for j = 1, 2.

If B is K1-injective, then u belongs to U0(B), whence u lifts to a unitary v ∈ A2. Define
σ̃2 : T2 → A2 by σ̃2(tj) = vσ2(tj) for j = 1, 2 (observing that t1, t2 generate T2). Then
π1 ◦ σ1 = π2 ◦ σ̃2, which by the universal property of the pull-back implies that σ1 and σ̃2

lift to a (necessarily unital) embedding σ : T2 → A, thus forcing A to be properly infinite.

In the general case (where B is not necessarily K1-injective) u may not lift to a unitary
element in A2, but diag(u, u) does lift to a unitary element v in M2(A2) by Lemma 4.2.3 (ii)
(applied with p = diag(1, 0)). Define unital embeddings σ̃i : T2 →M2(Ai), i = 1, 2, by

σ̃1(tj) =

(
σ1(tj) 0

0 σ1(tj)

)
, σ̃2(tj) = v

(
σ2(tj) 0

0 σ2(tj)

)
,

for j = 1, 2. As (π1 ⊗ idM2) ◦ σ̃1 = (π2 ⊗ idM2) ◦ σ̃2, the unital embeddings σ̃1 and σ̃2 lift
to a (necessarily unital) embedding of T2 into M2(A), thus completing the proof.
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Question 4.2.7. Is the pull-back of any two properly infinite unital C∗-algebras again
properly infinite?

As mentioned in the introduction, one cannot in general conclude that A is properly infinite
if one knows that Mn(A) is properly infinite for some n ≥ 2.

One obvious way of obtaining an answer to Question 4.2.7, in the light of the last statement
in Proposition 4.2.6, is to answer the question below in the affirmative:

Question 4.2.8. Is every properly infinite unital C∗-algebra K1-injective?

We shall see later, in Section 4.5, that the two questions above in fact are equivalent.

The lemma below, which shall be used several times in this chapter, shows that one can lift
proper infiniteness from a fibre of a C(X)-algebra to a whole neighborhood of that fibre.

Lemma 4.2.9. Let X be a compact Hausdorff space, let A be a unital C(X)-algebra, let
x ∈ X, and suppose that the fibre Ax is properly infinite. Then AF is properly infinite for
some closed neighborhood F of x.

Proof. Let {Fλ}λ∈Λ be a decreasing net of closed neighborhoods of x ∈ X, fulfilling that⋂
λ∈Λ Fλ = {x}, and set Iλ = C0(X\Fλ)A. Then {Iλ}λ∈Λ is an increasing net of ideals in

A, AFλ
= A/Iλ, I :=

⋃
λ∈Λ Iλ = C0(X\{x})A, and Ax = A/I.

By the assumption that Ax is properly infinite there is a unital ∗-homomorphism ψ : T2 →
Ax, and since T2 is semi-projective there is a λ0 ∈ Λ and a unital ∗-homomorphism ϕ : T2 →
AFλ0

making the diagram
AFλ0

πx

��
T2

ϕ
=={

{
{

{

ψ
// Ax

commutative. We can thus take F to be Fλ0 .

Theorem 4.2.10. Let A be a unital C(X)-algebra where X is a compact Hausdorff space.
If all fibres Ax, x ∈ X, are properly infinite, then some matrix algebra over A is properly
infinite.

Proof. By Lemma 4.2.9, X can be covered by finitely many closed sets F1, F2, . . . , Fn
such that AFj

is properly infinite for each j. Put Gj = F1 ∪ F2 ∪ · · · ∪ Fj. For each
j = 1, 2, . . . , n− 1 we have a pull-back diagram

AGj+1

yyrrr
rrr &&MMMMM

AGj

%%LL
LLL

L
AFj+1

xxqqqqq

AGj∩Fj+1
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We know that M2j−1(AGj
) is properly infinite when j = 1. Proposition 4.2.6 (applied to

the diagram above tensored with M2j−1(C)) tells us that M2j(AGj+1
) is properly infinite if

M2j−1(AGj
) is properly infinite. Hence M2n−1(A) is properly infinite.

Remark 4.2.11. Uffe Haagerup has suggested another way to prove Theorem 4.2.10: If
no matrix-algebra over A is properly infinite, then there exists a bounded non-zero lower
semi-continuous quasi-trace on A, see [16] and [2, page 327], and hence also an extremal
quasi-trace. Now, if A is also a C(X)-algebra for some compact Hausdorff space X, this
implies that there is a bounded non-zero lower semi-continuous quasitrace on Ax for (at
least) one point x ∈ X (see eg. [17, Proposition 3.7]). But then the fibre Ax cannot be
properly infinite.

Question 4.2.12. Is any unital C(X)-algebra A properly infinite if all its fibres Ax, x ∈ X,
are properly infinite?

We shall show in Section 4.5 that the question above is equivalent to Question 4.2.7 which
again is equivalent to Question 4.2.8.

4.3 Lower semi-continuous fields of properly infinite C∗-
algebras

Let us briefly discuss whether the results from Section 4.2 can be extended to lower semi-
continuous C∗-bundles (A, {σx}) over a compact Hausdorff space X. Recall that any such
separable lower semi-continuous C∗-bundle admits a faithful C(X)-linear representation on
a Hilbert C(X)-module E such that, for all x ∈ X, the fibre σx(A) is isomorphic to the
induced image of A in L(Ex), [4]. Thus, the problem boils down to the following: Given a
separable Hilbert C(X)-module E with infinite dimensional fibres Ex, such that the unit
p of the C∗-algebra LC(X)(E) of bounded adjointable C(X)-linear operators acting on E
has a properly infinite image in L(Ex) for all x ∈ X. Is the projection p itself properly
infinite in LC(X)(E)?

Dixmier and Douady proved that this is always the case if the space X has finite topological
dimension, [14]. But it does not hold anymore in the infinite dimensional case, see [14,
§16, Corollaire 1] and [32], even if X is contractible, [5, Corollary 3.7].

4.4 Two examples

We describe here two examples of continuous fields; the first is over the interval and the
second (which really is a class of examples) is over the circle.
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Example 4.4.1. Let (O∞ ∗O∞, (ι1, ι2)) be the universal unital free product of two copies
of O∞, and let A be the unital sub-C∗-algebra of C([0, 1],O∞ ∗ O∞) given by

A = {f ∈ C([0, 1],O∞ ∗ O∞) : f(0) ∈ ι1(O∞), f(1) ∈ ι2(O∞)}.

Observe that A (in a canonical way) is a C([0, 1])-algebra with fibres

At =


ι1(O∞), t = 0,

O∞ ∗ O∞, 0 < t < 1,

ι2(O∞), t = 1

∼=


O∞, t = 0,

O∞ ∗ O∞, 0 < t < 1,

O∞, t = 1.

In particular, all fibres of A are properly infinite.

One claim to fame of the example above is that the question below is equivalent to Ques-
tion 4.2.12 above. Hence, to answer Question 4.2.12 in the affirmative (or in the negative)
we need only consider the case where X = [0, 1], and we need only worry about this one
particular C([0, 1])-algebra (which of course is bad enough!).

Question 4.4.2. Is the C([0, 1])-algebra A from Example 4.4.1 above properly infinite?

The three equivalent statements in the proposition below will in Section 4.5 be shown to
be equivalent to Question 4.4.2.

Proposition 4.4.3. The following three statements concerning the C([0, 1])-algebra A and
the C∗-algebra (O∞ ∗ O∞, (ι1, ι2)) defined above are equivalent:

(i) A contains a non-trivial projection (i.e., a projection other than 0 and 1).

(ii) There are non-zero projections p, q ∈ O∞ such that p 6= 1, q 6= 1, and ι1(p) ∼h ι2(q).

(iii) Let s be any isometry in O∞. Then ι1(ss
∗) ∼h ι2(ss

∗) in O∞ ∗ O∞.

We warn the reader that all three statements above could be false.

Proof. (i) ⇒ (ii). Let e be a non-trivial projection in A. Let πt : A → At, t ∈ [0, 1],
denote the fibre map. As A ⊆ C([0, 1],O∞ ∗ O∞), the mapping t 7→ πt(e) ∈ O∞ ∗ O∞
is continuous, so in particular, π0(e) ∼h π1(e) in O∞ ∗ O∞. The mappings ι1 and ι2 are
injective, so there are projections p, q ∈ O∞ such that π0(e) = ι1(p) and π1(e) = ι2(q). The
projections p and q are non-zero because the mapping t 7→ ‖πt(e)‖ is continuous and not
constant equal to 0. Similarily, 1− p and 1− q are non-zero because 1− e is non-zero.

(ii) ⇒ (iii). Take non-trivial projections p, q ∈ O∞ such that ι1(p) ∼h ι2(q). Take a unitary
v in U0(O∞ ∗ O∞) with ι2(q) = vι1(p)v

∗. Let s ∈ O∞ be an isometry. If s is unitary, then
ι1(ss

∗) = 1 = ι2(ss
∗) and there is nothing to prove. Suppose that s is non-unitary. Then

ss∗ is homotopic to a subprojection p0 of p and to a subprojection q0 of q (use that p and
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q are properly infinite and full, then Lemma 4.2.3 (i), and last the fact that the unitary
group of O∞ is connected). Hence ι1(ss∗) ∼h ι1(p0) ∼h vι1(p0)v

∗ and ι2(ss
∗) ∼h ι2(q0), so

we need only show that vι1(p0)v
∗ ∼h ι2(q0). But this follows from Proposition 4.2.4 with

r = 1− ι2(q) = ι2(1− q), as we note that p0 ∼ 1 ∼ q0 in O∞, whence

ι2(q0) ∼ ι2(1) = 1 = ι1(1) ∼ ι1(p0) ∼ vι1(p0)v
∗.

(iii) ⇒ (i). Take a non-unitary isometry s ∈ O∞. Then ι1(ss∗) ∼h ι2(ss
∗), and so there is

a continuous function e : [0, 1] → O∞ ∗ O∞ such that e(t) is a projection for all t ∈ [0, 1],
e(0) = ι1(ss

∗) and e(1) = ι2(ss
∗). But then e is a non-trivial projection in A.

It follows from Theorem 4.2.10 that some matrix algebra over A (from Example 4.4.1) is
properly infinite. We can sharpen that statement as follows:

Proposition 4.4.4. M2(A) is properly infinite; and if O∞ ∗ O∞ is K1-injective, then A
itself is properly infinite.

It follows from Theorem 4.5.5 below that A is properly infinite if and only if O∞ ∗ O∞ is
K1-injective.

Proof. We have a pull-back diagram

A

yyrrrrrrrrrrr

%%LLLLLLLLLLL

A[0, 1
2
]

π1/2 %%KKKKKKKKKK
A[ 1

2
,1]

π1/2yyssssssssss

O∞ ∗ O∞

One can unitally embed O∞ into A[0, 1
2
] via ι1, so A[0, 1

2
] is properly infinite, and a similar

argument shows that A[ 1
2
,1] is properly infinite. The two statements now follow from

Proposition 4.2.6.

The example below, which will be the focus of the rest of this section, and in parts also of
Section 4.5, is inspired by arguments from Rieffel’s paper [26].

Example 4.4.5. Let A be a unital C∗-algebra, and let v be a unitary element in A such
that (

v 0
0 1

)
∼h

(
1 0
0 1

)
in U2(A).

Let t 7→ ut be a continuous path of unitaries in U2(A) such that u0 = 1 and u1 = diag(v, 1).
Put

p(t) = ut

(
1 0
0 0

)
u∗t ∈M2(A),
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and note that p(0) = p(1). Identifying, for each C∗-algebra D, C(T, D) with the algebra
of all continuous functions f : [0, 1] → D such that f(1) = f(0), we see that p belongs to
C(T,M2(A)). Put

B = pC(T,M2(A))p,

and note that B is a unital (sub-trivial) C(T)-algebra, being a corner of the trivial C(T)-
algebra C(T,M2(A)). The fibres of B are

Bt = p(t)M2(A)p(t) ∼= A

for all t ∈ T.

Summing up, for each unital C∗-algebra A, for each unitary v in A for which diag(v, 1) ∼h 1
in U2(A), and for each path t 7→ ut ∈ U2(A) implementing this homotopy we get a C(T)-
algebra B with fibres Bt ∼= A. We shall investigate this class of C(T)-algebras below.

Lemma 4.4.6. In the notation of Example 4.4.5,(
1 0
0 1

)
− p ∼

(
0 0
0 1

)
in C(T,M2(A)).

In particular, p is stably equivalent to diag(1, 0).

Proof. Put

vt = ut

(
0 0
0 1

)
, t ∈ [0, 1].

Then

v0 = u0

(
0 0
0 1

)
=

(
0 0
0 1

)
, v1 = u1

(
0 0
0 1

)
=

(
v 0
0 1

) (
0 0
0 1

)
=

(
0 0
0 1

)
,

so v belongs to C(T,M2(A)). It is easy to see that v∗t vt = diag(0, 1) and vtv
∗
t = 1 − p(t),

and so the lemma is proved.

Proposition 4.4.7. Let A, v ∈ U(A), and B be as in Example 4.4.5. Conditions (i) and
(ii) below are equivalent for any unital C∗-algebra A, and all three conditions are equivalent
if A in addition is assumed to be properly infinite.

(i) v ∼h 1 in U(A).

(ii) p ∼ diag(1A, 0) in C(T,M2(A)).

(iii) The C(T)-algebra B is properly infinite.
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Proof. (ii) ⇒ (i). Suppose that p ∼ diag(1, 0) in C(T,M2(A)). Then there is a w ∈
C(T,M2(A)) such that

wtw
∗
t =

(
1 0
0 0

)
and w∗twt = pt

for all t ∈ [0, 1] and w1 = w0 (as we identify C(T,M2(A)) with the set of continuous
functions f : [0, 1] → M2(A) with f(1) = f(0)). Upon replacing wt with w∗0wt we can
assume that w1 = w0 = diag(1, 0). Now, with t 7→ ut as in Example 4.4.5,

wtut

(
1 0
0 0

)
=

(
at 0
0 0

)
,

where t 7→ at is a continuous path of unitaries in A. Because u0 = diag(1, 1) and u1 =
diag(v, 1) we see that a0 = 1 and a1 = v, whence v ∼h 1 in U(A).

(i) ⇒ (ii). Suppose conversely that v ∼h 1 in U(A). Then we can find a continuous path
t 7→ vt ∈ U(A), t ∈ [1− ε, 1], such that v1−ε = v and v1 = 1 for an ε > 0 (to be determined
below). Again with t 7→ ut as in Example 4.4.5, define

ũt =

{
u(1−ε)−1t, 0 ≤ t ≤ 1− ε,

diag(vt, 1), 1− ε ≤ t ≤ 1.

Then t 7→ ũt is a continuous path of unitaries in U2(A) such that ũ1−ε = u1 = diag(v, 1)
and ũ0 = ũ1 = 1. It follows that ũ belongs to C(T,M2(A)). Provided that ε > 0 is chosen
small enough we obtain the following inequality:∥∥∥∥ũt ( 1 0

0 0

)
ũ∗t − p(t)

∥∥∥∥ =

∥∥∥∥ũt ( 1 0
0 0

)
ũ∗t − ut

(
1 0
0 0

)
u∗t

∥∥∥∥ < 1

for all t ∈ [0, 1], whence p ∼ ũ diag(1, 0) ũ∗ ∼ diag(1, 0) as desired.

(iii) ⇒ (ii). Suppose that B is properly infinite. From Lemma 4.4.6 we know that [p]0 =
[diag(1A, 0)]0 in K0(C(T, A)). Because B and A are properly infinite, it follows that p and
diag(1A, 0) are properly infinite (and full) projections, and hence they are equivalent by
Proposition 4.2.2 (i).

(ii) ⇒ (iii). Since A is properly infinite, diag(1A, 0) and hence p (being equivalent to
diag(1A, 0)) are properly infinite (and full) projections, whence B is properly infinite.

We will now use (the ideas behind) Lemma 4.4.6 and Proposition 4.4.7 to prove the fol-
lowing general statement about C∗-algebras.

Corollary 4.4.8. Let A be a unital C∗-algebra such that C(T, A) has the cancellation
property. Then A is K1-injective.
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Proof. It suffices to show that the natural maps Un−1(A)/U0
n−1(A) → Un(A)/U0

n(A) are
injective for all n ≥ 2. Let v ∈ Un−1(A) be such that diag(v, 1A) ∈ U0

n(A) and find a
continuous path of unitaries t 7→ ut in Un(A) such that

u0 = 1Mn(A) =

(
1Mn−1(A) 0

0 1A

)
and u1 =

(
v 0
0 1A

)
.

Put

pt = ut

(
1Mn−1(A) 0

0 0

)
u∗t , t ∈ [0, 1],

and note that p0 = p1 so that p defines a projection in C(T,Mn(A)). Repeating the
proof of Lemma 4.4.6 we find that 1Mn(A) − p ∼ diag(0, 1A) in C(T,Mn(A)), whence
p ∼ diag(1Mn−1(A), 0) by the cancellation property of C(T, A), where we identify projections
in Mn(A) with constant projections in C(T,Mn(A)). The arguments going into the proof of
Proposition 4.4.7 show that v ∼h 1Mn−1(A) in Un−1(A) if (and only if) p ∼ diag(1Mn−1(A), 0).
Hence v belongs to U0

n−1(A) as desired.

4.5 K1-injectivity of properly infinite C∗-algebras

In this section we prove our main result that relates K1-injectivity of arbitrary unital
properly infinite C∗-algebras to proper infiniteness of C(X)-algebras and pull-back C∗-alge-
bras. More specifically we shall show that Question 4.2.8, Question 4.2.12, Question 4.2.7,
and Question 4.4.2 are equivalent.

First we reformulate in two different ways the question if a given properly infinite unital
C∗-algebra is K1-injective.

Proposition 4.5.1. The following conditions are equivalent for any unital properly infinite
C∗-algebra A:

(i) A is K1-injective.

(ii) Let p, q be projections in A such that p ∼ q and p, q, 1−p, 1− q are properly infinite
and full. Then p ∼h q.

(iii) Let p and q be properly infinite, full projections in A. There exist properly infinite,
full projections p0, q0 ∈ A such that p0 ≤ p, q0 ≤ q, and p0 ∼h q0.

Proof. (i) ⇒ (ii). Let p, q be properly infinite, full projections in A with p ∼ q such that
1−p, 1− q are properly infinite and full. Then by Lemma 4.2.3 (i) there is a unitary v ∈ A
such that vpv∗ = q and [v]1 = 0 in K1(A). By the assumption in (i), v ∈ U0(A), whence
p ∼h q.
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(ii) ⇒ (i). Let u ∈ U(A) be such that [u]1 = 0 in K1(A). Take, as we can, a projection p
in A such that p and 1 − p are properly infinite and full. Set q = upu∗. Then p ∼h q by
(ii), and so there exists a unitary v ∈ U0(A) with p = vqv∗. It follows that

pvu = vqv∗vu = v(upu∗)v∗vu = vup.

Therefore vu ∈ U0(A) by Lemma 4.2.3 (ii), which in turn implies that u ∈ U0(A).

(ii) ⇒ (iii). Let p, q be properly infinite and full projections in A. There exist mutually
orthogonal projections e1, f1 such that e1 ≤ p, f1 ≤ p and e1 ∼ p ∼ f1, and mutually
orthogonal projections e2, f2 such that e2 ≤ q, f2 ≤ q and e2 ∼ q ∼ f2. Being equivalent
to either p or q, the projections e1, e2, f1 and f2 are properly infinite and full. There are
properly infinite, full projections p0 ≤ e1 and q0 ≤ e2 such that [p0]0 = [q0]0 = 0 in K0(A)
and p0 ∼ q0 (cf. Proposition 4.2.2). As f1 ≤ 1− p0 and f2 ≤ 1− q0, we see that 1− p0 and
1− q0 are properly infinite and full, and so we get p0 ∼h q0 by (ii).

(iii)⇒ (ii). Let p, q be equivalent properly infinite, full projections in A such that 1−p, 1−q
are properly infinite and full. From (iii) we get properly infinite and full projections p0 ≤ p,
q0 ≤ q which satisfy p0 ∼h q0. Thus there is a unitary v ∈ U0(A) such that vp0v

∗ = q0.
Upon replacing p by vpv∗ (as we may do because p ∼h vpv

∗) we can assume that q0 ≤ p
and q0 ≤ q. Now, q0 is orthogonal to 1 − p and to 1 − q, and so 1 − p ∼h 1 − q by
Proposition 4.2.4, whence p ∼h q.

Proposition 4.5.2. Let A be a unital properly infinite C∗-algebra. The following condi-
tions are equivalent:

(i) A is K1-injective, ie., the natural map U(A)/U0(A) → K1(A) is injective.

(ii) The natural map U(A)/U0(A) → U2(A)/U0
2 (A) is injective.

(iii) The natural maps Un(A)/U0
n(A) → K1(A) are injective for each natural number n.

Proof. (i) ⇒ (ii) holds because the map U(A)/U0(A) → K1(A) factors through the map
U(A)/U0(A) → U2(A)/U0

2 (A).

(ii) ⇒ (i). Take u ∈ U(A) and suppose that [u]1 = 0 in K1(A). Then diag(u, 1A) ∈ U0
2 (A)

by Lemma 4.2.3 (ii) (with p = diag(1A, 0)). Hence u ∈ U0(A) by injectivity of the map
U(A)/U0(A) → U2(A)/U0

2 (A).

(i) ⇒ (iii). Let n ≥ 1 be given and consider the natural maps

U(A)/U0(A) → Un(A)/U0
n(A) → K1(A).

The first map is onto, as proved by Cuntz in [12], see also [35, Exercise 8.9], and the
composition of the two maps is injective by assumption, hence the second map is injective.

(iii) ⇒ (i) is trivial.
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We give below another application of K1-injectivity for properly infinite C∗-algebras. First
we need a lemma:

Lemma 4.5.3. Let A be a unital, properly infinite C∗-algebra, and let ϕ, ψ : O∞ → A be
unital embeddings. Then ψ is homotopic to a unital embedding ψ′ : O∞ → A for which
there is a unitary u ∈ A with [u]1 = 0 in K1(A) and for which ψ′(sj) = uϕ(sj) for all j
(where s1, s2, . . . are the canonical generators of O∞).

Proof. For each n set

vn =
n∑
j=1

ψ(sj)ϕ(sj)
∗ ∈ A, en =

n∑
j=1

sjs
∗
j ∈ O∞.

Then vn is a partial isometry in A with vnv
∗
n = ψ(en), v∗nvn = ϕ(en), and ψ(sj) = vnϕ(sj)

for j = 1, 2, . . . , n. Since 1−en is full and properly infinite it follows from Lemma 4.2.3 that
each vn extends to a unitary un ∈ A with [un]1 = 0 inK1(A). In particular, ψ(sj) = unϕ(sj)
for j = 1, 2, . . . , n.
We proceed to show that n 7→ un extends to a continuous path of unitaries t 7→ ut, for
t ∈ [2,∞), such that utϕ(en) = unϕ(en) for t ≥ n + 1. Fix n ≥ 2. To this end it suffices
to show that we can find a continuous path t 7→ zt, t ∈ [0, 1], of unitaries in A such that
z0 = 1, z1 = u∗nun+1, and ztϕ(en−1) = ϕ(en−1) (as we then can set ut to be unzt−n for
t ∈ [n, n+ 1]).
Observe that

un+1ϕ(en) = vn+1ϕ(en) = vn = unϕ(en).

Set A0 = (1 − ϕ(en−1))A(1 − ϕ(en−1)), and set y = u∗nun+1(1 − ϕ(en−1)). Then y is
a unitary element in A0 and [y]K1(A0) = 0 in K1(A0). Moreover, y commutes with the
properly infinite full projection ϕ(en)− ϕ(en−1) ∈ A0. We can therefore use Lemma 4.2.3
to find a continuous path t 7→ yt of unitaries in A0 such that y0 = 1A0 = 1− ϕ(en−1) and
y1 = y. The continuous path t 7→ zt = yt + ϕ(en−1) is then as desired.
For each t ≥ 2 let ψt : O∞ → A be the ∗-homomorphism given by ψt(sj) = utϕ(sj). Then
ψt(sj) = ψ(sj) for all t ≥ j + 1, and so it follows that

lim
t→∞

ψt(x) = ψ(x)

for all x ∈ O∞. Hence ψ2 is homotopic to ψ, and so we can take ψ′ to be ψ2.

Proposition 4.5.4. Any two unital ∗-homomorphisms from O∞ into a unital K1-injective
(properly infinite) C∗-algebra are homotopic.

Proof. In the light of Lemma 4.5.3 it suffices to show that if ϕ, ψ : O∞ → A are unital ∗-
homomorphisms such that, for some unitary u ∈ A with [u]1 = 0 in K1(A), ψ(sj) = uϕ(sj)
for all j, then ψ ∼h ϕ. By assumption, u ∼h 1, so there is a continuous path t 7→ ut of
unitaries in A such that u0 = 1 and u1 = u. Letting ϕt : O∞ → A be the ∗-homomorphism
given by ϕt(sj) = utϕ(sj) for all j, we get t 7→ ϕt is a continuous path of ∗-homomorphisms
connecting ϕ0 = ϕ to ϕ1 = ψ.
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Our main theorem below, which in particular implies that Question 4.2.8, Question 4.2.12,
Question 4.2.7 and Question 4.4.2 all are equivalent, also give a special converse to Propo-
sition 4.5.4: Indeed, with ι1, ι2 : O∞ → O∞ ∗ O∞ the two canonical inclusions, if ι1 ∼h ι2,
then condition (iv) below holds, whence O∞ ∗O∞ is K1-injective, which again implies that
all unital properly infinite C∗-algebras are K1-injective. Below we retain the convention
that O∞ ∗ O∞ is the universal unital free product of two copies of O∞ and that ι1 and ι2
are the two natural inclusions of O∞ into O∞ ∗ O∞.

Theorem 4.5.5. The following statements are equivalent:

(i) Every unital, properly infinite C∗-algebra is K1-injective.

(ii) For every compact Hausdorff space X, every unital C(X)-algebra A, for which Ax is
properly infinite for all x ∈ X, is properly infinite.

(iii) Every unital C∗-algebra A, that is the pull-back of two unital, properly infinite C∗-
algebras A1 and A2 along ∗-epimorphisms π1 : A1 → B, π2 : A2 → B:

A
ϕ1

~~}}
}}

}}
}} ϕ2

  A
AA

AA
AA

A

A1

π1   A
AA

AA
AA

A2

π2~~}}
}}

}}
}

B

is properly infinite.

(iv) There exist non-zero projections p, q ∈ O∞ such that p 6= 1, q 6= 1, and ι1(p) ∼h ι2(q)
in O∞ ∗ O∞.

(v) The specific C([0, 1])-algebra A considered in Example 4.4.1 (and whose fibres are
properly infinite) is properly infinite.

(vi) O∞ ∗ O∞ is K1-injective.

Note that statement (i) is reformulated in Propositions 4.5.1, 4.5.2, and 4.5.4; and that
statement (iv) is reformulated in Proposition 4.4.3. The reader should be warned that
all these statements may turn out to be false (in which case, of course, there will be
counterexamples to all of them).

Proof. (i) ⇒ (iii) follows from Proposition 4.2.6.

(iii) ⇒ (ii). This follows from Lemma 4.2.9 as in the proof of Theorem 4.2.10, except that
one does not need to pass to matrix algebras.
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(ii) ⇒ (i). Suppose that A is unital and properly infinite. Take a unitary v ∈ U(A) such
that diag(v, 1) ∈ U0

2 (A). Let B be the C(T)-algebra constructed in Example 4.4.5 from A,
v, and a path of unitaries t 7→ ut connecting 1M2(A) to diag(v, 1). Then Bt ∼= A for all t ∈ T,
so all fibres of B are properly infinite. Assuming (ii), we can conclude that B is properly
infinite. Proposition 4.4.7 then yields that v ∈ U0(A). It follows that the natural map
U(A)/U0(A) → U2(A)/U0

2 (A) is injective, whence A is K1-injective by Proposition 4.5.2.

(ii) ⇒ (v) is trivial (because A is a C([0, 1])-algebra with properly infinite fibres).

(v) ⇒ (iv) follows from Proposition 4.4.3.

(iv) ⇒ (i). We show that Condition (iii) of Proposition 4.4.3 implies Condition (iii) of
Proposition 4.5.1.

Let A be a properly infinite C∗-algebra and let p, q be properly infinite, full projections in A.
Then there exist (properly infinite, full) projections p0 ≤ p and q0 ≤ q such that p0 ∼ 1 ∼ q0
and such that 1− p0 and 1− q0 are properly infinite and full, cf. Propositions 4.2.2. Take
isometries t1, r1 ∈ A with t1t∗1 = p0 and r1r∗1 = q0; use the fact that 1 - 1−p0 and 1 - 1−q0
to find sequences of isometries t2, t3, t4, . . . and r2, r3, r4, . . . in A such that each of the two
sequences {tjt∗j}∞j=1 and {rjr∗j}∞j=1 consist of pairwise orthogonal projections.

By the universal property of O∞ there are unital ∗-homomorphisms ϕj : O∞ → A, j = 1, 2,
such that ϕ1(sj) = tj and ϕ2(sj) = rj, where s1, s2, s3, . . . are the canonical generators of
O∞. In particular,

ϕ1(s1s
∗
1) = p0 and ϕ2(s1s

∗
1) = q0.

By the property of the universal unital free products of C∗-algebras, there is a unique
unital ∗-homomorphism ϕ : O∞ ∗ O∞ → A making the diagram

O∞ ∗ O∞

ϕ

��

O∞

ϕ1
%%KKKKKKKKKKK

ι1
99ssssssssss

O∞

ϕ2
yysssssssssss

ι2
eeKKKKKKKKKK

A

commutative. It follows that p0 = ϕ(ι1(s1s
∗
1)) and q0 = ϕ(ι2(s1s

∗
1)). By Condition (iii) of

Proposition 4.4.3, ι1(s1s
∗
1) ∼h ι2(s1s

∗
1) in O∞ ∗ O∞, whence p0 ∼h q0 as desired.

(i) ⇒ (vi) is trivial.

(vi) ⇒ (v) follows from Proposition 4.4.4.

4.6 Concluding remarks

We do not know if all unital properly infinite C∗-algebras are K1-injective, but we observe
that K1-injectivity is assured in the presence of certain central sequences:
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Proposition 4.6.1. Let A be a unital properly infinite C∗-algebra that contains an asymp-
totically central sequence {pn}∞n=1, where pn and 1−pn are properly infinite, full projections
for all n. Then A is K1-injective

Proof. This follows immediately from Lemma 4.2.3 (ii).

It remains open if arbitrary C(X)-algebras with properly infinite fibres must be properly in-
finite. If this fails, then we already have a counterexample of the form B = pC(T,M2(A))p,
cf. Example 4.4.5, for some unital properly infinite C∗-algebra A and for some projection
p ∈ C(T,M2(A)). (The C∗-algebra B is a C(T)-algebra with fibres Bt ∼= A.)

From Example 4.1.4 we have that any trivial C(X)-algebra C(X,D) with constant fibre
D is properly infinite if its fibre(s) D is unital and properly infinite. We extend this
observation in the following easy proposition:

Proposition 4.6.2. Let X be a compact Hausdorff space, let p ∈ C(X,D) be a projection,
and consider the sub-trivial C(X)-algebra pC(X,D)p whose fibre at x is equal to p(x)Dp(x).

If p is Murray-von Neumann equivalent to a constant projection x 7→ q, then pC(X,D)p
is C(X)-isomorphic to the trivial C(X)-algebra C(X,D0), where D0 = qDq. In this case,
pC(X,D)p is properly infinite if and only if D0 is properly infinite.

In particular, if X is contractible, then pC(X,D)p is C(X)-isomorphic to a trivial C(X)-
algebra for any projection p ∈ C(X,D) and for any C∗-algebra D.

Proof. Suppose that p = v∗v and q = vv∗ for some partial isometry v ∈ C(X,D). The map
f 7→ vfv∗ defines a C(X)-isomorphism from pC(X,D)p onto qC(X,D)q, and qC(X,D)q =
C(X,D0).

If X is contractible, then any projection p ∈ C(X,D) is homotopic, and hence equivalent,
to the constant projection x 7→ p(x0) for any fixed x0 ∈ X.

Remark 4.6.3. One can elaborate a little more on the construction considered above.
Take a unital C∗-algebra D such that for some natural number n ≥ 2, Mn(D) is properly
infinite, but Mn−1(D) is not properly infinite (see [30] or [32] for such examples). Take any
space X, preferably one with highly non-trivial topology, eg. X = Sn, and take, for some
k ≥ n, a sufficiently non-trivial n-dimensional projection p in C(X,Mk(D)) such that p(x)
is equivalent to the trivial n dimensional projection 1Mn(D) for all x (if X is connected we
need only assume that this holds for one x ∈ X). The C(X)-algebra

A = pC(X,Mk(D)) p,

then has properly infinite fibres Ax = p(x)Mk(D)p(x) ∼= Mn(D). Is A always properly
infinite? We guess that a possible counterexample to the questions posed in this chapter
could be of this form (for suitable D, X, and p).
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Let us end this chapter by remarking that the answer to Question 4.2.12, which asks if any
C(X)-algebra with properly infinite fibres is itself properly infinite, does not depend (very
much) on X. If it fails, then it fails already for X = [0, 1] (cf. Theorem 4.5.5), and [0, 1] is
a contractible space of low dimension. However, if we make the dimension of X even lower
than the dimension of [0, 1], then we do get a positive answer to our question:

Proposition 4.6.4. Let X be a totally disconnected space, and let A be a C(X)-algebra
such that all fibres Ax, x ∈ X, of A are properly infinite. Then A is properly infinite.

Proof. Using Lemma 4.2.9 and the fact that X is totally disconnected we can write X as
the disjoint union of clopen sets F1, F2, . . . , Fn such that AFj

is properly infinite for all j.
As

A = AF1 ⊕ AF2 ⊕ · · · ⊕ AFn ,

the claim is proved.



Chapter 5

Extremally rich C∗-algebras with weak
cancellation. Purely infinite C∗-algebras

In the first section of this chapter we will show that an extremally rich C∗-algebra with
weak cancellation is K1-injective. The result was proved Brown and Pedersen in [10]. It is
not only the result itself that is interesting for this thesis. Also the proof is useful, when we
in the next section are using some of their ideas and techniques, when we are considering
purely infinite C∗-algebras.

Cuntz proved that unital, purely infinite, and simple C∗-algebras are K1-injective, but
here we are also interested in whether every unital purely infinite non-simple C∗-algebra is
K1-injective. We do not come with an answer to the question, but we give conditions that
imply that K1-injectivity holds. We prove that a unital purely infinite C∗-algebra that is
an extension of K1-injective C∗-algebras is itself K1-injective, which also implies that a
unital, separable, and purely infinite C∗-algebra with a finite ideal lattice is K1-injective.
By considering an example from Section 4.4 it is shown that if X is a finite dimensional
compact Hausdorff space, then every unital continuous C(X)-algebra is K1-injective if all
the fibres are purely infinite and simple. Moreover we prove that a unital and purely
infinite C∗-algebra is K1-injective if its maximal ideal space has nice properties.

5.1 Extremally rich C∗-algebras with weak cancellation

Although they do not come with an answer, Brown and Pedersen are in [10] focusing on
answering the question whether every extremally rich C∗-algebra has weak cancellation.
In the process they are also giving results about K1-injectivity of C∗-algebras that has
relevance for the survey of K1-injectivity that is given in this thesis. Namely it is proved
that an extremally rich C∗-algebra with weak cancellation is K1-injective. Furthermore we
are using some of their results and techniques in Section 5.2, where we will try to answer
the question whether every unital, purely infinite C∗-algebra is K1-injective. In particular,

42
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we shall use Proposition 5.1.14 but also Lemma 5.1.7 and Lemma 5.1.8 are used. In the
paper of Brown and Pedersen, Lemma 5.1.6 - Lemma 5.1.9 are not stated directly. But
the technique can be extracted from their proof of Lemma 5.1.13.

First we will recall some facts about extreme points and quasi invertible elements in a
C∗-algebra.

Theorem 5.1.1. [19, Theorem 1] Let A be a unital C∗-algebra and let (A)1 be the closed
unit ball of A and E(A) the set of extreme points in the convex set (A)1. The elements in
E(A) is exactly the partial isometries x ∈ A such that

(1− xx∗)A(1− x∗x) = (0).

The projections 1 − xx∗ and 1 − x∗x are called defect projections of x. For a unital
C∗-algebra A, the defect ideal of A, denoted D(A), is the ideal generated by all defect
projections of elements in E(A).
If A is non-unital, D(A) is generated by the defect projections of elements in E(Ã).

Definition 5.1.2. [1, Definition II.3.2.21] An element in a unital C∗-algebra A of the form
yxz, where y, z ∈ GL(A) and x ∈ E(A), is called a quasi-invertible element. The set of
quasi-invertible elements in A is denoted Aq.

Clearly, an extreme point of (A)1 is quasi-invertible, but it also follows that every right- or
left invertible element is quasi-invertible (c.f. [8]).

Definition 5.1.3. [1, Definition V.3.2.18] A unital C∗-algebra A is called extremally rich
if Aq is dense in A.
If A is non-unital, A is called extremally rich if Ã is extremally rich.

If sr(A) = 1, then A is extremally rich (see [9]). But in general, extremal richness is weaker
than stable rank one. For example from [24] it follows that a unital simple purely infinite
C∗-algebra is extremally rich.

Definition 5.1.4. [10, Section 1] A C∗-algebra A has weak cancellation if whenever p and q
are projections in A that generate the same closed two-sided ideal I (i.e., I = ApA = AqA)
and [p]K0(I) = [q]K0(I), then p ∼ q.

In [10] Brown and Pedersen are introducing the notion of a C∗-algebra being weakly K0-
surjective. This property has to be assumed in several of their results, and it is also
important in Section 5.2.

Definition 5.1.5. A C∗-algebra A is called weakly K0-surjective, if the suspension of A

SA = {f ∈ C([0, 1], A) : f(0) = f(1) = 0},

is K1-surjective.
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Lemma 5.1.6. Let A be a unital C∗-algebra, let u ∈ U(A) and let I be a closed two-sided
ideal in A such that u + I ∼h 1 in U(A/I). Then there exists v ∈ U(Ĩ) such that u ∼h v
in U(A).

Proof. Since u+ I ∼h 1 in U(A/I), there is a unitary w ∈ U0(A) such that u+ I = w+ I.
Then v = w∗u is a unitary in Ĩ, and u ∼h v in U(A).

Lemma 5.1.7. Let A be a C∗-algebra and let u ∈ U(Ã) with [u]K1(A) = 0. If u �h 1 in
U(Ã), then there is a closed two-sided ideal I in A, which is maximal with respect to the
property that u+ I �h 1 in U(Ã/I).

Proof. Let
E = {I � A : u+ I �h 1 in U(Ã/I)}

be partially ordered by inclusion. Let (Ii) be a totally ordered subset of E and let J =
⋃
i Ii.

Then J is a closed two-sided ideal in A. Suppose as a contradiction that u + J ∼h 1 in
U(Ã/J). By Lemma 5.1.6 there is a unitary v ∈ J̃ such that u ∼h v in U(Ã). After
multiplying v with a complex number, we can assume that v can be written on the form
v = 1 + x, x ∈ J . Thus, ‖x+ Ii‖ < 1 for some i, and ‖(v − 1) + Ii‖ = ‖x+ Ii‖ < 1, which
implies that v+ Ii ∼h 1 in U(Ã/Ii). Therefore, as a contradiction we have that u+ Ii ∼h 1

in U(Ã/Ii). Hence J ∈ E, and by Zorn’s lemma E has a maximal element.

Lemma 5.1.8. Let A be a unital C∗-algebra, and let I be a closed two-sided ideal in A
such that A/I is weakly K0-surjective. Let u ∈ U(A) with [u]K1(A) = 0. If u + I ∼h 1 in
U(A/I), then there is a unitary v ∈ Ĩ such that [v]K1(I) = 0 and u ∼h v in U(A).

Proof. Lemma 5.1.6 gives the existence of a unitary u1 ∈ U(Ĩ) such that u ∼h u1 in U(A).
Let δ0 : K1(S(A/I)) → K1(I) be the index map. Then there exists β ∈ K1(S(A/I))
such that [u1]K1(I) = δ0(β) because [u1]K1(A) = 0. But S(A/I) is K1-surjective, so β =

[ũ]K1(S(A/I)) for some ũ ∈ U(S̃(A/I)). Thus, ũ is given by a continuous function f : [0, 1] →
U(A/I) such that f(0) = f(1) = 1. The function f can be lifted to a continuous function
g : [0, 1] → U(A) such that g(0) = 1, g(1) ∈ U(Ĩ) and [u1]K1(I) = δ0(β) = [g(1)]K1(I). Let
w = g(1), i.e w ∼h 1 in U(A). Hence v = w∗u1 is a unitary in Ĩ such that v ∼h u in U(A)
and [v]K1(I) = [w∗]K1(I) + [u1]K1(I) = 0.

Going through the proof of the Lemma it is clearly seen that the result also holds in the
non-unital case. Therefore we have the following Lemma, which shall be used in the proof
of Lemma 5.1.13.

Lemma 5.1.9. Let A be a non-unital C∗-algebra, and let I be a closed two-sided ideal in
A such that A/I is weakly K0-surjective. Let u ∈ U(Ã) with [u]K1(A) = 0. If u+ I ∼h 1 in
U(Ã/I), then there is a unitary v ∈ Ĩ such that [v]K1(I) = 0 and u ∼h v in U(Ã).
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Before we can give the proof of Lemma 5.1.13 we will need the following results, where K
is the compact operators on a separable Hilbert space.

Proposition 5.1.10. [10, Proposition 3.15 ii)] Let A be an extremally rich C∗-algebra with
weak cancellation. If p is a projection in D(A) ⊗ K then there is a sequence (pn)

∞
n=1 of

mutually orthogonal projections in D(A) such that pn ∼ p for every n ∈ N.

Proposition 5.1.11. [10, Proposition 6.3] If A is an extremally rich C∗-algebra, then
D(A) is weakly K0-surjective.

Lemma 5.1.12. [10, Lemma 6.4] Let A be a C∗-algebra and let B be a σ-unital hereditary
sub-C∗-algebra of A such that B⊥ contains a sequence (pn)

∞
n=1 of mutually orthogonal and

equivalent projections which are full in A. Then there is a full hereditary sub-C∗-algebra
B′ of A such that B ⊆ B′ and such that B′ ∼= B

′′ ⊗ K for a unital C∗-algebra B
′′. In

particular B′ has an approximate identity, (en)
∞
n=1, consisting of full projections, such that

for each m,n ∈ N, m〈en〉 ≤ 〈1Ã − en〉.

We are now able to prove the following lemma which is the main part of the proof of
K1-injectivity of an extremally rich C∗-algebra with weak cancellation (Theorem 5.1.15).

Lemma 5.1.13. [10, Lemma 6.5] If A is an extremally rich C∗-algebra with weak cancel-
lation, then D(A) is K1-injective.

Proof. Let D = D(A) and let u ∈ D̃ with [u]1 = 0, and assume that u �h 1 in U(D̃). By
Lemma 5.1.7 there is a closed two-sided ideal J in D which is maximal with respect to the
property that u+ J �h 1 in U(D̃/J). By [8, Theorem 6.1] extremal partial isometries lift
from Ã/J to Ã, and thus D(A/J) = D/J . So we can assume (with A replaced with A/J

and D replaced with D/J) that u ∈ D̃ and u+ I ∼h 1 in U(D̃/I) for every non-zero closed
two-sided ideal I in D.

Choose a continuous function f : T → [0,∞[ such that

{z : f(z) 6= 0} =

{
eiθ :

2π

3
< θ <

4π

3

}
,

and let B1 = f(u)D̃f(u). In fact B1 ⊆ D since f(1) = 0. Moreover B1 is non-zero, since
otherwise f(sp(u)) = sp(f(u)) = 0, which implies that u ∼h 1, because sp(u) ( T.

Suppose now that sr(B1) = 1 and let I be the closed two-sided ideal generated by B1. By
construction, u + I ∼h 1 in U(D̃/I) = U((D/I)∼). From [10, Section 2] it follows that
extremal richness passes to quotients, so A/I is also extremally rich. Thereby D(A/I) =
D/I is weakly K0-surjective, (c.f. Proposition 5.1.11). Lemma 5.1.9 gives the existence of
a unitary u1 ∈ U(Ĩ) such that u ∼h u1 in U(D̃) and [u1]K1(I) = 0. But I is a full hereditary
sub-C∗-algebra of B1 which implies that I⊗K ∼= B1⊗K. Hence sr(I) = 1 and by Theorem
3.2.11

u ∼h u1 ∼h 1 in U(D̃).
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Suppose now that sr(B1) > 1, and let p be a non-zero defect projection of an element in
E(B̃1). Then 1 − p is a full projection by [10, Lemma 3.3]. Let I be the ideal generated
by p, and let π : D̃ → D̃/I be the quotient map. First we shall show that p ∼h pup in
GL(pD̃p):
Since f 6= 0 on {eiθ : 2π

3
< θ < 4π

3
}, it follows that f(u)uf(u) ≤ −1

2
f(u)2. Thus,

bub∗ ≤ −1
2
bb∗ for b ∈ B1 and thereby pup ≤ −1

2
p. I.e., sp(pup) ⊆ [−1

2
, 1

2
] and therefore

‖p− pup‖ ≤ 1
2
< 1.

Hence pup is invertible in pD̃p and p ∼h pup in GL(pD̃p).

Next we shall show that u ∼h p + u2 in U(D̃) for some u2 ∈ U((1 − p)D̃(1 − p)) with
π(u2) = π(u):
Let a = pup, b = (1− p)u, c = u(1− p), and d = (1− p)u(1− p). Since a is invertible in
pD̃p we can decompose u as

u =

(
a b
c d

)
=

(
1 0

ba−1 1

) (
a 0
0 d− ba−1c

) (
1 a−1c
0 1

)
.

The two matrices (
1 0

ba−1 1

)
and

(
1 a−1c
0 1

)
are invertible and homotopic to 1 which implies that diag(a, d − ba−1c) is invertible and
homotopic to u. Hence u′ = d− ba−1c is invertible in (1− p)D̃(1− p) and

u ∼h pup+ u′ ∼h p+ u′ in GL(D̃).

Let v be the unitary part of the polar decomposition of p + u′. I.e., p + u′ = v|p + u′|,
where v = p+ u2 for a unitary u2 ∈ (1− p)D̃(1− p). It follows that

u ∼h v = p+ u2 in U(D̃).

Furthermore
π(p+ u′) = π(u′) = π(d)− π(ba−1c) = π(d) = π(u),

which implies that π(p+ u′) is unitary. Hence π(|p+ u′|) = 1, and therefore

π(u2) = π(v) = π(p+ u′) = π(u).

Since π(u2) = π(u) we get by construction that π(u2) ∼h 1 in U(D̃/I), and since π(D̃) =

π((1− p)D̃(1− p)) every element of U0(D̃/I) lifts to U0((1− p)D̃(1− p)). Since extremal
richness passes to quotients and hereditary sub-C∗-algebras, it follows by Proposition 5.1.11
that (1 − p)D(1 − p)/(1 − p)I(1 − p) is weakly K0-surjective. So we get a unitary u3 ∈
U((1− p)Ĩ(1− p)) such that [u3]K1(I) = 0 and u2 ∼h u3 in U((1− p)D̃(1− p)).
Then

u ∼h p+ u2 ∼h p+ u3 in U(D̃)
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and [p+ u3]K1(I) = 0.

Let ρ : Ĩ → Ĩ/D(I) be the quotient map. Since (1 − p)I(1 − p) is a full hereditary sub-
C∗-algebra of I, it follows that [u3]K1((1−p)I(1−p)) = [u3]K1(I) = 0. Furthermore D(I) is the
smallest ideal such that sr(Ĩ/D(I)) = 1. (c.f. [10, Section 2.4]). So by Theorem 3.2.11
ρ(u3) ∼h 1 in U(ρ((1 − p)Ĩ(1 − p))) since stable rank one passes to hereditary sub-C∗-
algebras.
By [10, Section 6.2] Ĩ/D(I) is weakly K0-surjective since sr(Ĩ/D(I)) = 1. Hence we can
find a unitary u4 ∈ U((1 − p)D̃(I)(1 − p)) such that u3 ∼h u4 in U((1 − p)Ĩ(1 − p)) and
[u4]K1(D(I)) = 0.

Let (Ij)
∞
j=1 be an increasing sequence of ideals generated by finitely many defect projections

of elements in E(Ĩ). Then D(I) =
⋃∞
j=1 Ij and it follows that D(I) is isomorphic to the

inductive limit of the inductive sequence

I1
ι1 // I2

ι2 // I3
ι3 // . . . // D(I)

where ιj : Ij → Ij+1 are inclusion maps. Therefore there exists a j ∈ N and a unitary
u5 ∈ U((1−p)Ĩj(1−p)) such that u4 ∼h u5 in U((1−p)Ĩj(1−p)) and because of continuity
of K1 we may assume that [u5]K1(Ij) = 0.

Since pIp is a full hereditary sub-C∗-algebra of I and I is extremally rich (since extremally
richness passes to ideals), it follows that D(pIp) = pIp∩D(I) (c.f. [10, Section 2.4]) which
is a full hereditary sub-C∗-algebra of D(I). Thus every projection in D(I) is equivalent to
a projection in D(pIp)⊗K.

There exists a full projection q in Ij since Ij is generated by finitely many defect projections.
Thus q is equivalent to a projection q̃ in D(pIp)⊗K, and by Proposition 5.1.10 there is a
sequence (qn)

∞
n=1 of mutually orthogonal projections in D(pIp) ⊆ pIp such that q ∼ qn for

every n ∈ N. Hence qn is a full projection in Ij for every n ∈ N.

We shall now apply Lemma 5.1.12 withA replaced by Ij andB = (u5 − 1 + p)Ij(u5 − 1 + p).
Note that u5 − 1 + p ∈ Ij since after multiplying with a complex number we can assume
that u5 = 1− p (mod Ij). Moreover qn ∈ B⊥ since qn ∈ pIjp.
Let B′ and (en)

∞
n=1 be as in the lemma, and let tn = 1+en(u5−1+p)en ∈ enIjen+C(1−en).

Then tn → p + u5, so for a sufficiently large n, ‖(p + u5) − tn‖ < 1, which implies that
tn is invertible and p + u5 ∼h tn in GL(Ĩj). Let w̄n ∈ enIjen + C(1 − en) be the unitary
part of the polar decomposition of tn. Then p + u5 ∼h w̄n in U(Ĩj) and after multiplying
with a complex number, w̄n can be written on the form w̄n = wn + 1 − en for a unitary
wn ∈ U(enIjen). Hence

p+ u5 ∼h wn + 1− en in U(Ĩj).

We have that
[p+ u5]K1(Ij) = [p+ u4]K1(I) = [p+ u3]K1(I) = 0,
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and en is full in Ij, so K1(enIjen) ∼= K1(Ij). Hence [wn]K1(enIjen) = 0. Thereby there exists
a natural number m such that

wn ⊕ (en)m ∼h (en)m+1 in U(Mm+1(enIjen)),

where (en)m = en ⊕ · · · ⊕ en with m summands. But by Lemma 5.1.12, (en)m - 1 − en.
Thus wn + 1− en ∼h en + 1− en = 1 in U(Ĩj). I.e.

u ∼h p+ u3 ∼h p+ u4 ∼h p+ u5 ∼h wn + 1− en ∼h 1 in U(D̃).

Under the assumption of the quotient being weaklyK0-surjective, the following Proposition
shows that K1-injectivity persists under taking extensions. Together with Lemma 5.1.13
this result will prove Theorem 5.1.15.

Proposition 5.1.14. [10, Proposition 6.6] Let I be a closed two-sided ideal in a C∗-algebra
A. If I and A/I are K1-injective and A/I is weakly K0-surjective, then A is K1-injective.

Proof. Let u ∈ U(Ã) with [u]1 = 0. The K1-injectivity of A/I implies that u + I ∼h 1 in
U(Ã/I). Lemma 5.1.8 now gives the existence of a unitary v ∈ U(Ĩ) such that u ∼h v in
U(Ã) and [v]K1(I) = 0. By K1-injectivity of I we get that u ∼h v ∼h 1 in U(Ã).

Theorem 5.1.15. [10, Theorem 6.7] Let A be an extremally rich C∗-algebra with weak
cancellation. Then A is K1-injective.

Proof. By Lemma 5.1.13, D(A) is K1-injective. Moreover D(A) is the smallest ideal such
that sr(A/D(A)) = 1, which implies that A/D(A) is K1-injective and weakly K0-surjective,
(c.f. [10, Section 6.2]). The result now follows from Proposition 5.1.14.

5.2 Purely infinite C∗-algebras

5.2.1 Extensions

We will now try to give a condition that implies K1-injectivity of a unital non-simple
purely infinite C∗-algebra. We prove that K1-injectivity is obtained if every quotient of
the C∗-algebra has a stable ideal. Moreover it is proved that stable C∗-algebras, and purely
infinite C∗-algebras that are extensions of K1-injective C∗-algebras, are K1-injective.

Lemma 5.2.1. Let A be a C∗-algebra. Consider for each n ∈ N, Mn(A)∼ as a unital
sub-C∗-algebra of Mn(Ã). Let u be a unitary in Mn(A)∼ such that u ∼h 1 in U(Mn(Ã)).
Then u ∼h 1 in U(Mn(A)∼).
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Proof. Let π : Mn(Ã) →Mn(C) be the ∗-homomorphism given by

π((aij + λij1)ni,j=1) = (λij)
n
i,j=1, aij ∈ A, λi,j ∈ C.

After multiplying u by a complex number, we can assume that u is on the form, u = x+1,
where x ∈ Mn(A). So without loss of generality, it can be assumed that π(u) = 1n. Let
v : [0, 1] → U(Mn(Ã)) be a continuous path of unitaries, such that v0 = u and v1 = 1.
Then zt = π(vt)

∗vt is a continuous path of unitaries in Mn(A)∼ with z0 = u and z1 = 1.
Hence u ∼h 1 in U(Mn(A)∼).

We shall now prove that stable C∗-algebras are K1-injective. The proposition will also be
used in some of the other results in this section.

Proposition 5.2.2. Any stable C∗-algebra is K1-injective.

Proof. If A is a stable C∗-algebra, there is a C∗-algebra A0 such that A ∼= A0 ⊗ K. It
follows that (A0 ⊗K)∼ is isomorphic to the inductive limit of the inductive sequence:

Ã0

ϕ1 //M2(A0)
∼ ϕ2 //M3(A0)

∼ ϕ3 // . . . // (A0 ⊗K)∼

where

ϕk(a+ λ1Mk
) =

(
a+ λ1Mk

0
0 λ1

)
, a ∈Mk(A0), λ ∈ C.

Let µn : Mn(A0)
∼ → (A0 ⊗K)∼ be unital ∗-homomorphisms such that

(A0 ⊗K)∼ =
∞⋃
n=1

µn (Mn(A0)∼),

and let u ∈ (A0 ⊗ K)∼ be a unitary with [u]K1(A0⊗K) = 0. Then there is n ∈ N and v ∈
U(Mn(A0)

∼) such that ‖u−µn(v)‖ < 1, which implies that u ∼h µn(v) in U((A0⊗K)∼). It
follows that [v]K1(Mn(A0)) = 0, since K1(µn) : K1(Mn(A0)) → K1(A0⊗K) are isomorphisms
for all n ∈ N by stability of K1. Therefore, there exists a k ∈ N such that(

v 0
0 1kn

)
∼h 1n(k+1) in U(Mk+1(Mn(A0)

∼)) ⊆ U(Mn(k+1)(Ã0)).

We can assume that v is of the form v = x+1, for some x ∈Mn(A0). Thus, diag(v, 1kn) ∈
Mn(k+1)(A0)

∼, and by Lemma 5.2.1 diag(v, 1kn) ∼h 1n(k+1) in U(Mn(k+1)(A0)
∼). Moreover,

µn(v) ∼h 1 in U((A0 ⊗K)∼) since

µn(v) = µn(k+1)((ϕn(k+1)−1 ◦ · · · ◦ ϕn)(v)) = µn(k+1)(diag(v, 1kn)) ∼h 1 in U((A0 ⊗K)∼).

Thereby, u ∼h 1 in U((A0 ⊗K)∼).
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Lemma 5.2.3. Let A be a unital C∗-algebra. If for any closed two-sided ideal I in A, there
is a stable closed two-sided ideal J in A/I such that (A/I)/J is weakly K0-surjective, then
A is K1-injective.

Proof. Suppose as a contradiction that u ∈ U(A) with [u]K1(A) = 0 and u �h 1 in U(A).
By Lemma 5.1.7 there is an ideal I in A which is maximal with respect to the property
that u + I �h 1 in U(A/I). Let π : A → A/I be the quotient map, and let J be a stable
closed two-sided ideal in A/I. Then π(u) + J ∼h 1 in U((A/I)/J). Lemma 5.1.8 gives the
existence of a unitary v ∈ J̃ such that [v]K1(J) = 0 and π(u) ∼h v in U(A/I). Since J is
stable, Lemma 5.2.2 implies that u+ I ∼h v ∼h 1 in U(A/I), which is a contradiction.

In some of the results by Brown and Pedersen, we had to assume weakly K0-surjectivity
of the C∗-algebras. This property is automatically satisfied for purely infinite C∗-algebras,
which is proved in Proposition 5.2.6. For the proof we need the following lemmas.

Lemma 5.2.4. If A is a unital, properly infinite C∗-algebra, then the multiplier algebra
M(SA), of the suspension of A, is properly infinite.

Proof. Since SA = C0(R)⊗A it follows that M(SA) ⊇M(C0(R))⊗A. There exist mutu-
ally orthogonal projections p and q in A such that p ∼ 1A ∼ q. Therefore (1M(C0(R))⊗p) and
(1M(C0(R))⊗q) are orthogonal projections inM(SA) with (1M(C0(R))⊗p) ∼ 1M(C0(R))⊗1A ∼
(1M(C0(R)) ⊗ q). Hence M(SA) is properly infinite.

Lemma 5.2.5. Let A be a C∗-algebra, let u be a unitary in Ã and let v be a unitary in
M(A). Then vuv∗ ∼1 u in U(Ã) (and vuv∗ ∈ Ã).

Proof. From Whitehead’s Lemma we have that diag(v, 1) ∼h diag(1, v) in U(M2(M(A))).
Then there exists a continuous path of unitaries wt : [0, 1] → U(M2(M(A))) such that
w0 = diag(v, 1) and w1 = diag(1, v). It follows that w̄t = wtdiag(u, 1)w∗t is a continuous
path of unitaries in U(M2(Ã)) such that w̄0 = diag(vuv∗, 1) and w̄1 = diag(u, 1). Hence
vuv∗ ∼1 u.

Proposition 5.2.6. Let A be a unital purely infinite C∗-algebra. Then A is weakly K0-
surjective.

Proof. Let z ∈ K1(SA) and find n ∈ N and a unitary u ∈Mn(S̃A) such that z = [u]1. We
shall prove that u ∼1 1 + y for some y ∈ SA for which 1 + y is unitary.

We can assume that u can be written on the form

u = 1Mn(C) + x, x ∈Mn(SA)

=


1 + x11 x12 · · · x1n

x21 1 + x22 · · · x2n
...

... . . . ...
xn1 xn2 · · · 1 + xnn

 , xij ∈ SA.
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This can be seen if we let π : Mn(S̃A) →Mn(C) be given by

π((aij + λij)
n
i,j=1) = (λij)

n
i,j=1, aij ∈ SA, λij ∈ C.

Then π(u) is a unitary in Mn(C) and u ∼h π(u)∗u, where π(u)∗u is of the form

π(u)∗u = 1Mn(C) + x

for some x ∈Mn(SA).

Since A is purely infinite, M(SA) is properly infinite by Lemma 5.2.4. Therefore there is
an embedding of O∞ into M(SA), and we can find isometries s1, . . . , sn ∈ M(SA) such
that sis∗i and sjs∗j are orthogonal for i 6= j. Let

p = 1− s1s
∗
1 − · · · − sns

∗
n,

and define a ∗-homomorphism ϕ : Mn(S̃A) → (1− p)S̃A(1− p) by

ϕ
(
(aij)

n
i,j=1

)
=

n∑
i,j=1

siaijs
∗
j , aij ∈ S̃A.

Then

ϕ(u) = (1− p) + y, y =
n∑

i,j=1

sixijs
∗
j ∈ SA.

Since 1 + y = (1− p) + y+ p, and (1− p) + y is unitary in (1− p)S̃A(1− p), it follows that
1 + y is a unitary in S̃A. Let

v =


s1 s2 · · · sn p
0 0 · · · 0 s∗1
0 0 · · · 0 s∗2
...

... . . . ...
...

0 0 · · · 0 s∗n

 ∈Mn+1(M(SA)) = M(Mn+1(SA)).

Then v is unitary, and vdiag(u, 1)v∗ = diag(y + 1, 1Mn(M(SA))). By Lemma 5.2.5 we get:

[u]1 = [vdiag(u, 1)v∗]1 = [diag(y + 1, 1Mn(M(SA)))]1 = [y + 1]1.

Cuntz proved that any unital simple purely infinite C∗-algebra is K1-injective. In the
next theorem we give a condition that implies K1-injectivity of a unital purely infinite
C∗-algebra in the non-simple case.

Theorem 5.2.7. Let A be a unital purely infinite C∗-algebra. If for any closed two-sided
ideal I in A, there exists a stable closed two-sided ideal J in A/I, then A is K1-injective.
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Proof. Since A is unital and purely infinite, (A/I)/J is also a unital purely infinite C∗-
algebra. It follows from Proposition 5.2.6 that (A/I)/J is weakly K0-surjective, which
implies that A is K1-injective by Lemma 5.2.3.

If I is a closed two-sided ideal in a unital purely infinite C∗-algebra A, then A/I is purely
infinite and thereby weakly K0-surjective. So from Proposition 5.1.14 we get that an
extension of K1-injective C∗-algebras is K1-injective, if it is purely infinite.

Proposition 5.2.8. Let A be a unital purely infinite C∗-algebra and let I be a closed
two-sided ideal in A. If I and A/I are K1-injective, then A is K1-injective.

From Proposition 5.2.8 we get the following result:

Proposition 5.2.9. Let A be a unital separable purely infinite C∗-algebra with a finite
ideal lattice. Then A is K1-injective.

Proof. Since the ideal lattice of A is finite, there is a finite number of ideals

0 = I0 � I1 � I2 · · ·� In−1 � In = A

such that Ij+1/Ij is simple for j = 1, . . . , n−1. We also have that Ij and Ij+1/Ij are purely
infinite since A is purely infinite.

We shall now prove that A/In−1 is K1-injective. But A/In−1 = In/In−1, so it is unital,
purely infinite and simple and therefore K1-injective by Theorem 3.1.3.

Suppose now that A/In−k is also K1-injective for a natural number k < n. The ideal
In−k/In−(k+1) � A/In−(k+1) is a separable, purely infinite and simple C∗-algebra. Hence
it is either unital or stable. I.e., In−k/In−(k+1) is K1-injective by either Theorem 3.1.3 or
Proposition 5.2.2 respectively. Thus A/In−(k+1) is K1-injective by Proposition 5.2.8 since
the quotient A/In−k is by assumption also K1-injective. Therefore by induction, A = A/I0
is K1-injective.

5.2.2 A unital C(X)-algebra with purely infinite fibres

We shall once again consider an example from Section 4.4. This time it will be used to
prove that a unital continuous C(X)-algebra is K1-injective if all the fibres are simple and
purely infinite, and X is a finite dimensional compact Hausdorff space.

Let A be a unital C∗-algebra and let v ∈ U(A) be a unitary in A satisfying(
v 0
0 1

)
∼h

(
1 0
0 1

)
in U2(A).

Let t 7→ ut be a continuous path of unitaries in U2(A) such that u0 = 1 and u1 = diag(v, 1).
Let

p(t) = ut

(
1 0
0 0

)
u∗t ∈M2(A).
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When we identify C(T,M2(A)) with the C∗-algebra {f ∈ C([0, 1],M2(A)) : f(0) = f(1)},
it follows that p ∈ C(T,M2(A)). Put

B = pC(T,M2(A))p,

and we get that B is a C(T)-algebra with fibres

Bt = p(t)M2(A)p(t) ∼= A, t ∈ T.

First we shall prove that if X is a compact Hausdorff space and A is a unital C(X)-algebra,
then B is also a C(X × T)-algebra.

Lemma 5.2.10. Let X be a compact Hausdorff space, let A be a unital C(X)-algebra, and
let B be the C∗-algebra defined above. Then B is a C(X×T)-algebra with fibres B(x,t)

∼= Ax
for all x ∈ X, t ∈ T.

Proof. Since B is a C(T)-algebra and A is a C(X)-algebra there exist a unital ∗-homomor-
phism µ : C(T) → Z(B) and a unital ∗-homomorphism γ : C(X) → Z(A).
Define ϕ : Z(A) → B by

ϕ(a)(t) = p(t)

(
a 0
0 a

)
p(t),

where p is the projection defined above.
If a ∈ Z(A), then diag(a, a) and p(t) commute, which implies that ϕ is a ∗-homomorphism
with ϕ(Z(A)) ⊆ Z(B). Thereby ρ = ϕ ◦ γ is a unital ∗-homomorphism from C(X) into
Z(B). So there exists a unique unital ∗-homomorphism ρ⊗µ : C(X)⊗C(T) → Z(B), and
since C(X)⊗ C(T) ∼= C(X × T), we have that B is a C(X × T)-algebra.
It is now left to show that the fibres B(x,t)

∼= Ax for all x ∈ X, t ∈ T. This means that we
shall find a unital ∗-isomorphism ψ : B(x,t) → Ax such that the diagram

B
ρx◦πt //

ν(x,t) !!C
CC

CC
CC

C Ax

B(x,t)

ψ

<<y
y

y
y

commutes, where πt : B → A, ρx : A→ Ax, and ν(x,t) : B → B(x,t) are the quotient maps.

Let g ∈ C(X) and f ∈ C(T). Then

ν(x,t)((ρ⊗ µ)(g ⊗ f)1B) = (g ⊗ f)(x, t)1B(x,t)
= g(x)f(t)1B(x,t)

and
πt((ρ⊗ µ)(g ⊗ f)1B) = πt((ρ(g)µ(f)1B)

= πt(ρ(g))πt(µ(f))1Bt

= πt(ϕ(γ(g)))πt(µ(f))1Bt

= ϕ(γ(g))(t)f(t)1Bt

= γ(g)f(t)1A
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where the last equality holds because of the isomorphism Bt = p(t)M2(A)p(t) ∼= A. Hence

(ρx ◦ πt)((ρ⊗ µ)(g ⊗ f)1B) = ρx(γ(g)f(t)1A) = g(x)f(t)1Ax .

Thus, ker(ν(x,t) ◦ (ρ⊗µ)) = ker(ρx ◦πt ◦ (ρ⊗µ)) which implies that ker(ν(x,t)) = ker(ρx ◦πt)
for x ∈ X, t ∈ T. The First Homomorphism Theorem gives the existence of an injective
unital ∗-homomorphism ψ : B(x,t) → Ax such that the diagram above is commuting, and
since the quotient maps are surjective, ψ becomes an isomorphism.

Theorem 5.2.11. Let X be a finite dimensional compact Hausdorff space and let A be a
unital continuous C(X)-algebra, such that Ax is purely infinite and simple for all x ∈ X.
Then A is K1-injective.

Proof. Let v ∈ U(A) such that diag(v, 1) ∈ U0
2 (A), and let B be the C∗-algebra constructed

above. By Lemma 5.2.10, B is a C(X × T)-algebra with fibres B(x,t)
∼= Ax for all (x, t) ∈

X × T. I.e., B(x,t) is purely infinite and simple for all (x, t) ∈ X × T. Then B has the
Global Glimm halving property by [6, Theorem 2.7], and it follows from [6, Proposition
5.2] that B is purely infinite. Hence, v ∼h 1 in U(A) by 4.4.7. Therefore the natural map
U(A)/U0(A) → U2(A)/U0

2 (A) is injective, and A is K1-injective.

5.2.3 Maximal ideals

We are going to study the primitive ideal space and the maximal ideal space of a C∗-algebra
in this section. Unfortunately these studies give for every unital purely infinite C∗-algebra,
the existence of a quotient without stable ideals. This means that the conditions we gave
in Theorem 5.2.7 for a unital purely infinite C∗-algebra being K1-injective are useless. On
the other hand we give a new condition that imply K1-injectivity, which depends on the
maximal ideal space.

Definition 5.2.12. [1, Definition II.6.5.1] Let A be a C∗-algebra and let I be a closed
two-sided ideal in A. Then I is called a primitive ideal, if I is the kernel of an irreducible
representation of A.
The primitive ideal space of A, Prim(A), is the set of primitive ideals of A.

The topology on Prim(A) is the hull-kernel topology. I.e., for a subset M ⊆ Prim(A) and
a primitive ideal J ∈ Prim(A), then

J ∈M ⇐⇒ J ⊇
⋂
I∈M

I.

Let A be a C∗-algebra. If x ∈ A we define a function x̌ : Prim(A) → R+ by

x̌(J) = ‖x+ J‖, J ∈ Prim(A).
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In general x̌ is lower semi-continuous ([1, Proposition II.6.5.6]), but if x is in the center of
A, the function is actually continuous. This is part of the important theorem below that
is known as the Dauns-Hoffmann Theorem:

Theorem 5.2.13 (Dauns-Hoffmann). [1, Theorem II.6.5.10] Let A be a unital C∗-
algebra, and Z(A) its center. Then for each x ∈ Z(A), the function x̌ is continuous, and
x 7→ x̌ (x ∈ Z(A)+) extends to an isomorphism from Z(A) onto C(Prim(A)).

For a C∗-algebra A, we define Max(A) to be the set of maximal ideals in A. Note that
Max(A) ⊆ Prim(A) and as the following theorem shows, Max(A) is dense in Prim(A) in
some cases.

Theorem 5.2.14. Let A be a unital C∗-algebra. Then the following conditions are equi-
valent:

(i) Every non-zero ideal in A has a unital quotient.

(ii)
⋂
I∈Max(A) I = (0).

(iii) Max(A) is dense in Prim(A).

Proof. (ii) ⇒ (i): Let I ∈ Max(A) and let J be a closed two-sided ideal in A. Let
πI : A → A/I be the quotient map. Then πI(J) is a closed two-sided ideal in A/I and
since A/I is simple, then πI(J) = A/I or πI(J) = (0). But A/I is unital, so if πI(J) = A/I,
then J has a unital quotient.

On the other hand, if πI(J) = (0) for every I ∈ Max(A), then J ⊆
⋂
I∈Max(A) I = (0) which

implies that J = (0).

(i) ⇒ (ii): Let I0 =
⋂
I∈Max(A) I � A, and let by (i) I ′0 be an ideal in I0 such that I0/I

′
0 is

unital. Let e be a unit in I0/I
′
0 and let ϕ : A/I

′
0 → I0/I

′
0 be given by

ϕ(x) = xe.

Since I0/I
′
0 is an ideal in A/I ′0, ϕ is a surjective ∗-homomorphism.

Every ideal in I0/I
′
0 is of the form I

′′
0 /I

′
0 for some ideal I ′′0 � I0, where I ′0 ⊆ I

′′
0 . So by the

Third Isomorphism Theorem, a quotient in I0/I
′
0 is on the form I0/I

′′
0 . We choose I ′′0 such

that I0/I
′′
0 is simple (this can be done since I0/I

′
0 is unital).

Consider the maps

A
π

I
′
0 // A/I

′
0

ϕ // I0/I
′
0

π
I
′′
0 /I

′
0 // I0/I

′′
0

which are all surjective.
Hence there is a surjective map ψ : A → I0/I

′′
0 . This implies that I0/I

′′
0
∼= A/I for some

maximal ideal I in A. Let πI : A→ A/I be the quotient map. Suppose as a contradiction
that I0 6= (0), and let x ∈ I0 \ I

′′
0 . Then πI(x) 6= 0, so I0 * I which is a contradiction.
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(ii) ⇔ (iii): We have that Max(A) ⊆ Prim(A), so by definition if J ∈ Prim(A), then

J ∈ Max(A) ⇐⇒ J ⊇
⋂

I∈Max(A)

I.

If
⋂
I∈Max(A) I = (0), it follows that J ∈ Max(A) for every J ∈ Prim(A), which implies

that Max(A) is dense in Prim(A). On the other hand, since
⋂
J∈Prim(A) J = (0), it follows

that
⋂
I∈Max(A) I = (0) if Max(A) = Prim(A).

Lemma 5.2.15. Let A be a unital C∗-algebra and let

I0 =
⋂

I∈Max(A)

I.

Then A/I0 satisfies the conditions (i)-(iii) from Theorem 5.2.14
If J is a closed two-sided ideal in A, then A/J satisfies (i)-(iii) from Theorem 5.2.14 if and
only if I0 ⊆ J .

Proof. In Theorem 5.2.14, condition (ii) and thereby (i) and (iii) are clearly satisfied by
A/I0.

Let J be a closed two-sided ideal in A, and let π : A → A/J be the quotient map. Since
{π−1(I) : I ∈ Max(A/J)} = {I ∈ Max(A) : J ⊆ I}, it follows that

π−1

 ⋂
I∈Max(A/J)

I

 =
⋂

I∈Max(A/J)

π−1(I) =
⋂

I∈Max(A)

{J ⊆ I}.

Hence
⋂
I∈Max(A){J ⊆ I} = J if

⋂
I∈Max(A/J) I = (0), and since I0 ⊆

⋂
I∈Max(A){J ⊆ I}, it

follows that I0 ⊆ J if
⋂
I∈Max(A/J) I = (0).

On the other hand we have to prove (i) for A/J if I0 ⊆ J . Every ideal in A/J is on the form
K/J for a closed to two-sided ideal K in A, where J ⊆ K. We also have that K/I0 �A/I0
because I0 ⊆ J ⊆ K.
Since A/I0 satisfies (i), K/I0 has a unital quotient. Therefore we can find a closed two-sided
ideal L in K with I0 ⊆ L such that

K/I0
L/I0

∼=
K

L

is unital. We shall prove that K/J has a unital quotient. Let L′ = (L + J) ∩K, which is
a closed two-sided ideal in K with J ⊆ L′ and L ⊆ L′. Furthermore

K/J

L′/J
∼= K/L′ ∼=

K/L

L′/L

and thus K/J has a unital quotient, since every quotient of the unital C∗-algebra K/L is
unital.
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In Theorem 5.2.7 it was proved that a unital purely infinite C∗-algebra is K1-injective
if every quotient of it has a stable ideal. But we shall now use Kirchberg and Rørdams
result about stability in a σ-unital purely infinite C∗-algebra to give a new formulation of
Theorem 5.2.7.

Theorem 5.2.16. [22, Theorem 4.24] Let A be a σ-unital purely infinite C∗-algebra. Then
A is stable if and only if A has no unital quotient.

Theorem 5.2.17. Let A be a unital purely infinite C∗-algebra. If for any closed two-sided
ideal I in A, there exists a closed two-sided ideal J in A/I with no unital quotient, then A
is K1-injective.

Remark 5.2.18. Let A be a unital purely infinite C∗-algebra. If I0 =
⋂
I∈Max(A) I, then

by Lemma 5.2.15, every ideal J in A/I0 has a unital quotient. So we cannot use Theorem
5.2.17 to conclude that A is K1-injective.

Next we will prove that a unital purely infinite C∗-algebra is K1-injective if A/I0 is K1-
injective, where I0 =

⋂
I∈Max(A) I. This result is used to show that a unital purely infinite

C∗-algebra is automatically K1-injective if the maximal ideal space has some nice proper-
ties. (Theorem 5.2.21)

Lemma 5.2.19. Let A be a unital purely infinite C∗-algebra and let I0 =
⋂
I∈Max(A) I.

Then A is K1-injective if A/I0 is K1-injective.

Proof. Let u ∈ U(A) with [u]1 = 0 and suppose as a contradiction that u �h 1 in U(A).
Let I be a closed two-sided ideal in A that is maximal with respect to the property that
u + I �h 1 in U(A/I). Since A/I0 is K1-injective, u + I0 ∼h 1 in U(A/I0), which implies
that u+ I ∼h 1 in U(A/I) if I0 ⊆ I, giving a contradiction.
If I0 * I then A/I has a stable ideal by Theorem 5.2.16 and Lemma 5.2.15. The same
argument as in the proof of Lemma 5.2.3 gives that u + I ∼h 1 in U(A/I), contradicting
the assumption.

Lemma 5.2.20. Let A be a unital C∗-algebra and let I0 =
⋂
I∈Max(A) I. Then

Prim(A/I0) ∼= Max(A).

Proof. Let π : A → A/I0 be the quotient map, and let J be a closed two-sided ideal in
A/I0. First we will show that J ∈ Prim(A/I0) if and only if π−1(J) ∈ Prim(A):
Suppose that J ∈ Prim(A/I0) and let ρ : A/I0 → B(H) be an irreducible representation
with ker(ρ) = J . Then ρ ◦π : A→ B(H) is an irreducible representation with ker(ρ ◦π) =
π−1(J) which means that π−1(J) ∈ Prim(A).

Suppose conversely that π−1(J) ∈ Prim(A) and let ϕ : A → B(H) be an irreducible
representation with ker(ϕ) = π−1(J). Since π−1(0) = I0, it follows that I0 ⊆ ker(ϕ) so
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there is an irreducible representation ψ : A/I0 → B(H) making the following diagram
commutative:

A
ϕ //

π

��

B(H)

A/I0

ψ

;;w
w

w
w

w

Since ker(ϕ) = π−1(J) we get that ker(ψ) = J and therefore J ∈ Prim(A/I0). Thus,

Prim(A/I0) ∼= {I ∈ Prim(A) : I0 ⊆ I} = Max(A),

where the last equation follows from the definition of the topology on Prim(A).

Theorem 5.2.21. Let A be a unital purely infinite C∗-algebra. Then A is K1-injective if
Max(A) is a finite dimensional compact Hausdorff space that is closed in Prim(A).

Proof. By Lemma 5.2.19 we have to show that A/I0 is K1-injective. Since

Max(A) = Max(A) = Prim(A/I0)

it follows from Dauns-Hoffmann’s theorem, that A/I0 is a continuous C(X)-algebra with
X = Max(A). For every x ∈ Max(A) the fibre (A/I0)x is simple and purely infinite. Hence
A/I0 is K1-injective by Theorem 5.2.11.



Chapter 6

Approximately divisible C∗-algebras
and Z-stability

Blackadar, Kumjian and Rørdam proved in [3] that a simple unital approximately divisible
C∗-algebra is K1-injective. In the first section of this chapter we will generalize this result
to hold also for a unital and non-simple approximately divisible C∗-algebra. From this
result we prove that a unital C∗-algebra is K1-injective, if it absorbs tensorially a unital
approximately divisible C∗-algebra.
In the next section we consider C∗-algebras that tensorially absorbs the Jiang-Su algebra Z.
These C∗-algebras are called Z-stable, and we will prove that a unital Z-stable C∗-algebra
is K1-injective if it is properly infinite.

6.1 Approximately divisible C∗-algebras

Definition 6.1.1. [31, Definition 3.1.10] A C∗-algebra A is said to be approximately
divisible if for every n ∈ N there is a sequence of unital ∗-homomorphisms

ϕk : Mn(C)⊕Mn+1(C) →M(A)

such that
‖ϕk(x)a− aϕk(x)‖ → 0

for all x ∈Mn(C)⊕Mn+1(C) and all a ∈ A.

Theorem 6.1.2. [3, Proposition 3.11] Let A be a simple approximately divisible C∗-algebra.
Then A is K1-injective.

The above theorem shall in the following be generalized to prove that every unital approx-
imately divisible C∗-algebra is K1-injective. We start by showing that the result holds for
a C∗-algebra that is unital, properly infinite and approximately divisible. Moreover we

59
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shall prove that a unital C∗-algebra that tensorially absorbs an approximately divisible
C∗-algebra, is K1-injective.

We start with the following definition:

Definition 6.1.3. An ordered abelian positive semi group (W,+,≤) is said to be almost
unperforated if

∀ n,m ∈ N, n > m ∀ x, y ∈ W : nx ≤ my ⇒ x ≤ y.

Theorem 6.1.4. Let A be a unital, properly infinite, and approximately divisible C∗-
algebra. Then A is K1-injective.

Proof. Let ϕn : M2(C) ⊕M3(C) → A be a unital asymptotically central sequence of ∗-
homomorphisms. For each n ∈ N, let

pn = ϕn

(
1 0
0 0

)
,

 1 0 0
0 0 0
0 0 0

 .

Since diag(1, 0) and diag(1, 0M2(C)) are full projections in M2(C) and M3(C) respectively,
pn is full in A. A similar argument gives that 1− pn is also a full projection. We shall now
show that pn and 1− pn are properly infinite:
Since pn is full there is a k ∈ N such that

〈1〉 ≤ k〈pn〉

(c.f. [35, Exercise 4.8]). But 1 is properly infinite and full, which implies that

〈1〉 ≤ k〈pn〉 ≤ 〈1〉.

I.e., pn ⊕ · · · ⊕ pn (with k summands) is properly infinite because 1 is properly infinite.
Thus,

k〈pn ⊕ pn〉 ≤ k〈pn〉
and it follows that

(k + 1)〈pn ⊕ pn〉 ≤ 2k〈pn ⊕ pn〉 ≤ 2k〈pn〉 = k〈pn ⊕ pn〉 ≤ k〈pn〉.

From [3, Lemma 3.8] we get that V (A) is almost unperforated when A is approximately
divisible. Hence

pn ⊕ pn - pn

and pn is properly infinite. The same argument gives that 1− pn is properly infinite.

Since (ϕn)n∈N is an asymptotically central sequence of ∗-homomorphisms, it follows that

lim
n→∞

‖pna− apn‖ = 0

for all a ∈ A. Hence A is K1-injective by Lemma 4.2.3.
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We shall now prove that the above theorem also holds for a general approximately divisible
C∗-algebra. But to prove this we need the following Lemmas:

Lemma 6.1.5. Let A be a unital C∗-algebra and let A0 ⊆ A be a unital sub-C∗-algebra of
A. Let n ∈ N and let u ∈ U(A0) such that u⊕ 1n−1 ∼h 1n in U(Mn(A0)). Suppose there is
a unital ∗-homomorphism ψ : Mn(C) → A ∩ A′0. Then u ∼h 1 in U(A).

Proof. Since u⊕ 1n−1 ∼h 1 in U(Mn(A0)) it follows that(
un 0
0 1n−1

)
=

(
u 0
0 1n−1

)n

∼h 1n in U(Mn(A0)),

and by Whitehead’s Lemma diag(u, . . . , u) ∼h 1n in U(Mn(A0)).

The C∗-algebras A0 ⊗Mn(C) and Mn(A0) are canonically isomorphic, which implies that
u ⊗ 1n ∼h 1 in U(A ⊗Mn(C)). Since A0 and ψ(Mn(C)) are commuting C∗-algebras and
Mn(C) is simple, we have that ρ : A0 ⊗Mn(C) → C∗(A0, ψ(Mn(C)) given by

ρ(a⊗ x) = aψ(x), a ∈ A0, x ∈Mn(C)

is a ∗-isomorphism. Thus, u ∼h 1 in U(C∗(A0, ψ(Mn(C)))).

Lemma 6.1.6. Let A be a unital C∗-algebra and let A0 ⊆ A be a unital sub-C∗-algebra of
A. Let n ∈ N and let u ∈ U(A0) such that u⊕ 1n−1 ∼h 1n in U(Mn(A0)). Suppose there is
a unital ∗-homomorphism ϕ : Mn(C)⊕Mn+1(C) → A ∩ A′0. Then u ∼h 1 in U(A).

Proof. Let p = (1, 0) ∈ Mn(C)⊕Mn+1(C) and let q = ϕ(p), and define ∗-homomorphisms
ρ : A→ qAq by

ρ(x) = qxq, x ∈ A

and γ : A→ (1− q)A(1− q) by

γ(x) = (1− q)x(1− q), x ∈ A.

Since the projections q and 1− q commute with A0, there are unital ∗-homomorphisms

ρ ◦ ϕ|Mn : Mn(C) → (A0q)
′ ∩ qAq

and
γ ◦ ϕ|Mn+1 : Mn+1(C) → (A0(1− q))′ ∩ (1− q)A(1− q).

Furthermore

uq ⊕ qn−1 = ρn(u⊕ 1n−1) ∼h ρn(1n) = qn in U(Mn(A0q)).

Thus by Lemma 6.1.5, uq ∼h q in U(qAq), and similarly u(1− q) ∼h (1− q) in
U((1− q)A(1− q)). Therefore, u = uq + u(1− q) ∼h q + (1− q) = 1 in U(A).



Z-stable C∗-algebras 62

Theorem 6.1.7. Let A be a unital approximately divisible C∗-algebra. Then A is K1-
injective.

Proof. Let u ∈ U(A) with [u]1 = 0. By [3, Theorem 1.3] and by continuity of K1, there
is a unital sub-C∗-algebra A0 ⊆ A and a unitary u0 ∈ U(A0) such that u ∼h u0 and
[u0]K1(A0) = 0, and such that for every n ∈ N there is a unital ∗-homomorphism ϕ :
Mn(C)⊕Mn+1(C) → A∩A′0. From Lemma 6.1.6 it follows that u ∼h u0 ∼h 1 in U(A).

We are going to prove that a unital C∗-algebra is K1-injective if it tensorially absorbs
an approximately divisible C∗-algebra. So first it is proved that a unital C∗-algebra A
is approximately divisible if A ∼= A ⊗ D, and D is a unital and approximately divisible
C∗-algebra.

Lemma 6.1.8. Let A be a unital C∗-algebra and let D be a unital approximately divisible
C∗-algebra. If A ∼= A⊗D, then A is approximately divisible.

Proof. There is for every n ∈ N an asymptotically central sequence

ϕk : Mn(C)⊕Mn+1(C) → D

of unital ∗-homomorphisms. Let Φk : Mn(C)⊕Mn+1(C) → A⊗D be given by

Φk(x) = 1⊗ ϕk(x).

Then Φk : Mn(C) ⊕Mn+1(C) → A ⊗ D is an asymptotically central sequence of unital
∗-homomorphisms, which implies that A⊗D is an approximately divisible C∗-algebra.

By Theorem 6.1.7 and Lemma 6.1.8 we get the following theorem:

Theorem 6.1.9. Let D be a unital approximately divisible C∗-algebra, and let A be a unital
C∗-algebra such that A ∼= A⊗D. Then A is K1-injective.

Since a UHF-algebra is approximately divisible (c.f [3, Proposition 4.1]), we thereby get
the following class of examples of K1-injective C∗-algebras:

Theorem 6.1.10. Let A be a unital C∗-algebra and let D be a UHF-algebra. If A ∼= A⊗D,
then A is K1-injective.

6.2 Z-stable C∗-algebras

If A is a unital and simple C∗-algebra, then A⊗Z is K1-injective. This follows since A⊗Z
is either simple and purely infinite, or A⊗Z has stable rank one (see [31, Theorem 4.1.10]
and [33, Theorem 6.7]). In the following we shall prove that A⊗ Z is K1-injective if A is
unital and properly infinite.
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First we need the following two lemmas:

Lemma 6.2.1. Let A be a unital C∗-algebra such that A ∼= A⊗Z. Then there is a sequence
A1 ⊆ A2 ⊆ · · · ⊆ A of unital sub-C∗-algebras of A such that A =

⋃∞
n=1An, and such that

for every n ∈ N there is a unital ∗-homomorphism ϕn : Z → A ∩ A′n.

Proof. Since A ∼= A⊗Z and Z ∼=
⊗∞

i=1Z, A can be identified with A = A0⊗Z⊗Z⊗Z⊗. . .
where A0

∼= A. If we let An = A0 ⊗Z ⊗Z ⊗ · · · ⊗ Z ⊗ 1Z ⊗ 1Z ⊗ . . . with n copies of Z,
and let ϕn : Z → A be given by

ϕn(x) = 1A0 ⊗ 1Z ⊗ 1Z ⊗ · · · ⊗ x⊗ 1Z ⊗ . . . , x ∈ Z

with x in the (n+ 1)’th position, then the lemma is proved.

Lemma 6.2.2. Let A be a unital properly infinite C∗-algebra. Let u ∈ U(A) and let a be a
non-zero positive, properly infinite and full element in A. Then there is a properly infinite
and full projection p ∈ aAa.

In particular: if aua = a2, then u ∼h 1 if [u]1 = 0.

Proof. Since a is properly infinite and full, b - a for every b ∈ A+. In particular, 1 - a.
Hence there exists a sequence (xn)n∈N ⊆ A such that x∗naxn → 1. So for n sufficiently
large, we have that ‖x∗naxn − 1‖ < 1, and thereby x∗naxn is invertible. Thus,

(x∗naxn)
− 1

2 (x∗naxn)(x
∗
naxn)

− 1
2 = 1.

It follows that there exists x ∈ A such that x∗ax = 1. Let v = a
1
2x. I.e.,

v∗v = x∗a
1
2a

1
2x = 1.

Let p = vv∗. Hence p ∈ aAa and p ∼ 1. It follows immediately that p is a full projection,
and from the equivalence p ∼ 1 and by proper infiniteness of A we also get,(

p 0
0 p

)
∼

(
1 0
0 1

)
-

(
1 0
0 0

)
∼

(
p 0
0 0

)
.

Therefore p is a full and properly infinite projection.

Moreover, if aua = a2, then pup = p and pu∗p = p. Hence

‖up− p‖2 = ‖(up− p)∗(up− p)‖
= ‖(pu∗ − p)(up− p)‖
= ‖p− pu∗p− pup+ p‖
= 0
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and

‖pu− p‖2 = ‖(pu− p)(pu− p)∗‖
= ‖(pu− p)(u∗p− p)‖
= ‖p− pup− pu∗p+ p‖
= 0.

Now, copying the proofs of Lemma 3.1.2 and Theorem 3.1.3, we get that u ∼h 1 in U(A)
if [u]1 = 0.

We are now ready to prove the main theorem of this section:

Theorem 6.2.3. Let A be a unital properly infinite C∗-algebra such that A ∼= A⊗Z. Then
A is K1-injective.

Proof. Let u ∈ U(A) with [u]1 = 0. By Lemma 6.2.1 and by continuity of K1, there is a
unital sub-C∗-algebra A0 ⊆ A, a unital ∗-homomorphism ϕ : Z → A ∩ A′0, and a unitary
u0 ∈ U(A0) such that u ∼h u0 and [u0]K1(A0) = 0.
If sp(u0) ( T, then u0 ∼h 1 in U(A) and we are done. So suppose that sp(u0) = T.

We can consider the cone CM2(C) = C0(]0, 1],M2(C)) to be a sub-C∗-algebra of Z. Then
C∗(u0) ∼= C(T) and ϕ(CM2(C)∼) are commuting sub-C∗-algebras of A. Thus, by the uni-
versal property of the maximal tensor product, there is a unital surjective ∗-homomorphism

ψ : C(T)⊗ ϕ(CM2(C)∼) → C∗(u0, ϕ(CM2(C)∼)) = C∗(u0, ϕ(CM2(C))).

Since the C∗-algebras are nuclear, we have considered the minimal tensor product.
On the other hand, there is a unital surjective ∗-homomorphism from C(T) ⊗ CM2(C)∼

onto C(T)⊗ ϕ(CM2(C)∼), so the First Homomorphism Theorem gives that

C∗(u0, ϕ(CM2(C))) ∼= (C(T)⊗ CM2(C)∼)/I

for a closed two-sided ideal I in C(T)⊗ CM2(C)∼. And

C(T)⊗ CM2(C)∼ ∼= C(T, CM2(C)∼) ∼= {f ∈ C(T× [0, 1],M2(C)) : f(z, 0) ∈ C12}

since CM2(C)∼ ∼= {f ∈ C([0, 1],M2(C)) : f(0) ∈ C12}. Hence

C∗(u0, ϕ(CM2(C))) ∼= B/I

where B = {f ∈ C(T× [0, 1],M2(C)) : f(z, 0) ∈ C12}.
Let v ∈ U(B) be the unitary that corresponds to u0 under the natural identification of
C∗(u0, ϕ(CM2(C))) with B/I. I.e,

v(z, t) =

(
z 0
0 z

)
,
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and let b be the full and positive element in B given by

b(z, t) =

(
t 0
0 0

)
.

From Whitehead’s Lemma, there is for each 0 < ε < 1 a continuous function w : T×[0, ε] →
U(M2(C)) such that

w(z, 0) =

(
z 0
0 z

)
and

w(z, ε) =

(
1 0
0 z2

)
.

If we define
w(z, t) =

(
1 0
0 z2

)
for ε ≤ t ≤ 1, then w is a unitary in B. Moreover v ∼h w in U(B) by Whitehead’s Lemma.
For t ≥ ε it follows that

b(z, t)w(z, t)b(z, t) = b(z, t)2

for all z ∈ T. Thus
(b− ε)+w(b− ε)+ = (b− ε)2

+,

where the full and positive element (b− ε)+ ∈ B can be associated with the function

(z, t) 7→
(

(t− ε)+ 0
0 0

)
.

From the computations above in B, and because of the isomorphism

C∗(u0, ϕ(CM2(C))) ∼= B/I,

we can find a unitary w̄ ∈ C∗(u0, ϕ(CM2(C))) such that u0 ∼h w̄ and a positive and full
element a ∈ C∗(u0, ϕ(CM2(C))) such that aw̄a = a2. An argument similar to the one
given in the proof of Theorem 6.1.4, implies that a is properly infinite, since W (A) is
almost unperforated (c.f. [33, Theorem 4.5]). Hence,

u ∼h u0 ∼h w̄ ∼h 1 in U(A)

by Lemma 6.2.2.

It would be nice if Theorem 6.2.3 could be generalized also to hold for every unital C∗-
algebra that is Z-stable, but not necessarily properly infinite. In Theorem 6.2.5 we will
prove that a unitary in a Z-stable C∗-algebra A, can always be homotoped to a unitary in
a hereditary sub-C∗-algebra of A. After having studied the results by Cuntz (Section 3.1)
and Brown and Pedersen (Section 5.1), we may raise the question if this condition implies
K1-injectivity of A?
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If A is a C∗-algebra and a is a non-zero positive element in A, we will by a⊥ denote the
hereditary sub-C∗-algebra of A, that consists of all elements in A that are orthogonal to
a. This notation will be used in the following lemma:

Lemma 6.2.4. Let A be a C∗-algebra, let a ∈ A+\{0} and let g : R → R+ be a continuous
function such that g(0) = 1. Then a⊥ ⊆ g(a)Ag(a).

Proof. Let x ∈ a⊥ and let f be the continuous function defined by f = 1 − g. Then
1Ã = g(a) + f(a).
Since x ∈ a⊥, it follows that

xa = 0 = ax,

which implies that
xf(a) = 0 = f(a)x.

Hence
x = 1Ãx1Ã = (g(a) + f(a))x(g(a) + f(a)) = g(a)xg(a).

Theorem 6.2.5. Let A be a unital C∗-algebra such that A ∼= A ⊗ Z and let u ∈ U(A).
Then there is a unital ∗-homomorphism ϕ : Z → A such that for every c ∈ Z+ \ {0} there
is a unitary u′ ∈ ϕ(c)Aϕ(c) + C1 such that u ∼h u

′ in U(A).

Proof. Let n ∈ N and let In(n+1) be the dimension drop algebra

In(n+1) = {f ∈ C([0, 1],Mn(C)⊗Mn+1(C)) : f(0) ∈Mn(C)⊗ 1n+1, f(1) ∈ 1n⊗Mn+1(C)}.

By [33, Theorem 2.1] there exists an embedding ι : In(n+1) → Z such that

τ(ι(f)) =

∫ 1

0

τn(n+1)(f(t))dt, f ∈ In(n+1)

where τ is the unique tracial state on Z and τn(n+1) is the normalized trace on Mn(n+1)(C).
Hence the dimension function induced by τ is given by

dτ (ι(f)) = lim
k→∞

τ((ι(f))
1
k ) =

∫ 1

0

dτn(n+1)
(f(t))dt =

1

n(n+ 1)

∫ 1

0

Rank(f(t))dt

where dτn(n+1)
is the dimension function on Mn(n+1)(C) induced by τn(n+1).

Consider the embedding γ : CMn(C) → In(n+1) given by

γ(f)(t) = f(1− t)⊗ 1n+1.

We will copy the idea from the proof of the properly infinite case (Theorem 6.2.3). So
given u ∈ U(A), there are a unital sub-C∗-algebra A0 ⊆ A, a unitary u0 ∈ A0 such that
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u ∼h u0 in U(A) and a unital ∗-homomorphism ϕ : Z → A ∩A′0. If we let ψ = ϕ ◦ ι ◦ γ, it
follows as before that

C∗(u0, ψ(CMn(C))) ∼= B/I

where B = {f ∈ C(T × [0, 1],Mn(C)) : f(z, 0) = C1n}, and I is a closed two-sided ideal
in B.

Let v ∈ U(B) be the unitary that corresponds to u0 under the natural identification of
C∗(u0, ψ(CMn(C))) with B/I. I.e,

v(z, t) =


z 0 · · · 0
0 z · · · 0
...

... . . . ...
0 0 · · · z


and for j = 1, . . . , n, let bj(z, t) be the full and positive element in B given by

bj(z, t) = tejj,

where ejj is the j’th matrix unit.
From Whiteheads Lemma there is for each 0 < ε < 1 a continuous function w : T× [0, ε] →
U(Mn(C)) such that

w(z, 0) =


z 0 · · · 0
0 z · · · 0
...

... . . . ...
0 0 · · · z


and

w(z, ε) = diag(1n−1, z
n).

If we define
w(z, t) = diag(1n−1, z

n)

for ε ≤ t ≤ 1, then w is a unitary in B and v ∼h w in U(B). For t ≥ ε and j = 1, . . . , n−1
it follows that

bj(z, t)w(z, t)bj(z, t) = bj(z, t)
2

for all z ∈ T. Thus,

(bj − ε)+w(bj − ε)+ = (bj − ε)2
+ for j = 1, . . . , n− 1.

Since C∗(u0, ψ(CMn(C))) ∼= B/I there exist a unitary w̄ ∈ C∗(u0, ψ(CMn(C))) such that
u ∼h u0 ∼h w̄ in U(A) and positive elements a1, . . . , an ∈ C∗(u0, ψ(CMn(C))) such that

ajw̄aj = a2
j , j = 1, . . . , n− 1.
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This implies that
ajw̄ = w̄aj = aj, for j = 1, . . . , n− 1

since

‖ajw̄ − aj‖2 = ‖(ajw̄ − aj)(ajw̄ − aj)
∗‖

= ‖ajw̄w̄∗aj − ajw̄aj − ajw̄
∗aj + a2

j‖
= ‖a2

j − a2
j − a2

j + a2
j‖

= 0.

Similarly we have that ‖w̄aj − aj‖ = 0.

Let cj ∈ In(n+1) be defined by

cj(t) = (γ(bj − ε)+)(t) = (1− ε− t)+ejj ⊗ 1n+1 for j = 1, . . . , n.

This means that
aj = ϕ(ι(cj)), j = 1, . . . , n.

Let gδ : R+ → [0, 1] be the continuous function given by

gδ(t) =


1, t = 0
−1
δ
t+ 1, 0 < t < δ

0, t ≥ δ.

Hence

(gδ(c1 + · · ·+ cn−1))(t)

=
n−1∑
j=1

gδ((1− ε− t)+)ejj ⊗ 1n+1

=


enn ⊗ 1n+1, 0 ≤ t ≤ 1− ε− δ∑n−1

j=1 ( t
δ

+ δ−1+ε
δ

)ejj ⊗ 1n+1 + enn ⊗ 1n+1, 1− ε− δ < t < 1− ε

1n ⊗ 1n+1, 1− ε ≤ t ≤ 1.

Let
b̄ = ι(gδ(c1 + · · ·+ cn−1)).

Since Rank(enn ⊗ 1n+1) = n+ 1 and Rank(1n ⊗ 1n+1) = n(n+ 1) , it follows that

dτ (b̄) =

∫ 1

0

dτn(n+1)
(gδ(c1 + · · ·+ cn−1))(t)dt

≤
∫ 1−ε−δ

0

(
n+ 1

n(n+ 1)

)
dt+

∫ 1−ε

1−ε−δ
1dt+

∫ 1

1−ε
1dt

= (1− ε− δ)
1

n
+ δ + ε

<
1

n
+ δ + ε.
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Let a = a1 + · · ·+ an−1 and let b = ϕ(b̄). From Lemma 6.2.4 it follows that

a⊥ ⊆ gδ(a)Agδ(a) = ϕ(b̄)Aϕ(b̄) = bAb.

Since

aw̄a =
n−1∑
i,j=1

ajw̄ai =
n−1∑
i,j=1

ajai = a2,

the same argument as before implies that (w̄ − 1)a = a(w̄ − 1) = 0. Hence w̄ ∈ bAb+ C1.

Let c ∈ Z+ \ {0}. By choosing ε and δ sufficiently small and n sufficiently large, we can
assume that

dτ (b̄) < dτ (c).

Therefore b̄ - c because W (Z) is almost unperforated by [33, Corollary 4.6 and Theorem
4.5]. Thereby for each η > 0 there exists a unitary v̄ ∈ U(Z) such that

v̄(b̄− η)+v̄
∗ ⊆ cZc

since Z has stable rank one (c.f. [29, Proposition 2.4]). (Note that v̄ ∈ U0(Z) since Z is
K1-injective and K1(Z) = 0).

Hence
ϕ(v̄)(b− η)+ϕ(v̄)∗ = ϕ(v̄)ϕ((b̄− η)+)ϕ(v̄)∗ ∈ ϕ(c)Aϕ(c)

for every η > 0.
We now choose 0 < δ′ < δ. There exists η > 0 such that

gδ′(a)Agδ′(a) ⊆ (b− η)+A(b− η)+,

and by Lemma 6.2.4, a⊥ ⊆ gδ′(a)Agδ′(a). Thus w̄ ∈ (b− η)+A(b− η)+ + C1 and thereby

w̄ ∼h ϕ(v̄)w̄ϕ(v̄)∗ in U
(
ϕ(c)Aϕ(c) + C1

)
.

When Cuntz proved that a unital, simple and purely infinite C∗-algebra A is K1-injective,
he used that every unitary in A could be homotoped to p+u0 for a some projection p ∈ A
and a unitary u0 ∈ (1− p)A(1− p). This property actually implied K1-injectivity of A.

Moreover when Brown and Pedersen proved K1-injectivity of an extremally rich C∗-algebra
with weak cancellation, they first showed (see the proof of Lemma 5.1.13) that for every
unitary u ∈ D̃(A) with [u]1 = 0, there exist a closed two-sided ideal I in D(A) and a
unitary v ∈ Ĩ with [v]K1(I) = 0 such that u ∼h v. This fact was used several times to prove
that D(A) was K1-injective, which also implied K1-injectivity of A itself.

So our hope is that Theorem 6.2.5 (maybe together with other properties of Z and Z-stable
C∗-algebras) can be used to prove that every unital Z-stable C∗-algebra is K1-injective.



Chapter 7

Strongly self-absorbing C∗-algebras

In many of the results that Toms and Winter obtain about strongly self-absorbing C∗-
algebras in [37], it has to be assumed that the strongly self-absorbing C∗-algebra is K1-
injective. For all known examples of strongly self-absorbing C∗algebras, K1-injectivity
actually holds, but in this chapter we shall consider conditions that imply K1-injectivity
for a general strongly self-absorbing C∗-algebra.

Let D be a unital strongly self-absorbing C∗-algebra and consider the two cases where D
is either not stably finite or stably finite respectively.

7.1 Non-stably finite strongly self-absorbing C∗-algebras

If D is a unital strongly self-absorbing C∗-algebra, then

D ∼= D ⊗D,

and D is a simple C∗-algebra.
There does not exist any n ∈ N such that D ∼= Mn(C), and D cannot be isomorphic to the
compact operators K, since K is not unital. So D is not of type I. Thus, if D is not stably
finite, it is proved by Kirchberg that D is simple and purely infinite ([31, Theorem 4.1.10])
and thereby K1-injective.

7.2 Stably finite strongly self-absorbing C∗-algebras

When we shall give conditions that imply K1-injectivity of a strongly self-absorbing C∗-
algebra, it follows from the discussion above that it is sufficient to consider the stably finite
case, since in the non-stably finite case K1-injectivity holds automatically.

In the following we shall consider a C∗-algebra of the form A ⊗ D where A is any unital
simple finite C∗-algebra, and D is a stably finite strongly self-absorbing C∗-algebra. We

70
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shall give conditions that imply that A⊗D has stable rank one which means that A⊗D
is K1-injective. If these conditions can actually be satisfied for any unital simple finite
C∗-algebra A, it follows in particular that D is K1-injective.

It should be mentioned that in the conditions we give below, it is sufficient for D just to be
finite and not stably finite. But from our point of view, it is only interesting in the stably
finite case. Otherwise K1-injectivity of D is already known.

Definition 7.2.1. [1, Definition II.5.4.4] A C∗-algebra A is called prime if, whenever J
and K are closed two-sided ideals in A with J ∩K = (0), then either J = (0) or K = (0).

It clearly follows that every simple C∗-algebra, is prime.

Lemma 7.2.2. [28, Lemma 3.5] Let A be a unital prime C∗-algebra and let ε > 0. If
x ∈ A is not one-sided invertible then there exist y ∈ A, v ∈ U(A) and a ∈ A+ \ {0} such
that ‖x− y‖ < ε and vy ⊥ a.

Lemma 7.2.3. Let A be a unital simple finite C∗-algebra and let ε > 0. If x ∈ A is a
non-invertible element, then there exist y ∈ A, v ∈ U(A) and mutually orthogonal positive
elements e, f ∈ A+ \ {0} such that:

(i) ‖x− y‖ < ε,

(ii) fvy = vyf = vy and

(iii) (e+ f)⊥ = (0).

Proof. Since A is finite, x cannot be one-sided invertible (see [35, Lemma 5.1.2]), so we
can use Lemma 7.2.2 to find y ∈ A, v ∈ U(A) and a ∈ A+ \ {0} such that ‖x− y‖ < ε and

vya = avy = 0,

which implies that
(1− a)vy = vy = vy(1− a).

Without loss of generality we can assume that 0 ≤ 1 − a ≤ 1. Define for 0 < λ < 1
functions fλ, gλ ∈ C([0, 1]) by

fλ(t) =

{
− 1
λ
t+ 1, 0 ≤ t ≤ λ

0, λ < t ≤ 1

and
gλ(t) =

{
0, 0 ≤ t ≤ λ

1
1−λt+ λ

λ−1
, λ < t ≤ 1

Let f = gλ(1− a). Then
fvy = vy = vyf
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because gλ(1) = 1 and (1 − a)vy − vy = 0. Let e = fλ(1 − a). Since fλ ⊥ gλ, it follows
that e and f are orthogonal elements. We need to show that (e+ f)⊥ = (0), so let b be a
positive element such that b ⊥ (e+ f).

Let τ be a faithful tracial state on C([0, 1]). Then there exists a unique probability measure
µ on [0, 1] such that

τ(g) =

∫ 1

0

g(t)dµ(t), g ∈ C([0, 1]).

Since τ is faithful, µ is non-zero on any open subset of [0, 1].
Let dτ be the dimension function on C([0, 1]) induced by τ . When g is a positive continuous
function on [0, 1], then limn→∞ g

1
n = χ{t∈[0,1]:g(t) 6=0}. I.e.,

dτ (g) = lim
n→∞

τ(g
1
n ) = τ(χ{t∈[0,1]:g(t) 6=0}) = µ({t ∈ [0, 1] : g(t) 6= 0})

for g ∈ C([0, 1])+.

Choose λ ∈]0, 1[ such that µ({λ}) = 0. Hence

dτ (fλ + gλ) = dτ (fλ) + dτ (gλ) = µ([0, λ[) + µ(]λ, 1]) = 1.

Because of the isomorphism C∗(1, 1 − a) ∼= C([0, 1]), there is a faithful tracial state τ ′ on
C∗(1, 1−a) which induces a dimension function dτ ′ on C∗(1, 1−a) such that dτ ′(e+f) = 1.
Since b is orthogonal to e + f , it follows that dτ ′(b) = 0. Thus, b = 0 because dτ ′ is
faithful.

When we shall give conditions that imply that the stable rank of A ⊗ D is one, we are
going to use Lemma 7.2.5, which is easily proved from the following lemma by Rørdam
and Winter.

Lemma 7.2.4. [36, Lemma 6.4] Let D be a finite strongly self-absorbing C∗-algebra and let
τ be the unique tracial state on D. There are positive elements b, c ∈ D such that 〈b〉 = 〈c〉,
b ⊥ c and dτ (b) = dτ (c) = 1

2
, where dτ is the dimension function induced by τ .

Lemma 7.2.5. Let D be a finite strongly self-absorbing C∗-algebra. For every k ∈ N there
are non-zero positive elements a1, a2, . . . , a2k ∈ D such that 〈ai〉 = 〈aj〉, ai ⊥ aj for i 6= j
and (a1 + · · ·+ a2k)⊥ = (0).

Proof. For each k ∈ N, D ∼=
⊗k

i=1D, so using Lemma 7.2.4 we can for each i ∈ {1, . . . , k}
find non-zero positive elements ai1, ai2 in the i’th tensor of

⊗k
i=1D such that

〈ai1〉 = 〈ai2〉, ai1 ⊥ ai2 and dτ (ai1) = dτ (ai2) =
1

2
.

Defining elements a1, . . . , a2k on the form

a1j1 ⊗ a2j2 ⊗ · · · ⊗ akjk
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where ji ∈ {1, 2}, it follows that a1, . . . , a2k are non-zero positive elements in
⊗k

i=1D
∼= D

satisfying
〈ai〉 = 〈aj〉 and ai ⊥ aj, i 6= j.

Identifying D with
⊗k

i=1D we have that

dτ (b1 ⊗ · · · ⊗ bk) = dτ (b1) · · · dτ (bk)

for all bi ∈ D+. Hence
dτ (a1 + · · ·+ a2k) = 1.

If c is a positive element in (a1 + · · ·+ a2k)⊥, then

dτ (c+ a1 + · · ·+ a2k) = dτ (c) + dτ (a1 + · · ·+ a2k) = dτ (c) + 1.

Thus, dτ (c) = 0 which implies that c = 0 since dτ is faithful.
Therefore (a1 + · · ·+ a2k)⊥ = (0).

Let A be a unital simple finite C∗-algebra and letD be a unital finite strongly self-absorbing
C∗-algebra. As written above we shall give some conditions that imply that sr(A⊗D) = 1,
and thereby that A⊗D is K1-injective. But A⊗D is isomorphic to the inductive limit of
the inductive sequence

A0
ϕk // A1

ϕ1 // A2
ϕ2 // A3

// . . . // A⊗ (
⊗∞

i=1D) ,

where Ak = A⊗ (
⊗k

i=1D) and ϕk(x) = x⊗ 1D. So A⊗D has stable rank one if for every
k ∈ N and every x ∈ Ak, one has that ϕk(x) ∈ GL(Ak+1). Therefore, if for each x0 ∈ A we
can prove that x = x0 ⊗ 1D ∈ GL(A⊗D), we have the desired result.

We assume that x0 is not invertible, otherwise we are already done.

From Lemma 7.2.3 we can for each ε > 0 find y ∈ A, v ∈ U(A) and mutually orthogonal
positive elements e, f ∈ A+\{0} such that ‖x0−y‖ < ε, fvy = vyf = vy and (e+f)⊥ = (0).
Let x̄ = vy ⊗ 1D ∈ A⊗D.
Since A is simple there exists k ∈ N and elements t1, . . . , t2k ∈ A such that

∑2k

j=1 t
∗
jetj = 1A.

Use this k to find a1, . . . , a2k ∈ D that satisfies the conditions in Lemma 7.2.5.

Let b0 = e⊗ 1D and bj = f ⊗ aj for j = 1, . . . , 2k. Then

〈b1〉 = 〈b2〉 = · · · = 〈b2k〉, bjx̄ = x̄bj, j = 0, . . . , 2k and (b0 + . . . b2k)⊥ = (0).

Theorem 7.2.6. Let A be a unital simple finite C∗-algebra, and let D be a unital finite
strongly self-absorbing C∗-algebra. With the notation from above, if there exists a unitary
u ∈ U(A⊗D) that satisfies

(i) u∗bj+1u = bj, j = 1, . . . , 2k − 1
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(ii) u∗b1u ∈ b0(A⊗D)b0,

then sr(A⊗D) = 1.

Proof. Let n = 2k, and using the notation from above, let x̄ = vy ⊗ 1D ∈ A⊗D. Then

b0(x̄u)
n+1 = (e⊗ 1D)(x̄u)n = 0

since e ⊥ f and fvy = vy = vyf . There is a b′0 ∈ b0(A⊗D)b0 such that b1u = ub′0.
Thereby it follows that

b1(x̄u)
2 = x̄b1ux̄u = x̄ub′0x̄u = 0.

Furthermore,
b2(x̄u)

3 = x̄b2u(x̄u)
2 = x̄ub1(x̄u)

2 = 0

and it follows by induction that bj(x̄u)n+1 = 0 for j = 0, . . . , 2k.
Hence

(b0 + · · ·+ b2k)(x̄u)n+1 = 0,

which implies that (x̄u)n+1 = 0 since (b0 + · · · + b2k)⊥ = (0). Thus, sp(x̄u) = {0} and
therefore x̄u+λ1 ∈ GL(A⊗D) for each λ 6= 0. Then x̄+λu∗ ∈ GL(A⊗D), which implies
that x̄ ∈ GL(A⊗D).

Moreover,

‖x̄− (v ⊗ 1D)x‖ = ‖vy ⊗ 1D − vx0 ⊗ 1D‖ = ‖v(y − x0)⊗ 1D‖ < ε.

Therefore (v⊗1D)x ∈ GL(A⊗D), and since v⊗1D is unitary we get that x ∈ GL(A⊗D).

So the strategy to prove that a stably finite strongly self-absorbing C∗-algebra D is K1-
injective, is to consider A ⊗ D where A is any unital simple finite C∗-algebra. Then we
shall construct a unitary u ∈ A ⊗ D that satisfies the conditions in the Theorem above.
If this can be done, it follows that D is K1-injective, since A can be replaced by D and
D ⊗D ∼= D.
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