
Abstract. This project aims to present the answers given by the work of C. Schafhauser in [30],
to the following two main questions. 1) If A is a separable, unital, exact C∗-algebra, satisfying the
UCT, with a faithful, amenable trace, then does A admit a unital, trace-preserving embedding into a
simple, unital, AF-algebra B with unique trace and divisible K0-group ?
2) If two such trace-preserving embeddings exist and have identical K0-behaviour, then can they be
classified in terms of approximate unitary equivalence ?
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Introduction

The major influence of this thesis is from the work of C. Schafhauser about C∗-subalgebras of
simple, unital AF-algebras in [30]. AF-algebras have been in the center of interest and have
been studied thoroughly since introduced and classified by Bratteli in 1972. One of the most
remarkable results about AF-algebras, was proved by Elliott in 1976, showing that all unital AF-
algebras can be classified by their ordered K0-group. Now, in this project we first emphasize on
whether a separable, unital, exact C∗-algebra satisfying the universal coefficient theorem (UCT)
can be embedded in a trace-preserving way into a simple, unital AF-algebra with unique trace
and divisible K0-group, and then we are asking if any two such embeddings can be classified by
their induced K0-group homomorphisms.
However, instead of developing our theory for simple, unital AF-algebras with unique trace, we

move our focus to the more general setting of a simple, unital, Q-stable C∗-algebra, with unique
trace, trivial K1-group and where every quasi-trace is a trace; Q is the universal UHF-algebra.
Here comes the purpose of Chapter 1, where these conditions are examined, and necessary ar-
guments for addressing the embeddability problem are presented. The preliminary essence of the
first chapter, is that in the first three sections we take over a brief survey on different classes
of C∗-algebras, staying focused on the simplicity and Q-stability conditions, while section 1.4
consists of methods for reducing a non-separable C∗-algebraic setting to a separable one.
On the other hand, a major aspect in the approach of Schafhauser in [30], is the employment

of KK-theory and in particular the Cuntz picture of KK-theory. A central motivation for this, is
the universal coefficient theorem (UCT) for C∗-algebras, and the strong relevance of KK-theory
with asymptotic and proper asymptotic unitary equivalence relations between ∗-homomorphisms,
as it will be evident in Chapter 2. Nevertheless, instead of embarking immediately to presenting
Cuntz picture of KK-theory, we choose first to introduce Hilbert C∗-module theory, that enables
a broader understanding of the subject and facilitates the exposition in the following sections. Fi-
nally, section 2.4 contains a brief expository about admissible kernels and trace-kernel extensions,
while offers a first glimpse at the utility of Chapter 1. This section also serves as a forerunner
to the main core of this project.
Lastly, in Chapter 3, all the necessary steps for addressing the major claims at stake are

collected, and it mainly consists of a more detailed proof-presentation of the results in sections
4 and 5 in [30]. The primary idea of this chapter is that it starts by giving affirmative answers
to the main questions, when some mild extra conditions are satisfied, but for ultrapowers of
the C∗-algebras under consideration. Then, it proceeds to reduce these results to the original
C∗-algebras by using the local notions of K0-triples and (G , δ)-multiplicative maps. Throughout
this last chapter we keep working in the general case of simple, unital C∗-algebras with all the
conditions that we state above, and the result concerning unital, simple AF -algebras with unique
trace, will come up beautifully as a straightforward consequence.
This project cannot be considered as self-contained, since it assumes that the reader is familiar

with basic theory of C∗-algebras and von Neumman Algebras, as demonstrated in [22] and [34],
for instance. Meanwhile, a familiarization with basic K-theory as presented for example in [20], is
considered as a prerequisite. However, an effort to have self-reliable proofs and to keep a detailed
track of the ideas and arguments that are used throughout the project, has been made.

Acknowledgements. First of all, I would like to thank my advisor, Mikael Rørdam, for his
help during these last four months. Also, I would like to thank the people in my life for their
enduring support while writing this project.
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1 Preliminaries on C∗-algebras

The main purpose of this chapter is to present part of the purely C∗-algebraic backround material
needed in the proofs of the main results of this project. In the first three sections, results
regarding the structure of a Q-stable C∗-algerba are developed, where Q is the universal UHF-
algbera. The last section is devoted in introducing methods for addressing issues that arise when
a C∗-algebra is non-separable.

1.1 Strongly Self-Absorbing C∗-algebras

In this section we will examine the class of strongly self-absorbing C∗-algebras, mainly aiming to
harvest criteria for a C∗-algebra being stable with respect to a strongly self-absorbing C∗-algebra.
We start by introducing the notions of essential ideal, multiplier algebra and inner automorphism,
that they will all be needed in the rest of the chapter. Throughout this section, we denote the
minimal tensor product of C∗-algebras using just ⊗, except otherwise is mentioned. The material
exposed in the sequel is mainly from [33].

Definition 1.1.1. Let A be a C∗-algebra. An ideal I ⊆ A is called essential if it has "no orthogonal
complement" i.e

I⊥ = {a ∈ A : ax = xa = 0, for all x ∈ I} = 0

Definition 1.1.2. Let I be a C∗-algebra. Let I ⊆ B(H) be any non-degenerate(cyclic) representation
and define M(I) = {T ∈ B(H) : Tx ∈ I and xT ∈ I, for all x ∈ I}. We call M(I) the multiplier
algebra of I.

Note 1.1.3. M(I) is a unital C∗-algebra and if I is unital then M(I) = I. Moreover, it is a fact
that M(I) has the property of being the largest C∗-algebra containing I as an essential ideal
and that it is the unique (up to isomorphism) algebra with this property.

Definition 1.1.4. Let A be a C∗-algebra and u ∈M(A). Then, the automorphism of the form

Adu(a) = u∗au

is called inner automorphism. Moreover, we say that an automorphism α is approximately inner if it
is the point-norm limit of inner automorphisms.

Having these new notions in mind, we proceed to define the approximate unitary equivalence
between c.c.p. maps.

Definition 1.1.5. For i=0,1, let φi : A → B be a c.c.p map between separable C∗- algebras. We say
that φ1 and φ2 are approximately unitarily equivalent, φ1 ∼a.u φ2, if there is a sequence of unitaries
(un)n ⊂M(B) such that

‖u∗nφ1(a)un − φ2(a)‖ −→ 0, as n −→∞, for all a ∈ A

.

The following proposition is an immediate and rather useful result about approximate unitary
equivalence. The proof is omitted.
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Proposition 1.1.6. Let A, B, C and D be separable C∗-algebras, and C, D be unital. Suppose
φ : A→ B, α, β, γ : B → C and ψ : C → D are ∗-homomorphisms, ψ unital. Then

i) If α ∼a.u β and β ∼a.u γ, then α ∼a.u γ, i.e ∼a.u is a transitive relation.

ii) If α ∼a.u β then, ψ ◦ α ∼a.u ψ ◦ β and α ◦ φ ∼a.u β ◦ φ.

iii) Suppose that α, β are pointwise limits of sequences of ∗-homomorphisms

αn, βn : B → C.If αn ∼a.u βn for each n, then α ∼a.u β.

In order to start working with strongly self-absorbing C∗-algebras, we need first to coin the
terms of flip, approximately inner flip and approximately inner half flip, which we do in the
definition below.

Definition 1.1.7. Let D be a separable, unital C∗-algebra.

i) By the flip on the minimal tensor product D ⊗D we mean the automorphism σD

of D ⊗D given by σD(a⊗ b) = b⊗ a, a, b ∈ D

ii) D is said to have approximately inner flip, if σD ∼a.u idD⊗D
iii) D is said to have approximately inner half flip, if idD ⊗ 1D ∼a.u 1D ⊗ idD
iv) D is strongly self-absorbing, if D 6= C and there is an isomorphism φ : D → D ⊗D,

satisfying φ ∼a.u idD ⊗ 1D

Example 1.1.8. In this project, the only strongly self-absorbing C∗-algebra that we need is the
universal UHF-algebra Q. For this reason, let us now make a brief review on this special class
of AF-algebras, the UHF-algebras, and finally argue that Q is indeed strongly self-absorbing.
A UHF-algebra is an inductive limit of

Mk1(C) Mk2(C) Mk3(C) · · · (1)
φ1 φ2 φ3

where φn are unital ∗-homomorphisms. It is fact that there is a unital ∗-homomorphism Mn(C)→
Mm(C) iff m is a multiple of n. An interesting fact about UHF-algebras is that they can
be classified using supernatural numbers. A supernatural number is a a sequence of numbers
n = (nj)

∞
j=1 in {0, 1, 2, ...∞}, where each nj can be interpreted as a power in a generalized

infinite prime factorization, i.e n = (nj)
∞
j=1 =

∏∞
j=1 p

nj
j , where {pj : j ≥ 1} is an increasing

order enumeration of the prime numbers. Now, we associate to the sequence (kj)
∞
j=1 of (1) a

supernatural number n = (nj)
∞
j=1 in the following way

nj = sup{r : prj |ki for some i}

On the other way around if n = (nj)
∞
j=1 is a supernatural number, then if we associate to each

j the element kj =
∏j
i=1 p

min{j,ni}
i , it is straightforward to see that the supernatural number

associated to (kj)
∞
j=1 is n = (nj)

∞
j=1. Also we say that a natural or a supernatural number

m =
∏∞
j=1 p

mj
j divides a supernatural number n = (nj)

∞
j=1 if mj ≤ nj for all j and moreover we

associate to each supernatural n = (nj)
∞
j=1 a subgroup of Q by

Q(n) = {z/m : z ∈ Z,m ∈ N, z|n}

Under these observations and taking motivation from Elliot’s classification of AF-algebras, the
first step in showing that UHF-algebras are classified by supernatural numbers is showing that
K0(Mn) ∼= Q(n), where Mn denotes the UHF-algebra associated to the supernatural number n as
above.
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Now, the universal UHF-algebra, Q, is the one associated to the supernatural number n =

(nj)
∞
j=1, where nj = ∞ for all j. Thus, Q(n) = Q, and furthermore Q can be viewed as

the inductive limit of (M(n−1)!(C), φn), where φn is a unital ∗-homorphism with multiplicity n,
for each n ≥ 1. So, using the fact that the tensor product of two UHF-algebras Mn, Mm is
given by Mn ⊗ Mm = Mnm, we immediately see that Q ⊗ Q ∼= Q. Furthermore, employing
that the flip automorphism on Mn(C) ⊗ Mn(C) is inner, for any n ≥ 1, and that Q ⊗ Q =

∪n(M(n−1)!(C)⊗M(n−1)!(C)), we see that the flip automorphism on Q ⊗ Q is approximately
inner. Hence, Proposition 1.1.15 below asserts that Q⊗∞ is strongly self-absorbing. But, as
Q ∼= Q⊗∞, we conclude that Q is a strongly self-absorbing C∗-algebra.

Proposition 1.1.9. Any separable, unital and strongly self-absorbing C∗-algebra D has approximately
inner half flip.

Proof. Let φ : D → D⊗D be the given ∗-isomorphism satisfying that φ ∼a.u idD⊗1D. Then, define
a ∗-homomorphism ψ : D → D by ψ := φ−1 ◦ (1D⊗ idD). Now, using repetitively Proposition 1.1.6
(ii) we firstly get

1D ⊗ idD = φ ◦ φ−1 ◦ (1D ⊗ idD)

= φ ◦ ψ

∼a.u (idD ⊗ 1D) ◦ ψ

= ψ ⊗ 1D

Also,

idD ⊗ 1D = σD ◦ (1D ⊗ idD)

∼a.u (σD ◦ (ψ ⊗ 1D)

= 1D ⊗ ψ

Now, we are ready to get the conclusion, but first note that if (un)n ⊂ D⊗D are the unitaries
implementing the relation ψ⊗ 1D ∼a.u 1D ⊗ idD, then (un ⊗ 1D)n ⊆ D⊗D⊗D are unitaries that
exhibit the relation ψ ⊗ 1D ⊗ 1D ∼a.u 1D ⊗ idD ⊗ 1D. So,

ψ ⊗ 1D = (idD ⊗ φ−1) ◦ (ψ ⊗ 1D ⊗ 1D)

∼a.u (idD ⊗ φ−1) ◦ (1D ⊗ idD ⊗ 1D)

∼a.u (idD ⊗ φ−1) ◦ (1D ⊗ 1D ⊗ ψ)

∼a.u (idD ⊗ φ−1) ◦ (idD ⊗ 1D ⊗ 1D)

= idD ⊗ 1D

Therefore, by transitivity of ∼a.u we obtain that idD ⊗ 1D ∼a.u 1D ⊗ idD. Hence D has
approximately inner half flip.

Using this result, the following theorem asserts that strongly self-absorbing C∗-algebras have a
rather interesting structure.

Theorem 1.1.10. If a separable, unital C∗-algebra D has approximate inner half flip then it is simple
and nuclear.

Proof. For showing that is simple, let J be a proper closed two sided ideal in D, and let
J1 = J ⊗ D, J2 = D ⊗ J be the corresponding closed two-sided ideals in D ⊗ D. That D

4



has approximately inner half flip, i.e idD ⊗ 1D ∼a.u 1D ⊗ idD, implies that d ⊗ 1D ∈ J2, for any
d ∈ J , and therefore J1 = J2. But we claim that this is not the case. Let d1 ∈ J and d2 6∈ J ,
then by Hahn-Banach Theorem find f, g : D → C bounded linear functionals such that f(d1) 6= 0,
g|J = 0 and g(d2) 6= 0. Then by proposition 5.1 in [16], f ⊗ g : D ⊗D → C is a bounded linear
functional and it satisfies that

f ⊗ g(J2) = 0

and
f ⊗ g(d1 ⊗ d2) 6= 0

Hence, d1⊗ d2 ∈ J1 \ J2, which proves the claim. Thus, D does not contain any proper two-sided
closed ideal, hence is simple. For nuclearity see Proposition 2.8 in [11]

Now, we are going to focus our interest on D-stable C∗-algebras, and our main goal is to show
that the following statement holds.

Theorem 1.1.11. Let A, D be separable C∗-algebras, and D unital, strongly self-absorbing. If there
is an isomorphism φ : A→ D ⊗A then, there exists a ∗-homomorphism

σ : A⊗D → Q(A)

satisfying
σ(a⊗ 1D) = a, for all a ∈ A

where, Q(A) =
∏

NA
/∑

NA.

Note 1.1.12. In the above statement, if we further assume that D is K1-injective, i.e the canon-
ical map U(D)/U0(D)→ K1(D) is injective, then it is a fact that the converse is also true. Also,
note that since Mn(C) is K1-injective, for any n ∈ N, then any UHF-algebra is K1-injective.

There is also an another version of the above result that will be useful in the following sections.

Theorem 1.1.13. Let A,D be separable C∗-algebras and suppose that D is moreover unital and
strongly self-absorbing. Then, there exists a ∗-isomorphism φ : A → A ⊗ D if and only if there is a
unital ∗-homomorphism

σ : D → Q(M(A)) ∩A′

where Q(M(A)) ∩A′ is the relative commutant of A in Q(M(A))

Moreover, in this case φ ∼a.u idA ⊗ 1D.

Before embarking into proving Theorem 1.1.11, some preparation is required. Firstly we show
that the tensor product of two separable, unital C∗- algebras with approximate inner (half) flip,
has again an approximate inner (half) flip. Secondly, we prove a rather technical proposition that
will eventually provide us the main machinery for showing Theorem 1.1.11.

Proposition 1.1.14. Let A,B be separable, unital C∗- algebras with approximately inner (half) flip.
Then A⊗B has approximately inner (half) flip.

Proof. . Suppose first that A,B have approximately inner flip. Then, there exist (wn)n ∈ A⊗A,
(vn)n ∈ B ⊗B sequences of unitaries such that for all x ∈ A⊗A, y ∈ B ⊗B

‖σA(x)− w∗nxwn‖
n→∞−−−−→ 0

‖σB(y)− v∗nyvn‖
n→∞−−−−→ 0
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We aim to show that there is a sequence of unitaries (un)n ∈ (A⊗B)⊗ (A⊗B) such that

‖σA⊗B(X)− u∗nXun‖
n→∞−−−−→ 0

for all X ∈ (A⊗B)⊗(A⊗B). But, since both σA⊗B ,Adun are linear isometries, under the natural
identification (A⊗B)⊗ (A⊗B) ∼= (A⊗A)⊗ (B ⊗B) we may suppose that X is a simple tensor
of the form X = X1⊗X2, where X1 ∈ A⊗A and X2 ∈ B⊗B, while the same identification says
that σA⊗B corresponds to σA ⊗ σB .
So, let un = wn ⊗ vn which are unitaries in (A⊗A)⊗ (B ⊗B), then

‖σA⊗B(X)− u∗nXun‖ = ‖σA(X1)⊗ σB(X2)− u∗n(X1 ⊗X2)un‖ =

‖σA(X1)⊗ σB(X2)− σA(X1)⊗ v∗nX2vn + σA(X1)⊗ v∗nX2vn − u∗n(X1 ⊗X2)un‖ ≤

‖σA(X1)‖ ‖σB(X2)− v∗nX2vn‖+ ‖σA(X1)− w∗nX1wn‖ ‖v∗nX2vn‖
n→∞−−−−→ 0

which implies that σA⊗B ∼a.u id(A⊗B)⊗(A⊗B), i.e A⊗B has approximate inner flip.
To show that the same holds for the approximately inner half flips, we use exactly the same

argumentation, but instead of flips, we work with the (unital) embeddings of A and B, to A⊗A
and B ⊗B, respectively.

Proposition 1.1.15. Let D be a separable, unital C∗-algebra with approximately inner half flip. Then

i) D⊗∞ has approximately inner flip

ii) D⊗∞ is strongly self-absorbing

iii) There is a sequence of ∗-homomorphisms

φn : D⊗∞ ⊗D⊗∞ → D⊗∞

satisfying
‖φn(d⊗ 1D⊗∞)− d‖ −→ 0, as n −→∞

Proof. i) We view D⊗∞ as the inductive limit of

D
µ1−→ D⊗2 µ2−→ D⊗4 µ4−→ ...

where
µ1 : D → D⊗2, µ2n : D⊗2n → D⊗4n, n ∈ N

are the unital-preserving ∗-homomorphisms idD ⊗ 1D, idD⊗2n ⊗ 1D⊗2n respectively, and the maps
ι1 : D → D⊗∞, ι2n : D⊗2n → D⊗∞ are the inclusions (see [2], II.9.8). In a similar manner we
can view D⊗∞ ⊗D⊗∞ as an inductive limit with connecting maps

λ1 : D ⊗D → D⊗2 ⊗D⊗2, λ2n : D⊗2n ⊗D⊗2n → D⊗4n ⊗D⊗4n

given by
λ1 = (idD ⊗ 1D)⊗ (idD ⊗ 1D)

λ2n = (idD⊗2n ⊗ 1D⊗2n)⊗ (idD⊗2n ⊗ 1D⊗2n)

and ι1, ι2n be again the inclusions into D⊗∞ ⊗D⊗∞.
Now, since we want to show that

σD⊗∞ ∼a.u idD⊗∞⊗D⊗∞

using the inductive limits expressions, it suffices to show that λk ◦ σD⊗k ∼a.u λk, for all k ∈ N,
where σD⊗∞ is the flip on D⊗∞ ⊗D⊗∞.
We denote the embedding of D⊗k into (D⊗k)⊗4 at the i-th factor as ι(i)k , and similarly we get
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the ∗- homomorphisms

ι
(i,j)
k : (D⊗k)⊗2 → (D⊗k)⊗4 i 6= j ∈ {1, 2, 3, 4}

where
ι
(i,j)
k |D⊗k⊗1

D⊗k
= ι

(i)
k

and we note that they are well defined since ι
(i)
k (D⊗k) and ι

(j)
k (D⊗k) commute. By identifying

(D⊗k)⊗2 with D⊗k ⊗D⊗k in the obvious way, we see that

λk = ι
(1,3)
k and λk ◦ σD⊗k = ι

(3,1)
k

Now, we use that since D has approximately inner half flip then D⊗k has also approximately
inner half flip by Proposition 1.1.14, and so there is a sequence of unitaries

(um)m ⊂ D⊗k ⊗D⊗k(∼= (D⊗k)⊗2)

such that
‖u∗m(d⊗ 1D⊗k)um − (1D⊗k ⊗ d)‖ n→∞−−−−→ 0

and let i, j, k, l ∈ {1, 2, 3, 4} be pairwise distinct. Then, the unitaries

(ι
(j,l)
k (um))m ⊆ (D⊗k)⊗4

satisfy ∥∥∥ι(j,l)k (u∗m)ι
(j)
k (d)ι

(j,l)
k (um)− ιlk(d)

∥∥∥ ≤ ‖u∗m(d⊗ 1D⊗k)um − (1D⊗k ⊗ d)‖ m→∞−−−−→ 0

which shows that ι
(j)
k ∼a.u ι(l)k , and in turn that ι

(i,j)
k ∼a.u ι(i,l)k , since ι

(j,l)
k (um) commute with

ι
(i)
k (D⊗k). So, in particular we have

ι
(1,3)
k ∼a.u ι(1,2)

k ∼a.u ι(3,2)
k ∼a.u ι(3,1)

k

which shows that
λk ◦ σD⊗k ∼a.u λk, for all k ∈ N

ii) For k ∈ N define

αk : D⊗k → D⊗k+1

d 7→d⊗ 1D

Then,

D⊗∞ = lim−→ (D⊗k, ak) (1)

D⊗∞ = lim−→ (D⊗2k, a2k+1 ◦ a2k) (2)

D⊗∞ ⊗D⊗∞ = lim−→ (D⊗k ⊗D⊗k, ak ⊗ ak) (3)

Also, by (i) we have that

D⊗∞ = lim−→ (D⊗2m , idD⊗2m ⊗ 1D⊗2m ) (4)

D⊗∞⊗D⊗∞ = lim−→ (D⊗2m ⊗D⊗2m , λ2m) (5)

Now, consider the ∗-isomorphisms ψk : D⊗2k → D⊗k ⊗D⊗k given by

ψk(d1 ⊗ d′1, ..., dk ⊗ d′k) = d1 ⊗ d2 ⊗ ...⊗ dk ⊗ d′1 ⊗ d′2...⊗ d′k
which satisfy ψk+1 ◦ α2k+1 ◦ α2k = (ak ⊗ ak) ◦ ψk. Thus, by the universal property of (2) there is
a ∗-homomorphism

ψ : D⊗∞ → D⊗∞ ⊗D⊗∞
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such the diagram

D⊗
∞

D⊗
∞ ⊗D⊗∞

D⊗2k

ψ

ι2k◦ψk
ι′2k

commutes, where ι2k, ι′2k are the inclusions to D⊗
∞

and D⊗
∞ ⊗D⊗∞ , respectively. Since ψk are

isomorphisms, ψ is an isomorphism as well.
Now, it remains to show that

ψ ∼a.u idD⊗∞ ⊗ 1D⊗∞

But arguing as in (i), it suffices to show that

λk ◦ ψk ◦ (idD⊗k ⊗ 1D⊗k) ∼a.u λk ◦ (idD⊗k ⊗ 1D⊗k), for all k ∈ N

First, define ∗-homomorphisms βk : (D⊗k)4 → (D⊗k)4 by βk = idD⊗k ⊗ σD⊗k ⊗ idD⊗k , where σD⊗k
is the flip on D⊗k and employing again the i-th factor embeddings ι(j)k from (i) we get that

βk ◦ (ψk ⊗ idD⊗2k) ◦ ι(1)
k = λk ◦ ψk ◦ (idD⊗k ⊗ idD⊗k)

and
βk ◦ (ψk ⊗ idD⊗2k) ◦ ι(3)

k = ι
(2)
k

Since by (i) we have that ι(i)k ∼a.u ι
(j)
k , i, j ∈ {1, 2, 3, 4}, then by using Proposition 1.1.6 we obtain

that

λk ◦ ψk ◦ (idD⊗k ⊗ 1D⊗k) = βk ◦ (ψk ⊗ idD⊗2k) ◦ ι(1)
k

∼a.u βk ◦ (ψk ⊗ idD⊗2k) ◦ ι(3)
k

= ι
(2)
k

∼a.u ι(1)
k

= λk

as required.

iii) Suppose that D has approximately inner half flip, then in (ii) we showed that D⊗
∞

is
strongly self-absorbing, so let φ : D⊗

∞ → D⊗
∞ ⊗ D⊗∞ be the given isomorphism satifying that

φ ∼a.u idD⊗∞ ⊗ 1D⊗∞ . Hence, there is a sequence of unitaries (un)n ⊂ D⊗
∞ ⊗D⊗∞ , such that

‖φ(d)− un(d⊗ 1D⊗∞ )u∗n‖
n→∞−−−−→ 0

thus, ∥∥φ−1(φ(d)− un(d⊗ 1D⊗∞ )u∗n)
∥∥ =

∥∥d− φ−1(un(d⊗ 1D⊗∞ )u∗n)
∥∥ n→∞−−−−→ 0

So, if we let φn : D⊗
∞ ⊗D⊗∞ → D⊗

∞
be a sequence of ∗-homomorphisms given by φn(d1⊗d2) =

φ−1(un(d1 ⊗ d2)u∗n), then the above norm considerations give the desired result.

Now, following the construction of sequences of ∗- homomorphisms in the proof of iii) above,
we are ready to harvest Theorem 1.1.11. The proof follows.

Proof. (Theorem 1.1.11) Suppose that A is D-stable, A⊗D ∼= A, and consider the ∗- homomor-
phisms

ψn : A⊗D ⊗D → A⊗D

given as ψn = idA ⊗ φn, where φn are ∗-homomorphisms by Proposition 1.1.15 (iii). Now, take
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the induced ∗-homomorphism ψ : (A⊗D)⊗D → Q(A⊗D) given by

(a⊗ d1)⊗ d2 7−→ (ψn(a⊗ d1 ⊗ d2))n

then,
‖ψn(a⊗ d⊗ 1D)− a⊗ d‖ = ‖a⊗ (φn(d⊗ 1D)− d)‖ n→∞−−−−→ 0

which shows that (ψn(a⊗ d⊗ 1D))n = (a⊗ d)n in Q(A⊗D), or equivalently, that

ψ(a⊗ d⊗ 1D) = a⊗ d for all a ∈ A, d ∈ D

Therefore, using D-stability of A we obtain a ∗-homomorphism ψ′ : A⊗D → Q(A) satisfying

ψ′(a⊗ 1D) = a, for all a ∈ A

as desired.

In the rest of this section, we continue working in the setting of strongly self-absorbing C∗-
algebras, say D, but we move our focus to examining some permanence properties of D-stability.
Namely, how D-stability behaves with respect to hereditary subalgebras (see Definition 1.4.9),
quotients, inductive limits and extensions (see Definition 2.4.1).

In the following propositions, we assume that D is a separable, unital, strongly self-absorbing
and K1-injective C∗-algebra

Lemma 1.1.16. Let A be a separable, D-stable C∗-algebra. If B ⊂her A, then B is D-stable.

Proof. Let B ⊂her A and let (hn)n be an approximate unit of positive contractions for B. Also,
let ι : B ↪→ A be the inclusion and h be the image of (hn)n in Q(B) ⊂ Q(A). Now, define
β : Q(A)→ Q(B) by β(x) = hxh and we claim that it is a c.c.p map.
For this purpose, firstly let x ∈ Q(A)+, then x = y∗y for some y ∈ Q(A) and so β(x) =

β(y∗y) = (yh)∗yh ∈ Q(B)+. For contractivity, since ‖h‖ ≤ sup{‖hn‖ : n ∈ N} ≤ 1 we get that
‖β(x)‖ = ‖hxh‖ ≤ ‖x‖. So, it remains to show that β is completely positive. To this end, let
X ∈ Mn(Q(A))+, then X = [x∗i xj ]i,j for some xi, xj ∈ Q(A). So, βn(X) = [hx∗i xjh](:= [Yij ]i,j)

and it suffices to show that
∑n
i,j=1 b

∗
i Yijbj ≥ 0 for all b1, b2, ...bn ∈ Q(B). So,

n∑
i,j=1

b∗i Yijbj =
n∑

i,j=1

b∗i hx
∗
i xjhbj =

n∑
i,j=1

(xihbi)
∗xjhbj =

n∑
i=1

(xihbi)
∗

n∑
j=1

xjhbj = (
n∑
i=1

xihbi)
∗

n∑
i=1

xihbi ≥ 0

hence, β is a c.c.p map.
Since, A is D-stable by Theorem 1.1.11 there is a ∗-homomorphism σ : A⊗D → Q(A) such that

σ(a⊗ 1D) = a for all a ∈ A, and define a c.c.p map σ̂ : B ⊗D → Q(B), as σ̂ := β ◦ σ ◦ (ι⊗ idD).
Then, for b ∈ B we have that

σ̂(b⊗ 1D) = β ◦ σ(b⊗ 1D) = β(b) = hbh = b

and if b ∈ B+, d ∈ D+ then

σ̂(b⊗ d) = β ◦ σ(b⊗ d) = β(σ(b1/4 ⊗ 1D)σ(b1/2 ⊗ d)σ(b1/4 ⊗ 1D))

= β(b1/4σ(b1/2 ⊗ d)β1/4) = hb1/4σ(b1/2 ⊗ d)β1/4h = b1/4σ(b1/2 ⊗ d)β1/4 = σ(b⊗ d)

where the next to last equality holds because b1/4σ(b1/2⊗d)β1/4(= x) ∈ B and hnxhn
‖·‖−−→ x, thus

hxh = x, in Q(B). Hence, we showed that σ̂ is multiplicative and in turn a ∗-homomorphism.
Thus, by Note 1.1.12, B is D-stable.
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Note 1.1.17. Since closed two-sided ideals of C∗-algebras are hereditary subalgebras (see Theo-
rem 1.4.13), we obtain that D-stability is preserved by ideals.

Lemma 1.1.18. If A is a separable, D-stable C∗-algebra, and J C A a closed ideal, then A/J is
D−stable.

Proof. Let π : A → A/J be the quotient map, and consider the well defined ∗-homomorphism
π̂ : Q(A) → Q(A/J), which is given by π̂(a1, a2, ...) = (π(a1), π(a2), ...). Since, A is D-stable,
there exists a ∗- homomorphism σ : A ⊗ D → Q(A) such that σ(a ⊗ 1D) = a, for all a ∈ A.
Then, π̂ ◦ σ(a ⊗ 1D) = π̂(a) = π(a), hence π̂ ◦ σ induces a map σ̂ : A/J ⊗ D → Q(A/J), which
satisfies σ̂(π(a) ⊗ d) = π̂(σ(a ⊗ d)). Moreover, for a ∈ J , π̂(σ(a ⊗ 1D) = π̂(a) = π(a) = 0, thus
π̂ ◦ σ(J ⊗D) = 0, which implies that σ̂ is well defined. Finally, by surjectivity of π, we get that
σ̂ is a well defined ∗-homomorphism, and σ̂(x⊗ 1D) = x, for all x ∈ A/J , by Note 1.1.12, A/J is
D-stable.

Next, we see that D-stability is also preserved by inductive limits.

Lemma 1.1.19. If A = lim−→ Ai is an inductive limit of separable D-stable C∗-algebras, then A is
D-stable.

Proof. Firstly, we note that if (A,ψi) is the inductive limit of (Ai, φi) , then it is a standard fact
for inductive limits of C∗-algebras that lim−→ Ai ∼= lim−→ Ai/Kerψi. So, knowing from the previous
lemma that D-stability is preserved by quotients, , we may assume that (Ai)i is an increasing
sequence of separable, D-stable C∗-algebras, and that A = ∪iAi. Now, since Ai D-stable, the
construction in the proof of Theorem 1.1.11, provides a sequence of ∗-homomorphisms σi,n : Ai ⊗
D → Ai, satisfying that

‖σi,n(a⊗ 1D)− a‖ n→∞−−−−→ 0, ∀a ∈ Ai,∀i ∈ N

If F = {aj : j ∈ N} is a countable dense subset of A, then for any k ∈ N, we can find (i, n) such
that {a1, ..., ak} ⊂ Ai and ‖σi,n(aj ⊗ 1D)− aj‖ ≤ 1/k, j ∈ {1, 2, .., k}. Thus, if we set σk = σi,n,
we get that

‖σk(aj ⊗ 1D)− aj‖
k→∞−−−−→ 0

for all aj ∈ F , but since F is dense in A, it follows that

‖σk(a⊗ 1D)− a‖ k→∞−−−−→ 0

for all a ∈ A. Since, σk is a ∗-homomorphism for each k ∈ N, we obtain the induced ∗-
homomorphism σ : A⊗D →

∏
A/
∑
nA, which satisfies

σ(a⊗ 1D) = a

for all a ∈ A. Hence, by Theorem 1.1.11 and Note 1.1.12 it follows that A is D-stable.

As the last bit of permanence properties of D-stability in this section, we state that D-stability
is preserved by extensions. The proof is omitted.

Theorem 1.1.20. Let a short exact sequence of separable C∗-algebras

0 I A B 0
j q

If I and B are D-stable, then A is D-stable.
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1.2 Strict comparison of positive elements in a C∗-algebra

The central purpose of this section, is to give an introduction to strict comparison of positive
elements in a C∗-algebra, and finally to prove that the tensor product of a simple, unital, C∗-
algebra with any UHF algebra, has the property of strict comparison. The material in this section
is from [28], except otherwise is mentioned.

In the following, A will always be a unital C∗-algebra and A+ its positive cone. Also, for
ε > 0, we define fε : R+ → R+ by

fε(t) =


0, t ≤ ε
ε−1(t− ε), ε ≤ t ≤ 2ε

1, t ≥ 2ε

and
(t− ε)+ = max{t− ε, 0}

Now, let us start by creating the setting that we are going to work with.

Definition 1.2.1. Let x, y ∈ A+, we write x / y if ∃ r ∈ A, such that x ≤ ryr∗. Also, we write
x . y, if fε(x) / y, for all ε > 0. Finally, we write x ∼ y iff x . y and y . x.

Note 1.2.2. Both / and . define preorderings on A+, x / y implies x . y, ∼ is an equivalence
relation and fε(x) ∼ (x − ε)+, for any x ∈ A+ and ε > 0. For reflexivity of ., let a ∈ A+. For
ε > 0, we have that fε(a) ≤ (ε1A)−1/2a(ε1A)−1/2, hence fε(a) / a, for any ε > 0 and so in turn
we get that a . a. Now, let us show that / is a transitive relation. To this end, let x, y, z ∈ A+

such that x / y and y / z, then ∃ r1, r2 ∈ A satisfying that x ≤ r1yr
∗
1 and y ≤ r2zr

∗
2 . Hence,

we obtain that x ≤ r1yr
∗
1 ≤ r1r2zr

∗
2r
∗
1 = (r1r2)z(r1r2)∗, which implies that x / z, as desired. The

reflexivity of / is obvious. Moreover, let us now show that / is a stronger relation than .. Let
x, y ∈ A+ such that x / y. As we already showed, fε(x) / x, ∀ε > 0, so by transitivity of / we
get that fε(x) / y, ∀ε > 0, showing that x . y, as required.
Using these first assertions, we procced to show that fε(x) ∼ (x − ε)+, for any x ∈ A+ and

ε > 0. We may suppose that x ∈ A+
1 , 0 < ε < 1 and ‖x‖ > ε. Then, as ε−1(t − ε) > (t − ε),

for all t ∈ σ(x) and (x − ε)+ ≤ ‖(x− ε)+‖ ≤ ‖x‖ ≤ 1, we see that (x − ε)+ ≤ fε(x). Hence,
(x − ε)+ / fε(x), which implies that (x − ε)+ . fε(x). For the other direction, observe that
fε(x) ≤ (x − ε)−1/2

+ (x − ε)+(x − ε)−1/2
+ , which shows that fε(x) / (x − ε)+ and therefore fε(x) .

(x − ε)+. Also, note that since (t − ε)+
ε→0+

−−−−→ t, then (x − ε)+
ε→0+

−−−−→ x, by standard functional
calculus arguments.
Now, for transitivity of ., let x, y, z ∈ A+, such that x . y and y . z. Then, for any ε > 0,

fε(x) / y and fε(y) / z, and so (x − ε)+ / y and (y − ε)+ / z. Hence, x / y and y / z, using

that (x− ε)+
ε→0+

−−−−→ x. By transitivity of /, the desired result follows.

As a first result we show that the comparison theory defined above, when applied to projections,
is identical to the usual von Neumman-Murray comparison theory.

Proposition 1.2.3. Let p, q ∈ A projections. Then p . q iff exists u ∈ A such that p = uu∗ and
u∗u ≤ q.

Proof. Suppose that p . q, then for any ε > 0 there is w ∈ A, such that fε(p) ≤ wqw∗. Let
0 < ε < 1

2 , then fε(0) = 0 and fε(1) = 1. Now, consider the function ι(t) = t and we see that
ι|σ(p) = fε|σ(p), hence fε(p) = ι(p) = p. Thus, if we set u = pwq, we get that uu∗ = pwqw∗p = p,
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and u∗u = qw∗pwq ≤ q. For the other direction, since for any ε, there is w ∈ A such that
fε(p) ≤ wpw∗ and by hypothesis p ≤ uqu∗, it follows that fε(p) ≤ uwqw∗u∗. So, for x = uw, we
have that fε(p) ≤ xqx∗, and since ε was arbitrary, we conclude that p . q.

Proposition 1.2.4. Let x, y ∈ A+ and δ0 = ‖x− y‖. Then, for δ > δ0, fδ(x) / y.

Proof. First note that x − y ≤ ‖x− y‖ = δ0, implies that x − δ01A ≤ y. Moreover, observe that
fδ(x)

1
2 (x− δ)fδ(x)

1
2 ≥ 0, and so we have

fδ(x)
1
2 (δ − δ0)fδ(x)

1
2 ≤ fδ(x)

1
2 (x− δ0)fδ(x)

1
2 ≤ fδ(x)

1
2 yfδ(x)

1
2

Hence, fδ(x) ≤ ryr∗, where r = (δ − δ0)
− 1

2 fδ(x)
1
2 .

Moreover, it is the case that the preordering . generalizes the usual order ≤ on A+. To show
this fact, we need first some preliminary results that we present right away.

Proposition 1.2.5 ([24], Proposition 1.4.4). Let x, y ∈ A, a ∈ A+, such that x∗x ≤ aα and yy∗ ≤
aβ, where α+ β > 1. Then, the sequence (un)n = (x( 1

n + a)−
1
2 y)n is convergent to some u ∈ A, such

that ‖u‖ ≤
∥∥a(α+β−1)/2

∥∥
Proof. Firstly, set dnm = ( 1

n + a)−
1
2 − ( 1

m + a)−
1
2 , and see that,

‖un − um‖2 =
∥∥∥x[(1/n) + a]−

1
2 − [(1/m) + a]−

1
2 ]y
∥∥∥2

= ‖xdnmy‖2

= ‖y∗dnmx∗xdnmy‖ ≤ ‖y∗dnmaαdnmy‖ =
∥∥aα2 dnmy∥∥2

=
∥∥aα2 dnmyy∗dnmaα2 ∥∥ ≤ ∥∥aα2 dnmaβdnmaα2 ∥∥ =

∥∥∥dnmaα+β
2

∥∥∥2

Now, the sequence a
α+β

2 (1/n + a)−
1
2 is increasing, and so by spectral theory is (uniformly) con-

vergent to a
α+β−1

2 . Hence, (dnma
α+β

2 ) converges to 0, when n,m→∞, which implies that (un)n

is a convergent sequence. Finally, using the same norm calculations as above, it follows that

‖un‖ ≤
∥∥∥aα2 a β2 ((1/n) + a)

− 1
2

∥∥∥ ≤ ∥∥∥aα2 a β2 a− 1
2

∥∥∥ =
∥∥∥a(α+β−1)/2

∥∥∥ , ∀ n ∈ N

thus,
‖u‖ ≤

∥∥∥a(α+β−1)/2
∥∥∥ .

As a consequence, we can now obtain a rather useful proposition, that will be critical in showing
that . generalizes ≤.

Proposition 1.2.6 ([24], Proposition 1.4.5). Let x ∈ A and a ∈ A+, such that x∗x ≤ a. Then, for
0 < β < 1

2 , there exists u ∈ A satisfying that ‖u‖ ≤
∥∥∥a 1

2−β
∥∥∥, and x = uaβ.

Proof. Let un = x[(1/n) + a]−
1
2 a

1
2−β and apply Proposition 1.2.5, to get that un is convergent to

some u, such that ‖u‖ ≤
∥∥∥a 1

2−β
∥∥∥. To show that x = uaβ , observe∥∥x− unaβ∥∥ =

∥∥∥x[1− ((1/n) + a)−
1
2 a

1
2 ]
∥∥∥

≤
∥∥∥a 1

2 [1− ((1/n) + a)−
1
2 a

1
2 ]
∥∥∥ n→∞−−−−→ 0

by spectral theory. Thus, x = uaβ , as desired.
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Lemma 1.2.7. Let x, y ∈ A+, such that x ≤ y. Then

i) ∃ r ∈ A, such that x = ry
1
2 r∗

ii) ∃ (rn)n ⊂ A, such that rnyr∗n −→ x

Proof. i) Since, x
1
2x

1
2 ≤ y, let β = 1

4 , and apply Proposition 1.2.6 to find r ∈ A such that
x

1
2 = ry

1
4 , and in turn x = ry

1
2 r∗.

ii) Let δ > 0, and define gδ(t) = min{t−1, δ−1}. Moreover, if we define rδ = x
1
2 gδ(y)

1
2 , and

sδ = x
1
2 (1− gδ(y)y)

1
2 , then it follows that

sδs
∗
δ = x

1
2 (1− gδ(y)y)

1
2 (1− gδ(y)y)

1
2x

1
2 = x− x 1

2 gδ(y)yx
1
2

= x− rδyr∗δ

and
s∗δsδ = (1− gδ(y)y)

1
2x(1− gδ(y)y)

1
2 ≤ (1− gδ(y)y)

1
2 y(1− gδ(y)y)

1
2 = (1− gδ(y)y)y

Now, if δ −→ 0, then gδ(y) −→ y−1, which shows that ‖x− rδyr∗δ‖ = ‖sδs∗δ‖ = ‖s∗δsδ‖ −→ 0, as
required.

Note 1.2.8. We claim that if f, g ∈ C(σ(x))+, such that supp(f) ⊆ supp(g), then f(x) . g(x).

To do so, first observe that, for ε > 0, it suffices to find r ∈ C(σ(x)) such that ‖f − rgr∗‖∞ < ε,
since this implies that there is y ∈ A satisfying, f(x) ≤ yg(x)y∗, hence f(x) . g(x). Now, to find
such an r, we proceed as follows. Let ε > 0, and set K = {t ∈ σ(x) : f(t) ≥ ε}, a compact set,
and note that K ⊆ supp(g). Since, g is strictly positive, there is δ > 0 such that g(t) > δ, for all
t ∈ K, hence K ⊆ {t ∈ σ(x) : g(t) > δ/2} = U . Moreover, U is an open set, and so by Uryshon’s
Lemma, we find s : σ(x) → [0, 1] continuous function, such that s = 1 in K, and s = 0 in U c.
Now, define h : σ(x)→ R+ by

h(t) =

{
f(t)
g(t) s(t), t ∈ U
0, t 6∈ U

and we immediately see that ‖f − hg‖∞ < ε. So, r = h
1
2 , has the desired properties.

Note 1.2.9. Let α ∈ R+, and take f(t) = t, g(t) = tα defined on σ(x), for some x ∈ A+. Since,
supp(f) = supp(g), we obtain in a straightforward way from 1), that x ∼ xα.

Having these initial insights into the preordering ., we can now show that there are various
(equivalent) ways of reformulating the condition x . y. This result will be of great importance
throughout the rest of this section.

Proposition 1.2.10. Let x, y ∈ A+. The following are equivalent

i) x . y

ii) ∃ rn ∈ A : rnyr
∗
n −→ x

iii) ∃ rn, sn ∈ A : rnysn −→ x

iv) ∀ε > 0, ∃δ > 0, ∃r ∈ A such that fε(x) = rfδ(y)r∗

Proof. i) =⇒ ii) For ε > 0, find h ∈ A such that fε(x) ≤ hyh∗, therefore, by Lemma 1.2.7 there
is s ∈ A, so that

‖shyh∗s∗ − fε(x)‖ < ε

Now, set K = {t ∈ R+ : t ≥ ε} and U = {t ∈ R+ : t > ε/2}. Then, K is a closed set, U is an open
set, and K ⊂ U , thus by Uryshon’s Lemma we find a continuous function ρ : R+ → [0, 1], such

13



that ρ|K = 1, and ρ|Uc = 0. Moreover, set g′ : R+ → R+ by

g′(t) =

{
i(t)
fε(t)

ρ(t), t ∈ U
0, t 6∈ U

where i is the identity map. Then g is a continuous map and if we set g = (g′)1/2, then g

satisfies that
‖x− g(x)fε(x)g(x)‖ < ε

Finally, set r = g(x)sh, and the conclusion follows.
ii) =⇒ iii) Obvious

iii) =⇒ i) Set an = rny
1
2 , bn = y

1
2 sn, and since b∗na∗nanbn

‖·‖−−→ x∗x = x2, for ε > 0, we can find
large enough n such that ∥∥b∗na∗nanbn − x2

∥∥ < ε

Thus, by Proposition 1.2.4, we get

fε(x
2) / b∗na

∗
nanbn ≤ ‖an‖

2
b∗nbn / y

hence, x2 . y. But, Note 1.2.9 asserts that x2 ∼ x, concluding that x . y.
ii) =⇒ iv) Firstly, let ε > 0 and find s1 ∈ A such that

‖x− s1ys
∗
1‖ < ε

Put, hδ(t) = max{t − δ, 0}, then by Note 1.2.2, we know that hδ(y) ∼ fδ(y) and moreover that
hδ(y)

δ→0−−−→ y. Hence,
‖x− s1h2δ(y)s∗1‖ < ε

and s1h2δ(y)s∗1 = s2f2δ(y)s∗2, for some δ > 0 and s2 ∈ A. Combining these two observations and
employing Proposition 1.2.4, we can find s3 ∈ A such that

fε(x) ≤ s3f2δ(y)s∗3

Set z = s3f2δ(y)
1
2 ∈ A, and let z = u|z|, be its polar decomposition. If s4 = u|z| 12 , then s4 ∈ A

and since f2δ(y)fδ(y) = f2δ(y), we get that s4fδ(y) = s4, so it follows that

(s4fδ(y)s∗4)2 = (s4s
∗
4)2 = zz∗ = s3f2δ(y)s∗3 ≥ fε(x)

Now, by Lemma 1.2.7, there exists r ∈ A satisfying

fε(x) = rfδ(y)r∗

as desired.
iv) =⇒ i) Let ε > 0, and take r1 ∈ A, δ > 0 such that fε(x) ≤ r1fδ(y)r∗1 . But, fδ(y) / y implies
that we can find r2 ∈ A, such that fδ(y) ≤ r2yr

∗
2 , hence fε(x) ≤ ryr∗, where r = r2r1.

We finalize this first discussion about strict comparison of positive elements, with a useful
standard lemma in spectral theory of C∗-algebras, that we will employ critically in the coming
up, and a proposition that will enable us to define the so called Cuntz Semigroup in the following
pages. The proof of the proposition is omitted.

Lemma 1.2.11 ([20], Lemma 1.2.5). Let K be a non-empty compact subset of R, and f : K → C be
a continuous function. Let A be a unital C∗-algebra and ΩK be the set of all self-adjoint elements in
A, whose spectra is contained in K. Then, the induced map

f : ΩK → A, a 7→ f(a)

is continuous.

Proof. First note that since the multiplication is continuous in any C∗-algebra, then the map
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a → an is continuous, for any n ∈ N, obtaining that any polynomial induces a continuous map
A→ A

Now, let f : K → C be a continuous function and ε > 0, then by Stone-Weierstrass theorem we
find polynomial p such that

|f(z)− p(z)| < ε/3, ∀z ∈ K

Also, for a ∈ A, find δ > 0 such that

‖p(a)− p(b)‖ < ε/3

when ‖a− b‖ < δ. Moreover, we observe that for c ∈ ΩK

‖f(c)− g(c)‖ = ‖(f − g)(c)‖ = sup{|(f − g)(z)| : z ∈ σ(c)} < ε/3

hence, for a, b ∈ ΩK , such that ‖a− b‖ < δ it follows that

‖f(a)− f(b)‖ = ‖f(a)− p(a) + p(a)− p(b) + p(b)− f(b)‖

≤ ‖f(a)− p(a)‖+ ‖p(a)− p(b)‖+ ‖p(b)− f(b)‖ < ε/3 + ε/3 + ε/3 = ε

concluding that f is continuous.

Note 1.2.12. Let a, b ∈ A+, and suppose that ‖a‖ ≤ ‖b‖ and consider f ′ε = fε|[0,‖b‖], the restriction
of the continuous function that we defined in the introduction. Then, by the lemma above we
deduce that for any ε > 0, we can find δ > 0 so that, whenever ‖a− b‖ < δ, then ‖f ′ε(a)− f ′ε(b)‖ <
ε.

Proposition 1.2.13. Let x, x′, y, y′ ∈ A+ such that x . y, x′ . y′ and y′y = 0. Then, x+x′ . y+y′.

As we mentioned in the beginning of this section, our main goal is to prove that the tensor
product of a simple, unital, C∗-algebra with any UHF algebra, has the strict comparison property.
To do so, we have to introduce few new notions, starting by the almost unperforated partially
ordered abelian semigroup.

Definition 1.2.14. A partially ordered abelian semigroup (S,≤) is an abelian semigroup equipped with
a partial order satisfying t1 + t2 ≤ s1 + s2 , when ti, si ∈ S, and ti ≤ si. We further assume that S has
zero element 0, such that 0 ≤ s, for all s ∈ S. Also, an element t ∈ S is called strong order unit, if for
all s ∈ S, there is n ∈ N such that s ≤ nt.

In this setting, the term state is reserved for an order preserving, additive map d : S → R+.
Meanwhile, we say that a partially ordered abelian semigroup (S,≤) is almost unperforated if,
whenever k, k′ ∈ N, s, t ∈ S, such that ks ≤ k′t and k′ < k, then s ≤ t.

The following propositions aim to show that if (S,≤) is an almost unperforated partially ordered
abelian semigroup, then the state space on S, determines the order structure.

Proposition 1.2.15. Let (S,≤) be a partially ordered abelian semigroup. If t, t′ ∈ S, t is a strong
order unit and d(t′) < d(t) for all states d on S , then there is n ∈ N and u ∈ S satisfying
that nt′ + u ≤ nt+ u.

Proof. Let G(S) be the Grothendieck group associated to S and let γ : S → G(S) be the Grothendieck
map, which is additive and [s] = γ(s) = γ(t) = [t] if and only if s + u = t + u for some u ∈ S.
Also, let

G(S)+ = {[s]− [t] : s, t ∈ S, s+ u ≥ t+ u, for some u ∈ S}

and it is straightforward to see that (G(S), G(S)+) is a partially ordered abelian group and that
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[t] is a strong order unit.
Now, suppose that nt′ + u 6≤ nt + u, for all u ∈ S, n ∈ N, then it follows that n[t′] 6≤ n[t], for

all n ∈ N. Moreover, set
f∗(t′) = inf{n/m : n,m > 0, mt′ ≤ nt}

and
f∗(t

′) = sup{n/m : n,m > 0, nt ≤ mt′}

and observe that f∗(t′) > 1 and f∗(t
′) < 1, hence by Lemma 4.1 in [15], there is a state d on

G(S) such that d([t′]) ≥ 1 = d([t]). Since the map defined as d(t) = d([t]), for t ∈ S, is a state
on S, and d(t′) ≥ d(t), we get a contradiction.

Proposition 1.2.16. Let (S,≤) be an almost unperforated partially ordered abelian semigroup. If
t, t′ ∈ S, t is a strong order unit and d(t′) < d(t) for all states d on S, then t′ ≤ t

Proof. Let Σ be the set of all states d on S such that d(t) = 1 and we claim that Σ is compact.
To see this, note that for any s ∈ S, ∃ ns ∈ N such that s ≤ nst, which implies that d(s) ≤ ns,
for all d ∈ Σ. Let (dn)n be a sequence in Σ, then for each s ∈ Σ, (dn(s))n) ⊆ [0, ns] and since
[0, ns] is compact there is (dkn(s))n convergent subsequence to some xs. If we define d by s 7→ xs,
we see that d ∈ Σ and that dkn −→ d, concluding that Σ is compact.
Now, we claim that due to compactness there is c < 1, such that d(t′) ≤ c, for all d ∈ Σ. If

otherwise, we could find for any n ∈ N, dn ∈ Σ, such that dn(t′) > 1 − 1
n . Since Σ is compact,

the sequence (dn)n has a subsequence (dkn)n converging to some d ∈ Σ. So, we can find no ∈ N,
such that |d(t′)− d(t)| < 1

kn
, for all n ≥ n0 and by arranging kn, so that kn ≥ km, when n ≥ m,

we get that d(t′) is arbitrarily close to d(t)(= 1), which contradicts that d(t′) < d(t).

Furthermore, find m,m′ ∈ N, m′ ≥ m, such that m
m′ > c. Then, d(t′) < m

m′ =⇒ d(m′t′) < m =

md(t) = d(mt), for all d ∈ Σ, and by observing that if τ is any state on S, where τ(t) = k ∈ R+,
then d = 1

k τ is again a state and d ∈ Σ, we obtain that d(m′t′) < d(mt), for any state d on S.
Now, let any k ∈ N, then d(km′t′) < d(kmt), for all states on S, and so, by Proposition 1.2.15,

there exists n ∈ N and u ∈ S satisfying,

nkm′t′ + u ≤ nkmt+ u

Since t is a strong order unit, we can find l ∈ N, such that u ≤ lt, which shows that

knm′t′ ≤ knm′t′ + u ≤ knmt+ u ≤ (knm+ l)t

and if k is large enough in order that knm′ > knm + l, the hypothesis that S is almost unper-
forated, yields that t′ ≤ t, as required.

Now, we are ready to present the so called Cuntz Semigroup. Also, it is essential for our
purposes to make a brief introduction to dimension functions and quasi-traces, that will be central
ingredients in the final results of this section.

Let A be a unital C∗-algebra and denote by M∞(A) the union of Mn(A), for all n ∈ N, with

inclusions x 7→

(
x 0

0 0

)
. For x ∈ M∞(A)+, we set 〈x〉 = {y ∈ M∞(A) : x ∼ y}, where ∼ is the

equivalence relation defined earlier. Moreover, we define addition by 〈x〉 + 〈y〉 = 〈x′ + y′〉, where
x′ ∼ x, y′ ∼ y and x′ ⊥ y′(i.e x′y′ = 0). By Proposition 1.2.13, it is evident that this is well
defined. Finally, we define a partial order ≤, such that 〈x〉 ≤ 〈y〉 if x . y.
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Definition 1.2.17. For any unital C∗-algebra A, the associated Cuntz semigroup is the abelian semi-
group

S(A) = {〈x〉 : x ∈M∞(A)+}

which equipped with the partial order ≤ becomes a partialy oredered abelian semigroup.

Definition 1.2.18. A state d on S(A), is called dimension function if d(〈1A〉) = 1, and the set of all
such states is denoted by DF (A). Moreover, if d ∈ DF (A) and d(〈x〉) ≤ lim infn d(〈xn〉), whenever
xn −→ x, then d is called lower semicontinuous. The set of all lower semicontinuous states is denoted
LDF (A).

Proposition 1.2.19. Let d ∈ DF (A) and set

d(〈x〉) = lim
ε→0

d(〈fε(x)〉)

Then, d ∈ LDF (A), d ≤ d, and d = d if d ∈ LDF (A)

Proof. First we show that d is additive. Let x ∈ Mn(A)+, y ∈ Mm(A)+, then observe that
x⊕0m ∼ x, 0n⊕y ∼ y and (x⊕0m)(0n⊕y) = 0. Thus, we have that 〈x〉+〈y〉 = 〈(x⊕0m)+(0n⊕y)〉
and so it suffices to show that fε((x⊕ 0m) + (0n ⊕ y)) = fε(x⊕ 0m) + fε(0n ⊕ y), since then, using
that fε(0n ⊕ y)fε(x⊕ 0m) = 0, we get 〈fε(x⊕ 0m) + fε(0n ⊕ y)〉 = 〈fε(x⊕ 0m)〉+ 〈fε(0n ⊕ y)〉 and
the conclusion follows by additivity of d.
To this end, we claim that for any real valued continuous function defined on some [0, c], c ∈ R+,
such that f(0) = 0, we have f(x+ y) = f(x) + f(y), whenever xy = 0. But, for any polynomial p,
we have that p(x+ y) = p(x) + p(y), since xy = 0, which implies that (x+ y)k = xk + yk for any
k ∈ N. So, using Weirstrass approximation theorem we get that for ε > 0 there exists polynomial
p such that the following holds

|f(x+ y)− f(x) + f(y)| = |f(x+ y)− p(x+ y) + p(x) + p(y)− f(x)− f(y)|

≤ |f(x+ y)− p(x+ y)|+ |f(x)− p(x)|+ |f(y)− p(y)| < ε

3
+
ε

3
+
ε

3
= ε

since ε was arbitrary, we conclude that f(x+ y) = f(x) + f(y).
We now proceed to show that d(〈x〉) ≤ d(〈y〉), whenever 〈x〉 ≤ 〈y〉. Since x . y, Proposi-

tion 1.2.10 (iv) shows that ∀ε > 0 ∃δ such that fε(x) . fδ(y), hence

d(〈fε(x)〉) ≤ d(〈fδ(y)〉) ≤ d(〈y〉), ∀ε > 0

This implies that d(〈x〉) ≤ d(〈y〉), as desired.
To show that d ∈ LDF (A), let xn −→ x. Then for ε > 0, find n0 ∈ N, such that ‖xn − x‖ < ε

2 ,
for all n ≥ n0, and by Proposition 1.2.4 we get that f ε

2
(x) . xn. Moreover, by Proposition 1.2.10

(iv), there are δn for all n ≥ n0, so that

fε(x) . f ε
2
(f ε

2
(x)) . fδn(xn)

Hence,
d(〈fε(x)〉) ≤ d(〈fδn(xn)〉) ≤ d(〈xn〉)

Since ε was arbitrary, we conclude that

d(〈x〉) ≤ lim inf
n

d(〈xn〉)

thus d ∈ LDF (A).
Now, since fε(x) . x, for all ε > 0, it follows that

d(〈fε(x)〉) ≤ d(〈x〉), ∀ε > 0

and in turn that, d(〈x〉) ≤ d(〈x〉).
Finally, suppose that d ∈ LDF (A). For ε > 0, consider as previously, the continuous function
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(t − ε)+ = max{t − ε, 0}, which satisfies that (x − ε)+ ∼ fε(x), and (x − ε)+
ε→0−−−→ x. Then, using

that d ∈ LDF (A) we obtain

d(〈x〉) ≤ lim inf
n

d(〈f 1
n

(x)〉) = lim
ε→0

d(fε(〈x〉)) = d(〈x〉)

showing that d = d.

Definition 1.2.20. A function τ : A→ C is called (normalised) quasi-trace if

i) τ(1A) = 1

ii) 0 ≤ τ(x∗x) = τ(xx∗)

iii) τ(a+ ib) = τ(a) + iτ(b) for all a,b ∈ As.a
iv) τ is linear on abelian C∗-subalgebras of A

v) τ extends to a function from Mn(A) to C satisfying all the above conditions.

Moreover, the set of all quasi-traces on A is denoted QT (A).

Note 1.2.21. Let τ ∈ QT (A) and define dτ (〈x〉) = limε→0 τ(fε(x)). It is a fact that, for any
τ ∈ QT (A), we can define dτ (〈x〉) = limn→∞ τ(x1/n), and that these two definitions are equivalent.
Blackadar and Handelman showed that dτ is well defined and dτ ∈ LDF (A). In fact, there
is an isomorphism between QT (A) and LDF (A), which follows by the theorem below. Using
these observations, we can now rigorously say that a C∗-algebra has strict comparison of positive
elements with respect to its traces if for any 〈x〉, 〈y〉 ∈ S(A), 〈x〉 ≤ 〈y〉 whenever dτ (〈x〉) < dτ (〈y〉)
for all dτ ∈ LDF (A).

Theorem 1.2.22. If d ∈ LDF (A), then there is τ ∈ QT (A) such that d = dτ .

With these tools in our disposal, we are just one step behind the main goal of this section.
But firstly, we make the following observations and we prove a rather useful lemma that will
be heavily employed in the process of this project. We observe, as in the proof of additivity in

Proposition 1.2.19, that whenever x ∈ A+ then 〈x〉+ 〈x〉 = 〈x′+x′′〉, where x′ =

(
x 0

0 0

)
(= x⊕0)

and x′′ =

(
0 0

0 x

)
(= 0 ⊕ x), since x′x′′ = 0, and

(
1 0

)
x′

(
1

0

)
= x =

(
0 1

)
x′′

(
0

1

)
, which

implies that x′ ∼ x and x′′ ∼ x. Hence, 〈x〉+ 〈x〉 = 〈x⊗ 12〉, where x⊗ 12 =

(
x 0

0 x

)
. Using this

observation, let k, k′ ∈ N, and x, y ∈ A+, then it follows that,

k〈x〉 ≤ k′〈y〉 ⇐⇒ 〈x⊗ 1k〉 ≤ 〈y ⊗ 1k′〉 ⇐⇒ x⊗ 1k . y ⊗ 1k′

and by Proposition 1.2.10 this is equivalent to the existence of a sequence (rj)j ⊆Mk,k′(A) such
that rj(y ⊗ 1k′)r

∗
j −→ x⊗ 1k.

Lemma 1.2.23 ([32], Lemma 2.2). Let A be a C∗-algebra which admits strict comparison of positive
elements by bounded traces. Then, if a ∈ A1

+ and there exists m ∈ N such that τ(a) > 2
m for all

τ ∈ T (A), there are m2 contractions b1, ...., bm2 such that

1A =
m2∑
j=1

bjab
∗
j

.
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Proof. Let δ = 1
2 minτ∈T (A) τ(a). Then mδ > 1 and for τ ∈ T (A) we have

dτ (〈(a− δ)2
+〉) = lim

n→∞
τ((a− δ)2/n

+ ) > τ((a− δ)+) ≥ τ(a− δ) = τ(a)− δ ≥ δ

where the first inequality holds because (a− δ)+ < (a− δ)2/n
+ for all n ≥ 2, since ‖(a− δ)+‖ ≤ 1.

So, we get that
dτ (〈(a− δ)2

+
⊕m〉) > mδ > 1 = dτ (〈1A ⊕ 0(m−1)〉)

and by strict comparison of A, 1A ⊕ 0(m−1) . (a− δ)2
+)⊕m. Now, as 1A ⊕ 0(m−1) ∼ 1A, , for any

ε < 1/2 we find b1, ...., bm ∈ A, by Proposition 1.2.10 (iv) such that

(1A =)fε(1A) =
m∑
j=1

bj((a− δ)2
+)b∗j

In fact, (bj(a− δ)+)(bj(a− δ)+)∗ ≤
∑m
j=1(bj(a− δ)+)(bj(a− δ)+)∗ = 1A, hence ‖(bj(a− δ)+)‖ ≤ 1

Now, define h ∈ C([0, 1]) by

h(t) =

{
1√
t
, δ ≤ t

t

δ
3
2
, 0 ≤ t ≤ δ

and note that h(t)2t = 1 for t ≥ δ. Hence, (a − δ)+h(a)2a = (a − δ)+ and if we set cj =

m−1/2bj(a − δ)+h(a), then ‖cj‖ ≤ m−1/2 ‖h(a)‖ ≤ (mδ)−1/2 < 1, since σ(h(a)) ⊆ [0, δ−1/2]. This
shows that cj is a contraction for all j = 1, ...,m. Moreover, cj satisfy that

cjac
∗
j = m−1bj(a− δ)+h(a)2a(a− δ)+b

∗
j = m−1bj(a− δ)2

+b
∗
j

so

m
m∑
j=1

cjac
∗
j =

m∑
j=1

bj(a− δ)2
+b
∗
j = 1A

Therefore, if we set d1, ..., dm2 ∈ A such that c1 = d1 = ... = dm , ...... , cm = d(m−1)m = ... = dm2 ,
the desired result follows.

After this slight digression, we are ready to exhibit the last two rather important results of this
section. Firstly, we show that all Cuntz semigroups associated to a tensor product of a unital
C∗-algebra with any UHF -algebra, are almost unperforated.

Lemma 1.2.24. Let B be a UHF algebra and D a unital C∗-algebra. Then, S(B ⊗D) is an almost
unperforated partially ordered abelian semigroup.

Proof. Set A = B ⊗ D a unital C∗-algebra. Then, A = lim−→ (An, ρn), where An = Mkn(D), and
ρn : Mkn(D)→Mkn+1(D) are unital ∗-homomorphisms, i.e kn | kn+1. Also, denote by λn : An → A

the canonical embeddings, whence ∪nλn(An) is dense in A. We aim to show that if k, k′ ∈ N,
x, y ∈ Mn(A)+, n ∈ N, such that k′ < k and k〈x〉 ≤ k′〈y〉, then 〈x〉 ≤ 〈y〉. Upon changing B to
Mn(B), we may assume that x, y ∈ A+.
Assume first that x, y ∈ λn0

(An0
), for some n0 ∈ N and take ε > 0. Then, using the observation

above, k〈x〉 ≤ k′〈y〉 implies that there is sequence (rj)j ⊆Mk,k′(A) such that

rj(y ⊗ 1k′)r
∗
j −→ x⊗ 1k

So, find j0 such that
∥∥rj0(y ⊗ 1k′)r

∗
j0
− x⊗ 1k

∥∥ < ε/2, and moreover by density of ∪nλn(An) in
A, find n ≥ n0 and r ∈Mk,k′(λn(An)) such that ‖r − rj0‖ < min{ε/4 ‖yr∗‖ , ε/4 ‖rj0y‖}. Then, we
get that,

‖r(y ⊗ 1k′)r
∗ − x⊗ 1k‖ =

∥∥r(y ⊗ 1k′)r
∗ − rj0(y ⊗ 1k′)r

∗
j0 + rj0(y ⊗ 1k′)r

∗
j0 − x⊗ 1k

∥∥
≤
∥∥r(y ⊗ 1k′)r

∗ − rj0(y ⊗ 1k′)r
∗
j0

∥∥+
∥∥rj0(y ⊗ 1k′)r

∗
j0 − x⊗ 1k

∥∥ < ε
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By Proposition 1.2.4, the above consideration implies that

fε(x⊗ 1k) = fε(x)⊗ 1k . r(y ⊗ 1k′)r
∗ . y ⊗ 1k′

in Mk(λn(An)), hence k〈fε(x)〉 ≤ k′〈y〉 in S(λn(An)). Furthermore, take m ≥ n, such that l =

km/kn ≥ ( 1
k′ −

1
k )−1, then dk′ ≤ l ≤ dk for some d ∈ N from which it follows that

l〈fε(x)〉 ≤ dk〈fε(x)〉 ≤ dk′〈y〉 ≤ l〈y〉

Thus, fε(x)⊗ 1l . y ⊗ 1l, which in turn means that fε(x) . y in λm(Am). Since ε was arbitrary
and fε(x) ∼ (x− ε)+

ε→0−−−→ x, we conclude that x . y.
For the general case, let x, y ∈ A+ and ε > 0. Again, k〈x〉 ≤ k′〈y〉, implies that x⊗1k . y⊗1k′

and by Proposition 1.2.10 there is δ > 0 and r ∈Mk,k′(A) such that

fε/4(x)⊗ 1k = r(fδ(y)⊗ 1k′)r
∗

Using once more the density of ∪nλn(An) in A, and the continuity of fε/2, fδ in the sense of
Lemma 1.2.11, we find n ∈ N and x′, y′ ∈ λn(An)+ such that

‖y − y′‖ < δ (1)

∥∥fε/2(x)− fε/2(x′)
∥∥ < 1/2 (2)

and ∥∥fε/4(x′)⊗ 1k − r(fδ(y′)⊗ 1k′)r
∗∥∥ < 1/2 (3)

Before continuing, let us note that for any ε > 0

f1/2(fε/2(t)) =


0, t ≤ 3ε/4

2(fε/2(t)− 1/2), 3ε/4 ≤ t ≤ ε
1, t ≥ ε

which clearly implies that fε(x) ≤ f1/2(fε/2(x)) for any x ∈ A+, and in a similar way, we also
get that fε/2(x) ≤ f1/2(fε/4(x)). So, using this observation and by applying Proposition 2.3 to
the inequality (3), it follows that

fε/2(x′)⊗ 1k ≤ f1/2(fε/4(x′)⊗ 1k) . r(fδ(y
′)⊗ 1k′)r

∗ . fδ(y
′)⊗ 1k′

Hence, from the first part of the proof, we obtain that

fε/2(x′) . fδ(y
′)

Now, Proposition 1.2.4 applied to inequalities (1) and (2), yields the following

fε(x) ≤ f1/2(fε/2(x)) . fε/2(x′) . fδ(y
′) . y

and since ε was arbitrary, we conclude that

x . y

as required.

At this point, we are ready to harvest the total goal of this section. The proof goes as follows.

Theorem 1.2.25. Let D be a simple, unital C∗-algebra and B a UHF algebra. Set A = B ⊗D, then

i) If x, y ∈M∞(A)+, y 6= 0 and d(〈x〉) < d(〈y〉) for all d ∈ LDF (A), then x . y.

ii) If p, q ∈ A⊗K, q 6= 0 are projections and τ(p) < τ(q) for all τ ∈ QT (A), then p . q.

Proof. i) Firstly, for ε > 0 and d ∈ DF (A), there is d ∈ LDF (A) by Proposition 1.2.19 satisfying
that

d(〈fε(x)〉) ≤ d(〈x〉) < d(〈y〉) ≤ d(〈y〉) (1)
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Now, we claim that 〈1A〉 is a stong order unit for S(A). To see this, let x ∈ Mn(A)+, then
x = z∗z for some z ∈Mn(A), and so x = z∗1nz. Thus, 〈x〉 ≤ 〈1n〉 = 〈1A⊕ 0n−1 + · · ·+ 0n−1⊕ 1A〉,
and since 0j ⊕ 1A ⊕ 0n−j−1 ∼ 1A and are orthogonal to each other, for each j, it follows that
〈1n〉 = n〈1A〉. Hence, 〈x〉 ≤ n〈1A〉, which proves the claim.
So, using that 〈1A〉 is a strong order unit for S(A), and since d(〈1A〉) = 1, for all d ∈ DF (A), we
get that any state on S(A) is proportional to some dimension function. Therefore, (1) holds for all
the states on S(A). Moreover, since A is simple and y ∈ A+, y 6= 0, there are x1, ..., xn ∈ A such
that 1A =

∑n
i xiyx

∗
i (see Exercise 4.9 in [20]), and because 〈xiyx∗i 〉 ≤ 〈y〉, for any i = 0, 1, ..., n,

we get that

〈1A〉 = 〈
n∑
i

xiyx
∗
i 〉 ≤ n〈y〉

But, for any n ∈ N, s ∈Mn(A)+, there is k ∈ N, such that 〈s〉 ≤ k〈1A〉, hence 〈s〉 ≤ kn〈y〉, which
shows that 〈y〉 is a strong order unit for S(A). Thus, due to Proposition 1.2.16 and Lemma 1.2.23,
it follows that 〈fε(x)〉 ≤ 〈y〉 or equivalently that fε(x) . y for all ε > 0, concluding that x . y,
as desired.
ii) Because each projection in A⊗K is equivalent to a projection in M∞(A), we may assume

that p, q ∈M∞(A). By Note 1.2.21 and Theorem 1.2.22, to each τ ∈ QT (A), corresponds a dτ ∈
LDF (A), defined by dt(〈x〉) = limε→0 τ(〈fε(x)〉) and for each d ∈ LDF (A) there is τ ∈ QT (A),
such that dτ = d. But, since for every projection p, and 0 ≤ ε < 1/2, fε(p) = p, we see that
dτ (〈p〉) = τ(〈p〉) which in turn shows that

d(〈p〉) < d(〈q〉), ∀ d ∈ LDF (A)

Hence, by (i) we obtain that p . q, and in view of Proposition 1.2.3, p . q in the von Neumann-
Murray sense, finalizing the proof.

1.3 Stable rank one C∗-algebras

In this section, we focus on the class of C∗-algebras having dense invertible group or equivalently,
C∗-algebras with stable rank one. After presenting some basic facts about approximation by
invertible elements and constructing the essential background, we move forward to show that the
tensor product of a simple, stably finite C∗-algebra with any UHF-algebra, has dense invertible
group, i.e has stable rank one. We start by shaping the setting that we are going to work with.
The material in this section is derived from [27].

Let A be a unital C∗-algebra, and denote by GL(A) and U(A) the group of invertible and
unitary elements in A, respectively. Let, A ⊆ B(H) be a faithful representation of A on some
separable Hilbert space H, then each x ∈ A has a polar decomposition x = u|x|, where u ∈ B(H)

is a partial isometry, and |x| = (x∗x)
1
2 . Moreover, set xε = u(|x| − ε)+(= (|x| − ε)+u

∗) and note
that xε ∈ A, since for any h ∈ |x|A|x|, uh ∈ A and (|x| − ε)+ ∈ |x|A|x|. Lastly, for x ∈ A, we set
α(x) = dist(x,GL(A)).
As a first result, we exhibit some natural obstructions, preventing x ∈ A from belonging to the

norm closure of GL(A).

Proposition 1.3.1. Let φ : A → B be a surjective ∗-homomorphism between unital C∗-algebras and
let x ∈ A, u ∈ B such that φ(x) = u. Then,
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i) If u ∈ GL(B), but u 6∈ φ(GL(A)), we get that α(x) ≥
∥∥u−1

∥∥−1

ii) If u is left (or right) invertible but not two sided invertible, then there is w ∈ B

such that wu = 1B(or uw = 1B) and α(x) ≥ ‖w‖−1
.

Proof. i) Suppose in contradiction, that there is z ∈ GL(A) such that

‖z − x‖ <
∥∥u−1

∥∥−1

Then, ∥∥1B − u−1φ(z)
∥∥ =

∥∥u−1(u− φ(z)
∥∥ ≤ ∥∥u−1

∥∥ ‖u− φ(z)‖ <
∥∥u−1

∥∥∥∥u−1
∥∥−1

= 1

Hence, u−1φ(z) ∈ GL0(B)), i.e u−1φ(z) belongs to the connected component of the identity in
GL(B), and we claim that u−1φ(z) ∈ φ(GL(A)).
To see this, let w = u−1φ(z), and take its polar decomposition w = v|w|, where v ∈ U(B) and

v ∼h w ∼h 1B . Hence, v ∈ φ(U0(A)), and so let v′ ∈ U0(A), such that φ(v′) = v. Now, it suffices
to find r ∈ GL(A), such that φ(r) = |w|, since then w = φ(v′r) and v′r ∈ GL(A). Since |w| is
self-adjoint, we find r′ ∈ As.a, such that φ(r′) = |w|. Moreover, |w| is positive and invertible,
implying that σ(|w|) ⊆ [λ1, λ2], for some 0 < λ1 ≤ λ2. Define a continuous map f : R→ R+, by

f(t) =


λ1, t ≤ λ1

t, λ1 ≤ t ≤ λ2

λ2, t ≥ λ2

and observe that σ(f(r′)) ⊆ [λ1, λ2]. Then,

φ(f(r′)) = f(φ(r′)) = f(|w|) = i(|w|) = |w|

where i : R+→ R+ is the identity map. Hence, |w| ∈ φ(GL(A)), which proves the claim.
So, u−1φ(z) = φ(r), for some r ∈ GL(A), which implies that u = φ(zr−1), where zr−1 ∈ GL(A),

reaching a contradiction.
ii) Suppose in contrary that there is z ∈ GL(A), such that

‖x− z‖ < ‖w‖−1

Then,
‖1B − wφ(z)‖ = ‖w(u− φ(z)‖ ≤ ‖w‖ ‖x− z‖ < ‖w‖ ‖w‖−1

= 1

Hence, wφ(z) ∈ GL(B), which in turn implies that w ∈ GL(B), having a contradiction. The case
of u being right invertible is identical.

Note 1.3.2. If A in the proposition above is simple, then the obstruction (i), cannot occur.
This is because, simplicity of A implies that φ is injective and therefore, there is no such u ∈
GL(B) \φ(GL(A)). Additionally, if A is also finite then there are no one sided invertibles, hence
the obstruction (ii) cannot occur as well. To see this, take a ∈ A be left invertible and find b ∈ A
such that ba = 1A. Since, (ba)∗ba is a self-adjoint element we have that 1A = (ba)∗ba ≤ ‖b‖2 a∗a,
so σ(a∗a) ⊆ [‖b‖−2

,∞), which in turn implies that a∗a is invertible. Set u = a(a∗a)−1/2, then
s∗s = 1A, and since A is finite, u is a unitary. But this clearly shows that a is invertible, since
a = u(a∗a)−1/2.

Now, for A unital C∗-algebra, denote GLn(A), the invertible group of Mn(A). Also, as previ-
ously, denote x⊗ 1n, the matrix (xij)ij ∈Mn(A), where xii = x and xij = 0, when i 6= j. Finally,
for each x ∈ A set

as(x) = lim sup
n

dist(x⊗ 1n, GLn(A))
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and under these considerations, we strive to show that the obstructions that keep a(x) away from
zero, keep as(x) away from zero as well.

Proposition 1.3.3. Let φ : A → B be a surjective ∗-homomorphism between unital C∗-algebras and
for x ∈ A, set φ(x) = u. Then,

i) If u ∈ GL(B) but [u] 6∈ Im(K1(φ)), then as(x) ≥
∥∥u−1

∥∥−1

ii) If u is left(or right) invertible but not two-sided invertible, then there is w ∈ B such that wu =

1B(or uw = 1B), and as(x) ≥ ‖w‖−1.

Proof. i) First note that φ induces a surjective ∗-homomorphism φ̃ : Mn(A) → Mn(B), for all
n ∈ N, satisfying that φ̃(x ⊗ 1n) = u ⊗ 1n. Now, assume that as(x) <

∥∥u−1
∥∥−1, then ∃ n ∈ N,

such that dist(x⊗ 1m, GLm(B)) <
∥∥u−1

∥∥−1, ∀ m ≥ n. Since,∥∥∥(u⊗ 1m)
−1
∥∥∥−1

=
∥∥u−1 ⊗ 1n

∥∥−1
=
∥∥u−1

∥∥−1

we employ Proposition 1.3.1, to find wm ∈ GLm(A), such that φ̃(wm) = u ⊗ 1m, for all m ≥
n. Set v = wn+1diag(1A, w

∗
n). Then, v ∈ GLn+1(A) and φ̃(v) = diag(u, 1n). But, in K1(A),

[diag(u, 1n] = [u], which shows that

[u] = [φ̃(v)] = K1(φ)(v)

fact that contradicts the assumption u 6∈ Im(K1(φ)).
ii) If u is left invertible, and w ∈ B such that wu = 1B , then u ⊗ 1n is left invertible and

(w ⊗ 1n)(u⊗ 1n) = 1n. Hence, again by Proposition 1.3.1 we get that

dist(x⊗ 1n, GLn(A)) ≥ ‖w‖−1

for all n ∈ N. Thus,
as(x) ≥ ‖w‖−1

as desired. The case of right invertibility is identical.

As already stated in Note 1.3.2, such obstructions can occur but not always, thus it is natural
to ask under which conditions the invertible group can be dense. In the following lines, we will
try to prove that for a unital C∗-algebra A, the condition as(x) = 0, for all x ∈Mn(A) and for
all n ∈ N is necessary and sufficient for having dense invertible group in any tensor product C∗-
algebra A⊗B, where B is a UHF-algebra. For this purpose, as usual, we need some preliminary
work.

Lemma 1.3.4. For any δ > 0 the sets

Γ(x, δ) = {n ∈ N : dist(x⊗ 1n, GLn(A)) ≤ δ}

Γ0(x, δ) = {n ∈ N : dist(x⊗ 1n, GLn(A)) < δ}

are additive.

Proof. Let n1, n2 ∈ Γ0(x, δ) and find z1 ∈ GLn1
(A), z2 ∈ GLn2

(A) such that

‖x⊗ 1n1 − z1‖ < δ

and
‖x⊗ 1n2 − z2‖ < δ

Now, take z = diag(z1, z2) ∈ GLn1+n2
(A), and we get that

‖x⊗ 1n1+n2 − z‖ = ‖diag(x⊗ 1n1 − z1, x⊗ 1n2 − z2)‖
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= max{‖x⊗ 1n1
− z1‖ , ‖x⊗ 1n2

− z2‖} < δ

hence, n1 + n2 ∈ Γ0(x, δ). But, since Γ(x, δ) = ∩
δ′>δ

Γ0(x, δ′), it follows that Γ(x, δ) is additive as

well.

Lemma 1.3.5. For any Γ additive subset of N, there is k ∈ N unique, such that Γ ⊆ kN. Moreover,
there is n0 ∈ N such that

Γ ∩ {n ∈ N : n ≥ n0} = kN ∩ {n ∈ N : n ≥ n0}

Proof. Firstly, it is obvious that there is always k ∈ N such that Γ ⊆ kN, since if there is common
divisor of all the elements in Γ, say k, then Γ ⊆ kN, where if Γ contains coprime elements then
Γ ⊆ N. Moreover, suppose that there are k1, k2 ∈ N, such that Γ ⊆ k1N and Γ ⊆ k2N, where
k1, k2 are coprime. Then for any n ∈ Γ, k1 | n and k2 | n, hence k1k2 | n, which implies that
Γ ⊆ k1k2N. Since we can have only finitely many common divisors of the elements in Γ, there
is always a maximum k ∈ N such that Γ ⊆ kN. If k1, k2 ∈ N such that Γ ⊆ k1N, Γ ⊆ k2N and
k1, k2 are not coprime, then the conclusion is straightforward.
Now, suppose that there exist coprime elements in Γ, say aj1 , aj2 , ...ajm , then by Bezout’s

Lemma, there are nj1 , nj2 , ..., njm ∈ Z, such that
m∑
i=1

ajinji = 1

Moreover, suppose that a1 is the smallest element in Γ and set b = a1

∑m
i=1 aji |nji | ∈ Γ. Then,

b+1 =
∑m
i=1 aji(a1|nji |+nji) ∈ Γ and in fact b+k =

∑m
i=1 aji(a1|nji |+knji) ∈ Γ, for all k = 1, ..., a1.

Using this fact, it is now easily verified that there exists n0 ∈ N such that Γ coincides with N
for all n ≥ n0. On the other hand, if the greatest common divisor of the elements in Γ is k 6= 1,
then consider the subset Γ′ = {a/k : a ∈ Γ}. Since the greatest common divisor of the elements
in Γ′ is 1, by the argument above we find n0 ∈ N such that Γ′ coincides with N for all n ≥ n0.
Hence Γ = kΓ′ coincides with with kN for all n ≥ kn0, as desired.

Proposition 1.3.6. Let A be a unital C∗-algebra, and x ∈ A. Then,
i) as(x) ≤ a(x)

ii) There is k ∈ N, k ≥ 2, such that dist(x⊗ 1n, GLn(A)) ≥ as(x), ∀n ∈ N \ kN

Proof. i) Observe that 1 ∈ Γ(x, a(x)), which in turn implies that Γ(x, a(x)) = N, thus as(x) ≤ a(x).
ii) Consider the additive sets Γ(x, as(x)− 1

n ), Γ(x, as(x)), and take the corresponding kn, k ∈ N
by Lemma 6.5. Since,

Γ(x, as(x)− 1

m
) ⊆ Γ(x, as(x)− 1

n
)

whenever m ≤ n, the sequence kn is decreasing, and so for large n, kn = k. Moreover, 1 6∈
Γ(x, as(x)− 1

n ), because if so, then a(x) < as(x) which contradicts (i), thus k ≥ 2 as desired.

Since the result that we are after incorporates UHF algebras, it is logical to develop some
arguments about inductive limits of C∗-algebras, too. The following proposition fills this gap.

Proposition 1.3.7. Let A = lim−→ An, where An are unital C∗-algebras, with unital, injective connecting
∗-homomorphisms φm,n : An → Am. Then, GL(A) is dense in A if, and only if, for each n ∈ N and
x ∈ An,

lim
k→∞

dist(φn+k,n(x), GL(An+k)) = 0 (∗)
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Proof. Let λn : An → A be the canonical embeddings, satisfying λn = λn+k◦φn+k,n, for all n, k ∈ N
and ∪nλn(An) dense in A. Observe that λ1(1A1) = λn(1An), for all n ∈ N, implies that λn are
unital for all n ∈ N, which in turn shows that λn(GL(An)) ⊆ GL(A), ∀n ∈ N. Let n ∈ N, x ∈ An
and take any k ∈ N and y ∈ GL(An+k). Then,

‖φn+k,n(x)− y‖ = ‖λn+k ◦ φn+k,n(x)− λn+k(y)‖ ≥ dist(λn+k ◦ φn+k,n(x), λn+k(GL(An+k))

≥ dist(λn+k ◦ φn+k,n(x), GL(A)) = dist(λn(x), GL(A))

Since y was arbitrary, we get that

dist(φn+k,n(x), GL(An+k)) ≥ dist(λn(x), GL(A)), ∀k ∈ N

So, if (∗) holds, then λn(x) ∈ GL(A), for all n ∈ N and x ∈ An i.e λn(An) ⊆ GL(A), for all
n ∈ N, and so by density of ∪nλn(An) it follows that A = GL(A).
On the other hand, suppose that GL(A) is dense in A. For ε > 0, take any n ∈ N and

x ∈ An, and find z ∈ GL(A) such that ‖λn(x)− z‖ < ε/2. Also, by density of ∪nλn(An), there is
m ∈ N and w ∈ Am such that ‖λm(w)− z‖ < min{

∥∥z−1
∥∥−1

, ε/2}. Hence, λm(w) is invertible and
since λm is injective we have that 0 6∈ σ(λm(w)) = σ(w), showing that w is invertible as well.
Therefore, for k ≥ n,m, we get

dist(φk,n(x), GL(Ak)) ≤ ‖φk,n(x)− φk,m(w)‖ = ‖λk(φk,n(x)− φk,m(w))‖

= ‖λn(x)− λm(w)‖ < ε

showing that (∗) holds.

Theorem 1.3.8. Let A be a unital C∗-algebra. Then, as(x) = 0 for all n ∈ N and x ∈Mn(A) if and
only if GL(A⊗B) is dense in A⊗B for any B UHF-algebra.

Proof. As B is a UHF-algebra is isomorphic to some lim−→ Bl, where Bl = Mnl(C), with connecting
∗-homomorphisms φm,l : Bl → Bm, given by φ(x) = x ⊗ 1nm,l , nm,l = nm/nl. So, for A unital
C∗-algebra, A ⊗ B ∼= lim−→ A ⊗ Bl, where A ⊗ Bl = Mnl(A), and connecting ∗-homomorphisms,
ψm,l : A⊗Bl → A⊗Bm, which are given by ψm,l(x) = x⊗ 1nm,l .

Now, assume that as(x) = 0 for any n ∈ N and x ∈ Mn(A). Then, in fact as(x) = 0 for all
x ∈Mnm(A), and m ∈ N. Hence,

dist(ψm,l(x), GL(A⊗Bm)) = dist(x⊗ 1nm,l , GLnm,l(A⊗Bl))
b→∞−−−→ 0

which shows that GL(A⊗B) is dense in A⊗B, by Proposition 1.3.7.
On the other hand, assume that as(x) > 0, for some x ∈ Mn(A) and n ∈ N. From Proposi-

tion 1.3.6, we find k ∈ N, k ≥ 2, such that

dist(x⊗ 1l, GLl(A)) ≥ as(x) > 0, ∀l ∈ N \ kN

Now, choose p ∈ N, p ≥ 2, such that pm ∈ N \ kN, for all m ∈ N and set nl = npl−1. Then, the
corresponding UHF-algebra lim−→ Bl is given by Bl = Mnl(C), with connecting ∗-homomorphisms
φm,l : Bl → Bm, defined as x 7→ x ⊗ 1nm,l , nm,l = nm/nl. As in the first part of the proof, we
obtain a unital C∗-algebra A⊗B = lim−→ A⊗Bl, with connecting ∗-homomorphisms ψm,l : A⊗Bl →
A ⊗ Bm, given by ψm,l(x) = x ⊗ 1nm,l . Since pm ∈ N \ kN, for all m ∈ N and nm,1 = pm−1, we
see that

dist(ψm,1(x), GL(A⊗Bm)) = dist(x⊗ 1pm−1 , GLpm−1(Mn(A))) ≥ as(x) > 0

Thus, again by Proposition 1.3.7, we conclude that GL(A⊗B) is not dense in A⊗B, as required.
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Before embarking for the last portion of this section and proving our main goal, we briefly
present the notion of two-sided zero divisors and we present a theorem that gives an affirmative
answer to the question: If A is a simple, unital C∗-algebra and x is a two-sided zero divisor
can we find m0 such that for all m ≥ m0, u(x ⊗ 1m) is nilpotent, i.e ∃ n ∈ N such that
[u(x ⊗ 1m)]n = 0, where u ∈ Um(A). The proof of this result is ommited and the reader is
encouraged to see Theorem 6.4 in [28] for a detailed exposition.

Definition 1.3.9. Let A be a C∗-algebra. Then, an element x ∈ A is called two sided zero divisor
if ax = 0 = xb for some non zero elements a, b ∈ A. The set of all two-sided zero divisors in A is
denoted by ZD(A).

Proposition 1.3.10. For each unital C∗-algebra A, ZD(A) consists of all the elements in A that are
not one-sided invertible.

Proof. Firstly, let x ∈ ZD(A) and suppose that it is left invertible. Then, there are y ∈ A and
0 6= b ∈ A such that yxb = 0 or b = 0, while the case of right invertibility is identical. Hence there
is no one-sided invertible element in ZD(A). Now, if the set of one-sided invertible elements is
open, then it would be disjoint from ZD(A), as required. To show that the set of one-sided
invertible elements is open, let x ∈ A be left invertible and find y ∈ A such that yx = 1A.
Then, set

Ux = {z ∈ A : ‖z − x‖ < ‖y‖−1}

and if we show that Ux is contained in the set of left invertible elements, we are done. But, if
z ∈ Ux, then we get

‖z − x‖ < ‖y‖−1
=⇒ ‖y‖ ‖z − x‖ < 1 =⇒ ‖y(z − x)‖ < 1

=⇒ ‖yz − 1A‖ < 1

hence, yz is invertible, which in turn means that z is left invertible.
On the other hand, take x ∈ A to be neither left nor right invertible. Then, the same holds

for |x| and |x∗|, and for ε > 0 let g : R+ → R+ be a continuous function, such that g(0) = 1 and
supp(g) ⊆ [0, ε]. Furthermore, set a = g(|x∗|) and b = g(|x|) and see that axε = 0 = xεb. Since
0 ∈ σ(|x|) and 0 ∈ σ(|x∗|), a and b are non zero, hence xε ∈ ZD(A). But, owing to the fact that
‖xε − x‖ < ε, we obtain that x ∈ ZD(A), as desired.

Theorem 1.3.11. Let A be a unital, simple C∗-algebra, and x ∈ ZD(A). Then, there exists m0 ∈ N
such that for all m ≥ m0, u(x ⊗ 1m) is nilpotent, for some u ∈ Um(A). In particular, (x ⊗ 1m) ∈
GLm(A), for m ≥ m0.

Corollary 1.3.12. i) Let A be a simple, finite C∗-algebra, then as(x) = 0 for all x ∈ A.

ii) Let A be an infinite, simple C∗-algebra, then as(x) > 0 if and only if x is one-sided but not
two-sided invertible.

Proof. i) By Theorem 1.3.11, as(x) = 0, for all x ∈ ZD(A). Moreover, since the map x 7→ as(x)

is continuous, as(x) = 0 for all x ∈ ZD(A), and by Proposition 3.10, it follows that as(x) = 0,
for all non one-sided invertible elements. But, A is finite, therefore has no one-sided invertible
elements, concluding that as(x) = 0, for all x ∈ A.
ii) If as(x) > 0, then by the same reasoning as in (i), x 6∈ ZD(A), hence by Proposition 1.3.10,

x is one-sided invertible. On the other hand, if x is one-sided invertible, then by taking the
identity map on A and applying Proposition 1.3.3 (ii), we get that as(x) > 0, as desired.
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Now, we have reached the point where the main goal of this section, can be immediately
deduced by combining aforementioned results.

Corollary 1.3.13. If A is a simple, stably finite C∗-algebra, and B any UHF-algebra, then GL(A⊗B)

is dense in A⊗B.

Proof. Since Mn(A) is a simple and finite C∗-algebra, for all n ∈ N, we get by Corollary 1.3.12
that as(x) = 0, for any x ∈ Mn(A) and n ∈ N. Therefore, by Theorem 1.3.8, we conclude that
GL(A⊗B) is dense in A⊗B, for any B UHF-algebra.

1.4 Separability Issues

In the following of this project, a lot of the C∗-algebras that will be used, are non-separable.
Hence, we need to demonstrate a way of addressing this issue. In this section, we are going to
present some general methods for reducing problems to the separable setting. The main source
of this section is [30]

Definition 1.4.1 ([2], Section II.8.5). A property (P) of C∗-algebras is called separably inheritable if
i) whenever A is a C∗-algebra satisfying (P) and A0 is a separable C∗-subalgebra of A, there is a
separable C∗-subalgebra Â of A which satisfies (P) and contains A0

ii) whenever A1 ↪→ A2 ↪→ A3 ↪→ · · · is an inductive system of separable C∗-algebras with injective
connecting maps, if each An satisfies (P), then lim−→ An satisfies (P)

Also, a slightly different definition of separable inheritability will be useful.

Definition 1.4.2. Let (P) be a property of separable C∗-algebras. A C∗-algebra A separably satisfies
(P) if whenever A0 is a separable C∗-subalgebra of A, there is a separable C∗-subalgebra Â of A which
satisfies (P) and contains A0.

Note 1.4.3. If (P) is a separably inheritable property and A is a C∗-algebra satifying (P),
then A separably satifies (P). Moreover, if (P) is a property for separable C∗-algebras, which is
preserved under inductive limits with injective connecting maps, then separably (P) is a separably
inheritable property.

Proposition 1.4.4. Let (Pk) be a countable family of properties of separable C∗-algebras preserved un-
der sequential inductive limits with injective connecting maps. If A is a C∗-algebra separably satisfying
(Pk) for each i, then A separably satisfies the meet of the (Pk).

Proof. Let B be a separable C∗-subalgebra of A and using that A separably satisfies Pk, for all
k, find a sequence

B ⊆ A1,1 ⊆ A2,1 ⊆ A2,2 ⊆ A3,1 ⊆ · · · ⊆ An,1 ⊆ · · · ⊆ An,n ⊆ An+1,1 ⊆ · · ·

where, An,k are C∗-subalgebras of A satisfying Pk. Now, set

Γ = ∪k ∪n≥k An,k
then, Γ is a separable C∗-subalgebra of A and observe that Γ = ∪n≥kAn,k for any k. Thus, Γ

can be seen as the inductive limit, lim−→n≥k
An,k for any k, with the corresponding inclusions as

connecting maps. But, since the properties (Pk) respect inductive limits with injective connecting
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maps, we get that Γ satisfies (Pk) for all k, hence satisfies also the meet of all (Pk). As B was
an arbitrary C∗-subalgebra of A, we conclude that A separably satisfies the meet of all Pk.

Note 1.4.5. As it might be already evident, in the exact same fashion, it is shown that if (Pk)

is a countable sequence of separably inheritable properties, then the meet of (Pk) is separably
inheritable as well.

Many properties of C∗-algebras are sebarably inheritable such as exactness, nuclearity, stable
rank one, among others. Below, we show that "stable rank one" is a separably inheritable
property.

Proposition 1.4.6 ([2], Proposition II.8.5.4). The property "A has stable rank one" is separably
inheritable.

Proof. Assume that A is a unital C∗-algebra, while the case of non-unitality is treated in the
same way. Suppose that A has stable rank one and let B ⊆ A be a separable C∗-subalgebra.
Let {xn : n ∈ N} be countable dense in B, and for each xn, find (xnk)k ⊂ GL(A) converging to
xn. If A1 is the C∗-subalgebra of A generated by (xnk)k for all n ∈ N, then B ⊆ A1 and A1

is separable. In fact, B is contained in the norm closure of GL(A1). Now, proceed in the same
way to find A2 separable C∗-subalgebra of A containing A1 and such that the norm closure of
GL(A2) contains A1. Continuing inductively, a sequence (An) of separable C∗-subalgebras of A
is obtained satisfying the above conditions. Set Γ = ∪nAn, then Γ is a separable C∗-subalgebra
of A and we claim that has stable rank one. But this is evident, because if x ∈ ∪nAn, then
x ∈ An0

for some n0 ∈ N, hence x ∈ GL(An0+1) ⊆ GL(Γ), which in turn shows Γ ⊆ GL(Γ), and
the conclusion follows.
Finally, we argue that the property "stable rank one" is preserved under inductive limits with

injective connecting maps. Let
A1 ↪→ A2 ↪→ A3

·
↪−→ ··

where An is a stable rank one C∗-algebra, for each n ∈ N and let A be its inductive limit. Also,
let λn : An → A be the ∗- homomorphisms, such that A = ∪nλn(An). Then for x ∈ A and ε > 0,
there is n0 ∈ N and xn0

∈ An0
, such that

‖λn0
(xn0

)− x‖ < ε/2

Moreover, find y ∈ GL(An0) such that ‖λn0(xn0)− λn0(y)‖ < ε/2, then we have that λn0(y) ∈
GL(A) and

‖x− λn0
(y)‖ ≤ ‖x− λn0

(xn0
)‖+ ‖λn0

(xn0
)− λn0

(y)‖ < ε

Since ε was arbitrary, GL(A) is dense A as required.

As short exact sequences of C∗-algebras have central role in chapter 3, the following result will
be crucial. Roughly speaking, the proposition below provides a way to pass from a non-separable
short exact sequence, whose parts separably satisfying some property, to a separable one, whose
parts satisfy the same property.

Proposition 1.4.7. Consider the short exact sequence of C∗-algebras

0 I E D 0
j q

and suppose that for each X ∈ {I, E,D}, (PX) is a property of separable C∗-algebras preserved under
inductive limits with injective connecting maps and that X separably satisfies (PX). If for each X ∈
{I, E,D}, a separable C∗-subalgebra X0 is given, then there exist X̂ separable C∗-subalgebra of X that
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contains X0, satisfies (PX) and there is the following commutative diagram

0 Î Ê D̂ 0

0 I E D 0
j q

where the vertical rows are the inclusions.

Proof. For X ∈ {I, E,D}, and X0 separable C∗-subalgebra of X, we construct an increasing
sequence (Xn) of separable C∗-subalgebras of X, that contain X0, satisfy (PX) and

Dn ⊆ q(En) ⊆ Dn+1, In−1 ⊆ j−1(En) ⊆ In (1)

Then, X̂ = ∪nXn, is a separable C∗-subalgebra of X, contains X0 and satisfies (PX) since it
can be seen as the inductive limit of the sequence X1 ↪→ X2 ↪→ X3 ↪→ · · ·. Moreover, since
∗-homomorphisms always have closed range ([34], Theorem 11.1), it is straightforward to see that
q(Ê) = D̂, and j−1(Ê) = Î, which immediately show that the first row of the diagram above is
indeed a short exact sequence, and in turn that the whole diagram is commutative.
We construct the desired sequence inductively. Assume that Xn−1, n ≥ 1 has been already

constructed, and we procceed to show that there exist Xn, satisfying all the aforementioned
conditions. Firstly, consider the C∗-algebra generated by q(En−1), Dn−1. This C∗-algebra is a
separable C∗-subalgebra of D, hence there exists Dn separable C∗-subalgebra of D, containing
q(En−1), Dn−1 and satisfying (PD). Let Tn be the countable dense subset of Dn, and find Sn ⊂ E
countable such that q(Sn) = Tn. Then, consider the C∗-algebra generated by j(In−1), En−1 and
Sn, which is a separable C∗-subalgebra of E, thus there is En separable C∗-subalgebra of E,
containing j(In−1), En−1 and Sn, and satisfying (PE). Now, since j is injective, j(In−1) ⊆ En

implies that In−1 ⊆ j−1(En), and since q has closed range, Tn dense in Dn and Tn = q(Sn) ⊆
q(En), we obtain that Dn ⊆ q(En). Finally, as j−1(En) is a separable C∗-subalgebra of I, we
find In separable C∗-subalgebra of I, containing j−1(En) and satisfying (PI).
We have constructed In, En, Dn separable C∗-subalgebras of I, E and D, respectively, such

that all the required conditions are satisfied, hence by induction the proof is finished.

One more useful observation is that the properties (P) and separably (P) tend to have the
same permanence properties. Here, we emphasize on the case of ideals, quotients and extensions
(see Definition 2.4.1).

Corollary 1.4.8. Let (P ) be a property for separable C∗-algebras, preserved under inducive limits
with injective connecting maps. If (P ) is preserved by ideals, quotients or extensions of separable
C∗-algebras, then separably (P) has the same permanennce properties among all C∗-algebras.

Proof. we consider first the case of extensions. Let A be a C∗-algebra, I C A be a closed to
sided ideal and A0 a separable C∗-subalgebra of A. Moreover, suppose that I and A/I separably
satisfy (P ), where (P ) a property given by hypothesis, and we aim to show that A separably
satisfies (P ). By the previous proposition, there are Î , Â,Γ, separable C∗-subalgebras of I, A and
A/I respectively, where Î ,Γ satisfy (P), A0 ⊆ Â, and the following diagram with inclusions as
vertical maps, commutes

0 Î Â Γ 0

0 I A A/I 0
j q

Since, (P ) is preserved by extensions, Â satisfies (P ), which in turn shows that A separably
satisfies (P ).

29



Now, the case of ideals and quotients is treated similarly, by employing again the commutative
diagram given in Proposition 1.4.7. Therefore, the proof is omitted.

Another instance of similar behaviour between separably (P ) and (P ), can be found in the
case of hereditary subalgebras. Since this class of subalgebras has its own particular interest, we
first prove some useful facts about it, before establishing the desired permanence property. For
the shake of completion we start by the definition.

Definition 1.4.9. A C∗-subalgebra B of a C∗-algebra A is said to be hereditary, if whenever a ∈ A+,
b ∈ B+, such that a ≤ b, then a ∈ B

Note 1.4.10. Observe that if A is a unital C∗-algebra and p ∈ A is a projection, then pAp is a
hereditary subalgebra. Fisrtly, pAp is a C∗-subalgebra of A, and let a ∈ A+, pbp ∈ (pAp)+, such
that a ≤ pbp. Then, 0 ≤ (1−p)a(1−p) ≤ (1−p)pbp(1−p) = 0, which implies that

∥∥a1/2(1− p)
∥∥2

= 0

and in turn that a(1− p) = 0. Hence, a = pap ∈ pAp

Theorem 1.4.11 ([22], Theorem 3.2.1). Let A be a unital C∗-algebra. Then,
i) If I is a closed left ideal in a unital C∗-algebra A, then B = I ∩ I∗ is a hereditary subalgebra of

A. Moreover, the map
I 7→ I ∩ I∗

from the closed left ideals in A, to the hereditary subalgebras of A, is a bijection.

ii) If I1, I2 closed left ideals in A, then I1 ⊆ I2 if and only if I1 ∩ I∗1 ⊆ I2 ∩ I∗2

iii) If B is a hereditary subalgebra of A, then the set

I(B) = {a ∈ A : a∗a ∈ B}

is the unique closed left ideal corresponding to B.

Proof. i) Firstly, B = I ∩ I∗ is clearly a C∗-subalgebra of A, so let a ∈ A+ and b ∈ B+ such
that a ≤ b. Since I is a closed left ideal , we can find an approximate unit (uλ)λ, satisfying
x = limλ xuλ, for all x ∈ I. Now, by the inequality, 0 ≤ (1 − uλ)a(1 − uλ) ≤ (1 − uλ)b(1 − uλ),
we get that

∥∥a1/2 − a1/2uλ
∥∥2

= ‖(1− uλ)a(1− uλ)‖ ≤ ‖(1− uλ)b(1− uλ)‖ ≤ ‖b− buλ‖. Hence,
a1/2 = lim a1/2uλ, implies that a1/2 ∈ I, and so a ∈ B.

ii) If I1 ⊆ I2, then also I∗1 ⊆ I∗2 , hence I1 ∩ I∗1 ⊆ I2 ∩ I∗2 . For the other direction, suppose that
I1 ∩ I∗1 ⊆ I2 ∩ I∗2 , and take a ∈ I1. As a C∗-algebra, I1 ∩ I∗1 admits an approximate unit, say
(uλ)λ, and observe that

lim
λ
‖a− auλ‖2 = lim

λ
‖(1− uλ)a∗a(1− uλ)‖ ≤ lim

λ
‖a∗a(1− uλ)‖ = 0

since a∗a ∈ I1 ∩ I∗1 . Hence, a = limλ auλ, and using that uλ ∈ I1 ∩ I∗1 ⊆ I2, it follows, auλ ∈ I2,
but I2 is closed, concluding that a ∈ I2, as desired.

iii) Let a, b ∈ I(B), then (a + b)∗(a + b) ≤ (a + b)∗(a + b) + (a − b)∗(a − b) = 2a∗a + 2b∗b ∈ B,
but B is hereditary subalgebra, hence (a + b)∗(a + b) ∈ B, so (a + b) ∈ I(B). Also, for x ∈ A,
a ∈ I(B), we have that (xa)∗(xa) = a∗x∗xa ≤ ‖x‖2 a∗a ∈ B, thus xa ∈ I(B). Moreover, I(B) is
obviously closed under multiplication by scalars, and is closed since B is closed, concluding that
I(B) is a closed left ideal in A.
To show that, B = I(B)∗ ∩ I(B), first consider an element b ∈ B, then b∗b ∈ B, hence

B ⊆ I(B), and similarly B = B∗ ⊆ I(B)∗, so B ⊆ I(B)∗ ∩ I(B). If 0 ≤ b ∈ I(B)∗ ∩ I(B), then
b2 = b∗b ∈ B, and by applying continuous functional calculus with f(t) = t1/2 to b2, we get that
b ∈ B. Since, I(B)∗ ∩ I(B) is spanned by its positive elements, we get that I(B)∗ ∩ I(B) ⊆ B,
hence B = I(B)∗ ∩ I(B).
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Note 1.4.12. Actually, in the hypothesis of the theorem above, the condition for A to be unital
can be lifted, and instead work with the unitization Ã of A. This detail does not change anything
in the proof process.

As an easy consequence of Theorem 1.4.11, we can now harvest the following rather useful
theorem, which provides a versatile criterion for a C∗-subalgebra to be hereditary.

Theorem 1.4.13 ([22], Theorem 3.2.2). Let B be a C∗-subalgebra of a C∗-algebra A. Then B is
hereditary if and only if bab′ ∈ B, for any b, b′ ∈ B and a ∈ A

Proof. Suppose first that B is hereditary and take a ∈ A and b, b′ ∈ B. If I(B) is the (unique)
left closed ideal in A corresponding to B, then b, b′ ∈ I(B) ∩ I(B)∗, so bab′ ∈ I(B) ∩ I(B)∗ = B.
On the other hand, suppose that for any b, b′ ∈ B and a ∈ A, bab′ ∈ B. Take a ∈ A+ and

b ∈ B+ such that a ≤ b and let (uλ)λ to be an approximate unit for B. Then, (1Ã − uλ)a(1Ã −
uλ) ≤ (1Ã−uλ)b(1Ã−uλ) and so,

∥∥a1/2 − a1/2uλ
∥∥ ≤ ∥∥b1/2 − b1/2uλ∥∥ −→ 0. Thus, a1/2 = limλ a

1/2uλ,
and therefore, a = limλ uλauλ. But, uλauλ ∈ B by hypothesis and B is closed, hence a ∈ B,
which implies that B is hereditary.

Proposition 1.4.14. If (P ) is a property for separable C∗-algebras preserved by hereditary subalgebras,
then separably (P ) is preserved by hereditary subalgebras as well.

Proof. Let A be a C∗-algebra and B ⊂ A a hereditary subalgebra. Suppose that A separably
satisfies (P ) and let B0 ⊂ B be a separable subalgebra. Now, find Â ⊂ A separable subalgebra
satisfying (P ) and containing B0. Set B̂ = B0ÂB0. Then, B̂ is clearly a separable C∗-subalgebra
of A and if a ∈ Â, b1xb′1, b2yb′2 ∈ B̂, we see that b1xb′1ab2yb′2 ∈ B̂, since xb′1ab2y ∈ Â, hence by
Theorem 1.4.13, B̂ is a hereditary subalgebra of Â.
Furthermore, since B is a hereditary subalgebra of A, using Theorem 1.4.13, for any a ∈ Â ⊆ A

and b, b′ ∈ B0 ⊆ B, it follows that bab′ ∈ B, hence B0ÂB0 ⊆ B.
Finally, let b ∈ B+

0 , then b = b1/3b1/3b1/3 ∈ B̂, thus B+
0 ⊆ B̂. Since B0 is a C∗-algebra, it is

spanned by its positive elements, hence B0 ⊆ B̂.
So, by combining these three facts about B̂ and using that the property (P ) passes to hered-

itary subalgebras, we conclude that separably (P ) is preserved by hereditary subalgebras, as
desired.

We end this section by proving one lemma and one proposition that combine facts from the
section devoted to strongly self-absorbing C∗-algebras and the present section. Both results will
be critical in the process of this project.

Lemma 1.4.15. For any D separable, unital, strongly self-absorbing C∗-algebra a unital C∗-algebra
A, is separably D-stable iff for any ε > 0, F ⊂ A, G ⊂ D finite sets there is a u.c.p map φ : D → A

satisfying the following

‖φ(dd′)− φ(d′d)‖ < ε, ‖aφ(d)− φ(d)a‖ < ε (∗)

for every d, d′ ∈ D, a ∈ A.

Proof. For the fisrt implication, let ε > 0 and F ⊂ A, G ⊂ D finite sets, and denote by A0 the
C∗-algebra generated by 1A anf F . Since A is separably D-stable, there is a unital, separable, D-
stable C∗-subalgebra of A, say Â, such that A0 ⊆ Â. Since Â is D-stable, Theorem 1.1.13 tells us
that there is a unital embedding ψ : D → L (A )∩A′, while nuclearity of D (see Theorem 1.1.10)
allows to employ Choi-Effros Lifting Theorem, to get a u.c.p map φ̂ : D →

∏
Â, lifting ψ. Now,

consider the u.c.p maps φn : D → Â, defined as φ̂(d) = (φn(d))n and observe that π ◦ φ̂(dd′) =
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π ◦ φ̂(d′d) and π(φ̂(d)a) = π(aφ̂(d)), where π :
∏
Â→

∏
Â/
∑
Â the quotient map, and d, d′ ∈ D,

a ∈ Â. Hence,
lim
n
‖φn(dd′)− φ(d′d)‖ = lim

n
‖aφn(d)− φn(d)a‖ = 0

So, if we set φ = φn for sufficiently large n, the first direction follows.
Now, suppose that the conditions (∗) hold and let A0 be a separable, unital C∗-subalgebra of

A. Since, A0 and D separable, we can find increasing sequences of finite subsets (F0,n)n and
(Gn)n, whose union is dense in A0 and D, respectively. Using hypothesis, there is a u.c.p map
φ0,n : D → A, for each n, satisfying

‖φ0,n(dd′)− φ0,n(d′d)‖ < 1/n, ‖aφ0,n(d)− φ0,n(d)a‖ < 1/n

for all d, d′ ∈ Gn, a ∈ F0,n. If we denote by A1 the C∗-algebra generated by A0 and φ0,n(D), for
each n ∈ N, then A1 is unital and separable C∗-algebra, since A0 and D are unital and separable.
Now, following the same procedure, we construct an increasing sequence (Ak)k of unital, separable
C∗-subalgebras of A, where for each k there is a sequence of u.c.p maps φk,n : D → A satisfying

lim
n
‖φk,n(dd′)− φk,n(d′d)‖ = 0 = lim

n
‖aφk,n(d)− φk,n(d)a‖

for all d, d′ ∈ D, a ∈ Ak. Denote by Â the separable, unital C∗-subalgebra of A, defined as the
closed union of all Ak and note that for sufficiently large k, we can pick u.c.p maps from the
sequence (φk,n)k,n, to construct a new sequence ψm : A→ Â of u.c.p maps satisfying

lim
m
‖ψm(dd′)− ψm(d′d)‖ = 0 = lim

m
‖aψm(d)− ψm(d)a‖

for all d, d′ ∈ D, a ∈ Â. So, if ψ : D →
∏
Â is the u.c.p map defined by ψ(d) = (ψn(d))n, we get

that π ◦ ψ is a ∗-homomorphism from D into
∏
Â/
∑
Â whose image commutes with Â. Thus,

π ◦ ψ : D → Q(Â) ∩ Â′, is a ∗- homomorphism, and by Theorem 1.1.13, we obtain that Â is
D-stable. Since A0 ⊆ Â, and Â separable, it follows that A is separably D-stable, as desired.

Proposition 1.4.16. If D is a strongly self-absorbing C∗-algebra then, hereditary subalgebras, quo-
tients and extensions of separably D-stable C∗-algebras, are separably D-stable. Moreover, l∞-products
and ultraproducts of unital, separably D-stable C∗-algebras, are separably D-stable.

Proof. From Lemma 1.1.16, Lemma 1.1.18 and Theorem 1.1.20, we know that D-stability is pre-
served by hereditary subalgebras, quotients and extensions. Also, by Lemma 1.1.19, D-stability is
preserved by inductive limits, and so we can apply Corollary 1.4.8 and Proposition 1.4.14, showing
that separably D-stability is preserved by hereditary subalgebras, quotients and extensions.
Now, let (Am)m be a family of unital, separably D-stable C∗-algebras, and take ε > 0, and

F ⊂
∏
mAm, G ⊆ D finite sets. Then, F = {(am)1

m, (am)2
m, ..., (am)km}, for some k ∈ N and

consider the corresponding finite sets in Am

Fm = {a1
m, a

2
m, ..., a

k
m}, m ∈ N

Since, for each m ∈ N, Am is D-stable, by the previous lemma we find (φmn )n : D → Am sequence
of u.c.p maps satisfying

‖φmn (dd′)− φmn (d′d)‖ n→∞−−−−→ 0, ‖aφmn (d)− φmn (d)a‖ n→∞−−−−→ 0

for all d, d′ ∈ G, a ∈ Fm m ∈ N. Next, define the u.c.p maps Φn : D →
∏
mAm by,

Φn(d) = (φ1
n(d), φ2

n(d), ...)

It follows that,
‖Φn(dd′)− Φn(d′d)‖ = sup

m
‖φmn (dd′)− φmn (d′d)‖ n→∞−−−−→ 0
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and
‖aΦn(d)− Φn(d)a‖ = sup

m
‖amφmn (d)− φmn (d)am‖

n→∞−−−−→ 0

for all d, d′ ∈ G, a ∈ F hence, Lemma 1.4.15 implies that
∏
mAm is separably D-stable.

Finally, since separably D-stability is preserved by products and quotients, it follows that
ultraproducts of unital separably D-stable C∗-algebras is again unital, separably D-stable.

33



2 Hilbert C∗-modules and the Cuntz picture of KK-theory

Since K0-behaviour of C∗-algebras and ∗-homomorphisms plays a central role in both the exis-
tence and the classification result that we are after, the following sections aim to present KK-
theoretical arguments that will facilitate the analysis towards this direction. As KK-theory is a
vast area of independent interest, which admits several interpretations, except for establishing the
specific results that we need, an effort to give some insights into some preliminary concepts and
constructions concerning this subject, has been made.

2.1 Hilbert C∗-modules

We start this chapter by establishing the fundamental notions in Hilbert C∗-module theory. Al-
though in the following sections we will emphasize on specific Hilbert C∗-modules, the exposition
here has a generic essence, aiming to achieve a broader understanding of the subject. Our starting
point is the definition of a pre-Hilbert C∗-module. Throughout this section let B be a C∗-algebra.
The main source of the following material is [18].

Definition 2.1.1. A pre-Hilbert B-module E, is a complex vector space and a right B-module equipped
with a map 〈·, ·〉 : E×E → B which is linear in the second variable and satisfies the following conditions
for any b ∈ B, x, y ∈ E:

i) 〈x, yb〉 = 〈x, y〉b

ii) 〈x, y〉∗ = 〈y, x〉

iii) 〈x, x〉 ≥ 0

iv) x 6= 0 =⇒ 〈x, x〉 6= 0

Note 2.1.2. It is implied by Definition 1.1, that the scalar multiplication and the B-module
structure on E are compatible, in the sense that (λx)b = λ(xb) = x(λb), for all λ ∈ C, x ∈ E, b ∈ B

In order to turn the pre-Hilbert B-module E into a Hilbert B-module, a norm structure is
needed. This work is done by the following lemma.

Lemma 2.1.3. Let E be a pre-Hilbert B-module, and define ‖e‖ = ‖〈e, e〉‖1/2. Then E equipped with
this norm, becomes a normed vector space, and the following inequalities hold,

i) ‖eb‖ ≤ ‖e‖ ‖b‖, e ∈ E, b ∈ B

ii) ‖〈e, f〉‖ ≤ ‖e‖ ‖f‖, e, f ∈ E

Proof. Let us start by proving the inequalities. For the first one, it is straightforward to see that

‖eb‖2 = ‖〈eb, eb〉‖ = ‖〈eb, e〉b‖ = ‖b∗〈e, e〉b‖

≤ ‖〈e, e〉‖ ‖b‖2 = ‖e‖2 ‖b‖2

For the second inequality, observe that the map φ given by φ(〈e, f〉∗〈e, f〉) = ‖〈e, f〉‖2, e, f ∈
E is a state on B. Also, we may assume that 〈e, f〉 6= 0, fact that allows us to set α =

〈e, f〉∗ ‖〈e, f〉‖−1. Note that ‖α‖ = 1 and that φ(〈e, f〉α) = ‖〈e, f〉‖. So, under these considerations
we get

‖〈e, f〉‖2 = φ(〈e, f〉α)2 = φ(〈e, fα〉)2

but as φ composed with the "inner product" defined above, yields to an inner product on E, we
can apply Cauchy-Swartz Inequality to obtain that
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φ(〈e, fα〉)2 ≤ φ(〈e, e〉)φ(〈fα, fα〉) ≤ ‖〈e, e〉‖ ‖〈fα, fα〉‖ ≤ ‖e‖2 ‖f‖2 ‖α‖2 = ‖e‖2 ‖f‖2

where in the second inequality it is employed that φ is a state, hence contractive.
Now, it remains to show that the norm at hand satisfies the triangular inequality, since the

other three norm conditions are satisfied by conditions (iii), (iv) in Definition 1.1, and by com-
patibility of scalar multiplication. So, let e, f ∈ E, and get the following

‖e+ f‖2 = ‖〈e+ f, e+ f〉‖ = ‖〈e, e〉+ 〈e, f〉+ 〈f, e〉+ 〈f, f〉‖

≤ ‖e‖2 + ‖f‖2 + 2 ‖e‖ ‖f‖ = (‖e‖+ ‖f‖)2

as desired.

Definition 2.1.4. A Hilbert B-module is a pre-Hilbert B-module E which is complete with respect to
the norm

‖e‖ = ‖〈e, e〉‖1/2 , e ∈ E

Note 2.1.5. The first inequality given in Lemma 1.3 guarantees that the B-module structure on
E extends by continuity to the completion of E, while the second inequality asserts that the
"inner product" on E extends also by continuity, to turn the completion of E into a Hilbert
B-module.

As a first result about Hilbert B-modules, we show that an approximate unit of a suitable
ideal in B can be seen as an "approximate identity" for E itself. But firstly, for E Hilbert
B-module, define 〈E,E〉 = span{〈e, f〉 : e, f ∈ E} and note that 〈E,E〉 is a closed two-sided ideal
in B.

Lemma 2.1.6. Let E be a Hilbert B-module and let (uλ)λ be an approximate unit of positive contrac-
tions for 〈E,E〉. Then, limλ euλ = e, for all e ∈ E.

Proof. Let e ∈ E, then

‖euλ − e‖2 = ‖〈euλ − e, euλ − e〉‖ = ‖〈euλ, euλ〉 − 〈e, euλ〉 − 〈euλ, e〉+ 〈e, e〉‖

= ‖u∗λ〈e, e〉uλ − 〈e, e〉uλ − u∗λ〈e, e〉+ 〈e, e〉‖ ≤ ‖u∗λ(〈e, e〉uλ − 〈e, e〉)‖+ ‖〈e, e〉 − 〈e, e〉uλ‖ −→ 0

Hence, limλ euλ = e, for any e ∈ E

Note 2.1.7. There is a an elegant way to the change the module structure on a Hilbert B-
module E, while keeping the same "inner product" structure. For this, let A be a C∗-algebra
which contains 〈E,E〉 as a closed two sided ideal and for a ∈ A, e ∈ E and (uλ)λ approximate
unit for 〈E,E〉, observe the following

〈euλa− euλ′a, euλa− euλ′a〉

= a∗uλ〈e, e〉uλa+ a∗uλ′〈e, e〉uλ′a− a∗uλ〈e, e〉uλ′a− a∗uλ′〈e, e〉uλa
‖·‖−−→ 0

which shows that the sequence (euλa)λ is Cauchy, hence convergent in E, for any e ∈ E, a ∈ A.
So, we may define the A-module structure on E by ea = limλ euλa and we see that condition (i)

in Definition 1.1 is satisfied, since

〈e, fa〉 = 〈e, lim
λ
fuλa = lim

λ
〈e, fuλa〉

= lim
λ
〈e, f〉uλa = 〈e, f〉a

while the rest of the conditions are satisfied a priori. Thus, by completing this pre-Hilbert
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A-module using Lemma 1.3, E turns into a Hilbert A-module with the same "inner product"
structure.
Let us now see some first examples of Hilbert B-modules.

Example 2.1.8. i) B is a Hilbert B-module with "inner product" given by 〈b1b2〉 = b∗1b2. Also,
note that any closed two sided ideal in B is a Hilbert B-module with the same "inner product".
ii) Let, E =

∑
nB, be the C∗-algebra of sequences in B converging to 0, and define the "inner

product" on E by 〈(b1, b2, ...), (b′1, b′2, ...)〉 =
∑
n b
∗
nb
′
n. The completion of E with respect to the

norm on
∑
nB, is denoted HB . Note that if B = C, then HB = l2(N) which we will regularly

denote it by H.

After defining Hilbert B-modules, it is natural to ask how the morphisms between Hilbert
B-modules look like. In the following lines, an effort to address this question appears.

Let E1, E2 be two Hilbert B-modules and denote by LB(E1, E2) the space of all maps T : E1 →
E2 for which exist an adjoint counterpart T ∗ : E2 → E1, satisfying 〈Tx, y〉 = 〈x, T ∗y〉, and trivially
we see that T ∗ ∈ LB(E2, E1), and T ∗∗ = T . Now, this condition on T implies that T is a linear
and B-module map. Let us see first that T is linear:
Let e1, f1 ∈ E1 and e2 ∈ E2 then,

〈T (e1 + f1), e2〉 = 〈e1 + f1, T
∗e2〉 = 〈e1, T

∗e2 + 〈f1, T
∗e2〉

= 〈Te1, e2〉+ 〈Tf1, e2〉 = 〈Te1 + Tf1, e2〉

concluding that T (e1 + f1) = Te1 − Tf1

T is a B-module map: let b ∈ B, e1 ∈ E1, e2 ∈ E2 then,

〈T (e1b), e2〉 = 〈e1b, T
∗e2〉 = b∗〈e1, T

∗e2〉 = b∗〈Te1, e2〉

= 〈(Te1)b, e2〉

hence, T (e1b) = (Te1)b. In a similar one can show that T ∗ ∈ LB(E2, E1) is a linear, B-module
map.
Moreover, let any f ∈ E2 and T ∈ LB(E1, E2), and consider the set B′ = {〈Te, f〉 : ‖e‖ ≤ 1}.

Since,
‖〈Te, f〉‖ = ‖〈e, T ∗f〉‖ ≤ ‖e‖ ‖T ∗f‖ ≤ ‖T ∗f‖ <∞

we see that B′ is a bounded subset of B. In fact, ‖〈Te, Te〉‖ = ‖Te‖2 < ∞, for any T ∈
LB(E1, E2) and e ∈ E1. Hence, supT∈LB(E1,E2) ‖Te‖ < ∞, for any e ∈ E1, and by Uniform
Boundedness Principle we get that

sup
T∈LB(E1,E2)

‖T‖ <∞

which shows that any T ∈ LB(E1, E2) is bounded. Thus, LB(E1, E2) is a linear subspace of
the Banach space of bounded linear maps from E1 to E2. Therefore, LB(E1, E2) inherits the
operator norm from the ambient Banach space, and it is evident that ‖T ∗‖ = ‖T‖. In particular,

if (Tn)n ∈ LB(E1, E2), a convergent sequence, say Tn
‖·‖−−→ T , then (T ∗n)n is also a convergent

sequence, say T ∗n
‖·‖−−→ S, and so

〈Te, f〉 = lim
n
〈Tne, f〉 = lim

n
〈e, T ∗nf〉 = 〈e, Sf〉, e ∈ E1, f ∈ E2

which implies that T ∈ LB(E1, E2). Hence, LB(E1, E2) is a closed linear space.

Lemma 2.1.9. For any E Hilbert B-module, LB(E)(= LB(E,E)) is a C∗-algebra.

Proof. Using the discusion above, it is straightforward to see that LB(E) is a closed ∗-algebra
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and that ‖T ◦ S‖ ≤ ‖T‖ ‖S‖, for any T, S ∈ LB(E). So it remains to show that ‖T‖2 = ‖T ∗T‖.
For this, let e ∈ E, ‖e‖ ≤ 1. Then,

‖〈Te, Te〉‖ = ‖〈e, T ∗Te‖ ≤ ‖T ∗Te‖ ≤ ‖T ∗T‖

hence ‖T‖2 ≤ ‖T ∗T‖, and the other direction is clear since the ∗-operation is isometric.

Taking motivation by Example 2.1.8, we aim to construct a space of maps between Hilbert
B-modules which generalizes the concept of compact operators on a Hilbert space.

Let E1, E2, be two Hilbert B-modules. Take e1 ∈ E1, e2 ∈ E2, and define a map Θe2,e1 : E1 →
E2, by Θe2,e1(x) = e2〈e1, x〉. Firstly, we see that Θe2,e1 ∈ LB(E1, E2) : Let y ∈ E2, then

〈Θe2,e1(x), y〉 = 〈e2〈e1, x〉, y〉 = 〈x, e1〉〈e2, y〉 = 〈x, e1〈e2, y〉〉

thus, the map Θe1,e2 : E2 → E1 is the adjoint map of Θe2,e1 , hence Θe2,e1 ∈ LB(E1, E2).
Now, denote by KB(E1, E2), the closed linear span of {Θe2,e1 : e1 ∈ E1, e2 ∈ E2}. As a first

result, we show that KB(E) is a closed two sided ideal in LB(E).

Lemma 2.1.10. For any E Hilbert B-module, KB(E) is a closed two-sided ideal in LB(E).

Proof. Firstly, KB(E) is closed by construction. Now, let T ∈ LB(E) and e, f ∈ E. Then

T ◦Θe,f (x) = T (e〈f, x〉) = ΘTe,f (x), x ∈ E

Hence, T ◦Θe,f ∈ KB(E).
That KB(E) is a right ideal of LB(E), is clear.

Lemma 2.1.11. KB(E1, E2) = {T ∈ LB(E1, E2) : TT ∗ ∈ KB(E2)}

Proof. For showing that KB(E1, E2) ⊆ {T ∈ LB(E1, E2) : TT ∗ ∈ KB(E2)} it suffices to show it for
the generators of KB(E1, E2). So, let Θe2,e1 ∈ KB(E1, E2), x, e1 ∈ E1, e2 ∈ E2, then

Θe2,e1 ◦Θe1,e2(x) = Θe2,e1(e1〈e2, x〉) = Θe2,e1(e1)〈e2, x〉

= e2〈e1, e1〉〈e2, x〉 = e2〈〈e1, e1〉e2, x〉 = Θe2,〈e1,e1〉e2(x)

which shows that Θe2,e1 ◦Θ∗e2,e1 ∈ KB(E2).
For the other direction, first note that for any T ∈ LB(E1, E2), ‖TT ∗‖ = ‖T‖2 and similarly to

Lemma 2.1.10, we get that KB(E2)LB(E1, E2) ⊆ KB(E1, E2). Now, since KB(E2) is a separable,
closed two-sided ideal in LB(E), admits an approximate unit (un)n and we we observe that

‖unT − T‖2 = ‖(unT − T )(unT − T )∗‖ = ‖unTT ∗un − unTT ∗ − TT ∗un + TT ∗‖ −→ 0

hence, T = limn unT , and since unT ∈ KB(E1, E2) for all n ∈ N, we conclude that T ∈
KB(E1, E2), as desired.

Note 2.1.12. In continuation of Example 2.1.8, consider the Hilbert C-module H = HC = l2(N),
and let Θx,y ∈ KC(H). Then, for any z ∈ H, Θx,y(z) = x〈y, z〉, hence a rank one operator.
So, span{Θx,y : x, y ∈ H} consists of all finite rank operators, which implies that KC(H) =

span{Θx,y : x, y ∈ H} = K, where K are the compact operators on H.

Lemma 2.1.13. Let B be a C∗-algebra. Then, if we consider B as a Hilbert B-module, then the map

Γ: Θx,y 7−→ xy∗

is a ∗-isomorphism from KB(B) onto B.

Proof. We start by showing that Γ is a ∗-homomorphism.
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Let x1, x2, y1, y2 ∈ B, then for any b ∈ B we have

Θx1,y1 ◦Θx2,y2 = Θx1,y2〈y1,x2〉∗

hence,
Γ(Θx1,y1 ◦Θx2,y2) = Γ(Θx1,y2〈y1,x2〉∗)

= x1〈y1, x2〉y∗2 = x1y
∗
1x2y

∗
2 = Γ(Θx1,y1)Γ(Θx2,y2)

Now, let (uλ)λ be an approximate unit for B and let x1, x2, y1, y2 ∈ B. Set u = limλ uλ, and
obtain that,

Θx1,y1 + Θx2,y2(z) = 〈y1x
∗
1 + y2x

∗
2, z〉

= u〈y1x
∗
1 + y2x

∗
2, z〉 = Θu,y1x∗1+y2x∗2

(z)

thus,
Γ(Θx1,y1 + Θx2,y2) = Γ(Θu,y1x∗1+y2x∗2

)

= u(y1x
∗
1 + y2x

∗
2)∗ = (y1x

∗
1 + y2x

∗
2)∗ = x1y

∗
1 + x2y

∗
2

= Γ(Θx1,y1) + Γ(Θx2,y2)

Moreover, for any x, y, z ∈ B,

‖Θx,y(z)‖ = ‖xy∗z‖ ≤ ‖xy∗‖ ‖z‖

and since ‖Θx,y(u)‖ = ‖xy∗‖, we get that ‖Θx,y‖ = ‖xy∗‖. Hence, Γ is contractive, which means
that can be extended continuously to KB(B). To finalize that Γ is indeed a ∗-homomorphism,
we have to show that respects the ∗-operation, but this is trivial.
Finally, let us argue that Γ is a bijection. For injectivity, let x, y ∈ B, and suppose that

Γ(Θx,y) = xy∗ = 0. It follows that, 0 = ‖xy∗‖ = ‖Θx,y‖, hence Θx,y = 0. Now, let x ∈ B, then
Γ(Θu,x∗) = limλ uλx = x, concluding that Γ is also surjective, and in turn a ∗-isomorphism as
required.

Note 2.1.14. Using Lemma 2.1.10 and Lemma 2.1.13, we can consider that a C∗-algebra B lies
as a closed two-sided ideal inside LB(B). This amounts to the identification of an element b ∈ B
with the left multiplication map by b in LB(B). Under this identification T (b) = Tb, T ∈ LB(B),
b ∈ B, where Tb is the usual composition.

In the following, we define the multiplier algebra of a C∗-algebra B, as M(B) = LB(B). It is
a fact that LB(B) is actually isomorphic to the multiplier algebra of B as defined in Section 1/
Chapter 1.

Definition 2.1.15. Let E be a Hilbert B-module. The semi-norms ‖·‖e, e ∈ E on LB(E), given by
‖T‖e = ‖Tx‖+ ‖T ∗e‖, T ∈ LB(E) define a locally convex topology on LB(E), which we call the strict
topology.

Note 2.1.16. It is not hard to see that for E Hilbert B-module, LB(E) is complete with respect
to the strict topology. Let Tn ∈ LB(E) be a strictly Cauchy sequence. Then, for each e ∈ E,
‖Tn − Tm‖e = ‖Tne− Tme‖ + ‖T ∗ne− T ∗me‖ −→ 0. Thus, for each e ∈ E, (Tne)n, (T ∗ne)n, are
Cauchy sequences in E, and since E is complete, they are convergent. If we set T, S be the
maps given by e 7→ limn Tne, and e 7→ limn T

∗
ne and use the continuity of the "inner product"

on E, we get that 〈Te, f〉 = limn〈Tne, f〉 = limn〈e, T ∗nf〉 = 〈e, Sf〉. Hence, T ∈ LB(E), and
‖Tn − T‖x −→ 0, for each x ∈ E.
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Definition 2.1.17. Let E be a Hilbert A-module and F a Hilbert B-module. Then, a map ρ : LA(E)→
LB(F ) is called strictly continuous, if it is continuous with respect to the strict topologies of LA(E)

and LB(F ).

Proposition 2.1.18. Let A be a C∗-algebra, E a Hilbert B-module, and φ : A → LB(E) a ∗-
homomorphism. Then the following are equivalent:
i) there is a projection p ∈ LB(E), such that p(E) = span{φ(a)e : a ∈ A, e ∈ E}

ii) there is a (unique)strictly continuous ∗-homomorphism φ : M(A)→ LB(E), extending φ

Proof. We argue first that if such an extension φ exists, then is unique. For this, let (uλ)λ be
an approximate unit for A and take any T ∈M(A). Then, (Tuλ)λ is a sequence in A satisfying
that

Tuλ(x) = T (uλx) −→ Tx, ∀x ∈ A

and,
(Tuλ)∗x = uλT

∗x −→ T ∗x, ∀x ∈ A

Hence, ‖Tuλ‖x = ‖Tuλx‖ + ‖(Tuλ)∗x‖ −→ ‖Tx‖ + ‖T ∗x‖ = ‖T‖x, for all x ∈ A. This shows
that Tuλ −→ T in strict topology of M(A). So, if φ is the given extension of φ, then for any
T ∈M(A), φ(T ) = limλ φ(Tuλ) = limλ φ(Tuλ), which clearly means that φ is unique.

(i) =⇒ (ii): First note that pφ(a) = φ(a)p = φ(a), for all a ∈ A. Now, we claim that for any
T ∈ M(A), e ∈ E, the sequences (φ(Tuλ)e)λ and (φ(uλT )e)λ converge to the same point in E.
Let ε > 0, e ∈ E, T ∈M(A) and find finite sequences (ak) ⊂ A, (ek) ⊂ E, such that

2 ‖T‖

∥∥∥∥∥p(e)−∑
k

φ(ak)ek

∥∥∥∥∥ < ε

Then, using that,
‖φ(Tuλ)e− φ(Tuλ′)e‖

=

∥∥∥∥∥(φ(Tuλ)− φ(Tuλ′))p(e)− (φ(Tuλ)− φ(Tuλ′))
∑
k

φ(ak)ek + (φ(Tuλ)− φ(Tuλ′))
∑
k

φ(ak)ek

∥∥∥∥∥
≤

∥∥∥∥∥φ(Tuλ)− φ(Tuλ′)(p(e)−
∑
k

φ(ak)ek)

∥∥∥∥∥+

∥∥∥∥∥∑
k

φ(Tuλak)ek − φ(Tuλ′ak)ek

∥∥∥∥∥
≤ 2 ‖T‖

∥∥∥∥∥p(e)−∑
k

φ(ak)ek

∥∥∥∥∥+
∑
k

‖φ(Tuλak)ek − φ(Tuλ′ak)ek‖ < ε

since φ(Tuλak) −→ φ(Tak), for all k. So (φ(Tuλ)e)λ is Cauchy in E, hence convergent, while in
exactly the same fashion we obtain that ((φ(uλT )e)λ is convergent in E. Moreover, note that
using the same norm considerations as above, it follows that

‖φ(Tuλ)e− φ(uλT )e‖ ≤

≤ 2 ‖T‖

∥∥∥∥∥p(e)−∑
k

φ(ak)ek

∥∥∥∥∥+

∥∥∥∥∥∑
k

φ(Tuλak)ek − φ(uλTak)ek

∥∥∥∥∥ < ε

concluding that, indeed (φ(Tuλ)e)λ and (φ(Tuλ)e)λ has the same limit point.
This fact, enables us to define for any T ∈M(A) a map φ(T ) : E → E, by φ(T )e = limλ φ(Tuλ)e =

limλ φ(uλT )e, for all e ∈ E. Since,

〈φ(T )e, f〉 = lim
λ
〈φ(Tuλe, f〉

= lim
λ
〈e, φ(uλT

∗)f〉 = 〈e, φ(T ∗)f〉
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it follows that φ(T ) ∈ LB(E), and that φ(T ∗) = φ∗(T ), for any T ∈ M(A). Moreover, it obvious
that φ : M(A) → LB(E) is linear, and so it remains to show that it is multiplicative. Let
T, S ∈M(A), e ∈ E, then,

φ(TS)e = lim
λ
φ(uλTS)e = lim

λ
lim
λ′
φ(uλTSuλ′)e

= lim
λ

lim
λ′
φ(uλT )φ(Suλ′)e = φ(T )φ(S)e

hence φ is ∗-homomorphism. To show that φ extends φ, let a ∈ A, e ∈ E, then

φ(a)e = lim
λ
φ(auλ)e = φ(a)e

which means that φ extends φ.
Finally, we argue that φ is strictly continuous. Let (Tλ)λ be a net in M(A), such that

Tλ −→ T in the strict topology and we aim to show that φ(Tλ) −→ φ(T ) in the strict topology
on LB(E). Since, supλ ‖(Tλ − T )e‖ < ∞ for all e ∈ E, by Uniform Boundedness Principle there
is 0 < M < ∞, such that sup ‖Tλ − T‖ ≤ M . Moreover, for ε > 0 , e ∈ E, find (ak)k ⊂ A,
(ek)k ⊂ E, so that

M

∥∥∥∥∥p(e)−∑
k

φ(ak)ek

∥∥∥∥∥ < ε

Since, ∥∥(φ(T )− φ(Tλ))e
∥∥ = lim

λ′
‖(φ(Tuλ′)− φ(Tλuλ′))p(e)‖

= lim
λ′

∥∥∥∥∥(φ(Tuλ′)− φ(Tλuλ′))p(e)− (φ(Tuλ′)− φ(Tλuλ′))
∑
k

φ(ak)ek + (φ(Tuλ′)− φ(Tλuλ′))
∑
k

φ(ak)ek

∥∥∥∥∥
≤ ‖T − Tλ‖

∥∥∥∥∥p(e)−∑
k

φ(ak)ek

∥∥∥∥∥+
∑
k

∥∥∥∥lim
λ′

(φ(Tuλ′ak)− φ(Tλuλ′ak))ek

∥∥∥∥
≤M

∥∥∥∥∥p(e)−∑
k

φ(ak)ek

∥∥∥∥∥+
∑
k

‖(φ(Tak)− φ(Tλak))ek‖ < ε

because φ(Tλak)ek −→ φ(Tak)ek, for all k. Hence, φ(Tλ))e −→ φ(T )e, for all e ∈ E, and similarly
we show that φ(Tλ)∗e −→ φ(T )∗e, for all e ∈ E. Combining these two facts, we conclude that
φ(Tλ) −→ φ(T ) in strict topology, which in turn implies that φ is strictly continuous, as desired.

(ii) =⇒ (i) : Set p = φ(1M(A)) and observe that if (uλ)λ is an approximate unit for A,
then uλ −→ 1M(A) in strict topology. Thus, for each a ∈ A, e ∈ E, we have that p(φ(a)e) =

limλ φ(uλ)φ(a)e = limλ φ(uλa)e = φ(a)e, hence span{φ(a)e : a ∈ A, e ∈ E} ⊆ p(E). On the other
hand, if e ∈ p(E), then e = p(e) = limλ φ(uλ)e ∈ span{φ(a)e : a ∈ A, e ∈ E}, and the proof is
complete.

Taking as a starting point this rather useful proposition, we pursue to show that for any E

Hilbert B-module, there is a ∗- isomorphism from M(KB(E)) onto LB(E). Actually, we first
show a more general result, from which the statement above will come up as a straightforward
application. For the shake of convenience, in the following we use the overline to refer to "closed
linear span".

Lemma 2.1.19. Let A be C∗-algebra and E a Hilbert B-module. If there is a ∗-isomorphism φ : A→
KB(E), then φ(A)(E) = E and its strictly continuous extension φ : M(A)→ LB(E) is a ∗-isomorphism.

Proof. Firstly, by the construction of KB(E), we get that E〈E,E〉 ⊆ KB(E)(E). Also, by Lemma
1.6 it is straightforward that E ⊆ E〈E,E〉, hence E = E〈E,E〉. So, φ(A)(E) = KB(E)(E) = E.
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To show that φ is injective, let T ∈ M(A) and suppose that φ(T ) = 0. If (uλ)λ is an
approximate unit for A, then

φ(Tuλ) = φ(Tuλ) = φTφ(uλ) = 0

shows that Tuλ = 0 for all λ. But Tuλ −→ T in strict topology on M(A), hence T = 0.
For surjectivity, let T ∈ LB(E) and define a map ψ : A → A by ψ(a) = φ−1(Tφ(a)). Then ψ

satisfies the following for all a, a′ ∈ A,

〈ψ(a), a′〉 = ψ(a)∗a′ = a∗φ−1(T ∗)a′ = a∗φ−1(T ∗φ(a′)) = 〈a, φ−1(T ∗φ(a′))〉

hence, if σ : A→ A is given by σ(a) = φ−1(T ∗φ(a)), then σ = ψ∗, showing that ψ ∈M(A). Now,
since

φ(ψ)φ(a) = φ(ψ(a)) = φ(φ−1(Tφ(a))) = Tφ(a) ∀a ∈ A

and as φ(A)(E) = E, we conclude that φ(ψ) = T , showing that φ is surjective. As we already
know from Proposition 2.1.18 that φ is ∗-homomorphism, the proof is over.

Before showing that M(KB(E)) ∼= LB(E), for any E Hilbert B-module, we can’t resist from
applying the last two results to get the following interesting corollary.

Corollary 2.1.20. Let A,B be C∗-algebras and φ : A→M(B) a ∗-homomorphism. Then, the follow-
ing are equivalent,
i) there is a projection p ∈M(B), such that p(B) = φ(A)(B),

ii) there exists a (unique)strictly continuous ∗-homomorphism φ : M(A)→M(B), extending φ.

In fact, when φ is ∗-isomorphism from A onto B, then φ is ∗-isomorphism as well.

Proof. For the equivalence (i) ⇐⇒ (ii), we apply Proposition 2.1.18 to B seen as a Hilbert
B-module. Now, let φ : A → B be a ∗-isomorphism. Since Lemma 2.1.13 asserts that B ∼=
KB(B), then Lemma 2.1.19 applied again for B seen as a Hilbert B-module offers the desired
∗-isomorphism.

Corollary 2.1.21. Let E be a Hilbert B-module. Then, there is ∗-isomorphism ψ : M(KB(E)) →
LB(E) such that the following diagram commutes

M(KB(E)) LB(E)

KB(E) KB(E)

ψ

Proof. Consider the identity map id : KB(E)→ KB(E) and apply Lemma 2.1.19.

We now present a powerful criterion for a net in LB(E) to be strictly convergent. This is a
fact that will emerge and be used critically in the rest of this project.

Lemma 2.1.22. Let E be a Hilbert B-module. Then, a net (Tλ)λ ∈ LB(E) is strictly convergent if
and only if (Tλk)λ, and (T ∗λk)λ are norm convergent sequences, for any k ∈ KB(E).

Proof. Suppose that (Tλ)λ is a strictly convergent net. Then, there exists T ∈ LB(E) such that
for any e ∈ E, supλ ‖(Tλ − T )e‖ < ∞. Hence, Uniform Boundedness Principle provides a global
boundary 0 < M < ∞, satisfying supλ ‖Tλ − T‖ ≤ M . So, since any k ∈ KB(E) is a limit point
of elements of the form

∑n
k=1 Θxk,yk , where xk, yk ∈ E, in order to show that ((Tλ − T )k)λ,

((T ∗λ − T ∗)k)λ are norm convergent to zero, it suffices to show it only for k = Θx,y, x, y ∈ E.
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But, for any e ∈ E, ‖e‖ ≤ 1, we have that

‖(Tλ − T )Θx,y(e)‖ = ‖(Tλ − T )x〈y, e〉‖ ≤ ‖(Tλ − T )x‖ ‖y‖ −→ 0

which implies that ‖(Tλ − T )Θx,y‖ −→ 0. Similarly, we get that ‖(T ∗λ − T ∗)Θx,y‖ −→ 0 for any
x, y ∈ E, so the conclusion follows.
For the other direction, assume that there is T ∈ LB(E) such that Tλk −→ Tk and T ∗λk −→

T ∗k, for any k ∈ KB(E), in the strict topology. Now, employ the ∗-isomorphism ψ from Corollary
1.21, then ‖Tλ − T‖ =

∥∥ψ−1(Tλ − T )
∥∥, and ψ−1(Tλ − T ) ∈ M(KB(E)). Since, by hypothesis

supλ ‖(Tλ − T )(k)‖ < ∞, for any k ∈ KB(E), we also have that supλ
∥∥ψ−1((Tλ − T )(k))

∥∥ =

supλ
∥∥ψ−1(Tλ − T )k

∥∥ <∞, for any k ∈ KB(E). Thus, employing again the Uniform Boundedness
Principle we get that

∥∥ψ−1(Tλ − T )
∥∥ is uniformly bounded, hence ‖Tλ − T‖ is uniformly bounded.

So, since KB(E)(E) = E, we get that ‖(Tλ − T )e‖ −→ 0 and ‖(T ∗λ − T ∗)e‖ −→ 0, for all e ∈ E,
hence Tλ −→ T in the strict topology.

We continue our wandering in Hilbert C∗-module theory, by showing some results that are
very closely connected to the construction of Cuntz picture of KK-theory and hence they will be
critical for the next section. One of the most interesting results in this last portion, will be that
for any B stable C∗-algebra, HB and B are isomorphic as Hilbert B-modules.

Definition 2.1.23. Two Hilbert B-modules E,F are isomorphic if there is a linear bijection ψ : E → F

such that,
〈ψ(e1), ψ(e2)〉 = 〈e1, e2〉

for all e1, e2 ∈ E.

Lemma 2.1.24. Let ψ : E → F be an isomorphism of Hilbert B-modules. Then, the map Γ: LB(E)→
LB(F ), given by Γ(T ) = ψTψ−1 is a ∗-isomorphism, which also maps KB(E) onto KB(F ).

Proof. That Γ is linear, multiplicative and continuous is obvious. Now, we argue that it is
∗-preserving. Let f, g ∈ F , and T ∈ LB(E) then

〈ψTψ−1(f), g〉 = 〈Tψ−1(f), ψ−1g〉 = 〈ψ−1(f), T ∗ψ−1(g)〉

= 〈f, ψT ∗ψ−1(g)〉

hence, (ψTψ−1)∗ = ψT ∗ψ−1, which in turn implies that Γ(T ∗) = Γ(T )∗.
Γ is injective: Let T ∈ LB(E) such that Γ(T ) = 0, and some e ∈ E, where ψ−1(f) = e then

〈Te, Te〉 = 〈ψTe, ψTe〉 = 〈ψTψ−1(f), ψTψ−1(f)〉 = 0

hence, Te = 0 for any e ∈ E, concluding that T = 0.
For surjectivity, take S ∈ LB(F ), and set T = ψ−1Sψ, then T ∈ LB(E), and the result folllows.
Finally, to see that Γ maps KB(E) onto KB(F ), it suffices to show it for the generators. So

take e1, e2 ∈ E and f ∈ F , then

ψΘe1,e2ψ
−1(f) = ψ(e1〈e2, ψ

−1(f)〉) = ψ(e1)〈e2, ψ
−1(f)〉

= ψ(e1)〈ψ(e2), f〉 = Θψ(e1),ψ(e2)(f)

hence, Γ(Θe1,e2) = Θψ(e1),ψ(e2) ∈ KB(F ), while the other direction is clear.

Now, we momentarily turn to a construction that is essential for the development of this expo-
sistion. Namely, we devote the following lines to introduce the internal tensor product construction
in the Hilbert modules setting.
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Let A and B be C∗-algebras. Suppose that E is a Hilbert B-module and F a Hilbert A-
module, and let φ : B → LA(F ) be a ∗-homomorphism. Then, we can equip F with a left B-
module structure by bf = φ(b)f , b ∈ B, f ∈ F . Thus, we can form the algebraic tensor product
E ⊗B F , which we consider as a right A-module by (e⊗B f)a := e⊗ fa. Also, we equip E ⊗B F
with a (unique) right-linear and left-conjugate linear map 〈· , ·〉 : E⊗B F ×E⊗B F → A, satisfying
〈e1⊗B f1, e2⊗B f2〉 := 〈f1, φ(〈e1, e2〉)f2〉. So far so good, now set NE,F = {x ∈ E⊗BF : 〈x, x〉 = 0},
and it is straightforward to see that NE,F is an A-submodule of E⊗BF , therefore we can consider
the quotient E⊗BF/NE,F and the corresponding quotient map q. Then, E⊗BF/NE,F has a right
A-module structure by q(x)a = q(xa), x ∈ E ⊗B F , a ∈ A and an A-valued "inner product" is
defined by 〈q(x), q(y)〉 = 〈x, y〉, x, y ∈ E⊗BF . One easily checks that this map turns E⊗BF/NE,F
into a pre-Hilbert A-module. So, after completing it, we get a Hilbert A-module, which we denote
as E⊗φ F . This Hilbert A-module is called the internal tensor product of E and F with respect
to φ.

After this quite brief discussion about internal tensor product of Hilbert C∗-modules, we im-
mediately start to use these preparation to get some rather useful and interesting results. We
continue to regard B as a C∗-algebra in the following.

Lemma 2.1.25. Let s : C→M(B) be the ∗-homomorphism given by s(z)b = zb, z ∈ C, b ∈ B. Then
HB
∼= H ⊗s B.

Proof. Define U : H ⊗C B → HB , given on simple tensors by U(z ⊗C b) = (z1b, z2b, ...), where
z = (z1, z2, ...) ∈ H(= l2(N), b ∈ B. Let us see that U preserves the "inner products". Let
z1, z2 ∈ H, b1, b2 ∈ B, then

〈U(z1 ⊗C b1, z
2 ⊗C b2)〉 =

∑
i

b∗1z
1
i z

2
i b2

while,
〈z1 ⊗s b1, z2 ⊗s b2〉 = 〈z1 ⊗C b1, z

2 ⊗C b2〉 = 〈b1, s(〈z1, z2〉)b2〉

= 〈b1, 〈z1, z2〉b2〉 = 〈b1,
∑
i

z1
i z

2
i b2〉 =

∑
i

b∗1z
1
i z

2
i b2

hence, U indeed preserves the "inner products", and therefore we can extend it to a map, say
U , U : H ⊗s B → HB . Moreover, U is clearly linear and injective, and since U has already dense
range, we find that U is the desired "inner product"-preserving linear bijection between HB and
H ⊗s B.

Lemma 2.1.26. There is a ∗-isomorphism LB(HB) ∼= M(B ⊗K), mapping KB(HB) onto B ⊗K.

Proof. By Lemma 2.1.19 it suffices to show that KB(HB) ∼= B ⊗ K, and by additionally using
Lemma 2.1.24 and Lemma 2.1.25, it suffices to show that KB(H ⊗s B) ∼= B ⊗K.
So, consider the ∗-homorphisms π1 : B → LB(H ⊗s B), π2 : K→ LB(H ⊗s B), given by

π1(c)(z ⊗s b) = z ⊗s cb, π2(k)(z ⊗s b) = k(z)⊗s b, b, c ∈ B, z ∈ H, k ∈ K

since their ranges commute, they induce a ∗-homomorphism λ : B ⊗ K → LB(H ⊗s B) which
satisfies that λ(Θz1,z2 ⊗ bc∗) = Θz1⊗b,z2⊗c, z1, z2 ∈ H, b, c ∈ B. Hence, λ maps onto KB(H ⊗s B).
To see that λ is injective, let φ be a state on B, and consider the representation of LB(H⊗sB),

πφ : LB(H ⊗s B) → B(Hφ)(see Remark 1.1.8 in [18]). Note that, if π′φ : B → B(H ′φ) is the usual
GNS-representation of B, then the linear map Hφ → H ⊗ H ′φ, given by [z ⊗s b] 7→ z ⊗ [b], is a
Hilbert space isomorphism. Moreover, πφ ◦λ = π′φ⊗ idK, and if π =

∑
φ πφ, π

′ =
∑
φ π
′
φ, it follows

that π ◦ λ unitary equivalent to π′ ⊗ idK. But, the latter is a faithful representation of B ⊗ K,
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implying that λ is injective.

Recall that a C∗-algebra B is called stable if B ⊗K ∼= B.

Lemma 2.1.27. If B is stable then HB
∼= B as Hilbert B-modules.

Proof. Firstly, we consruct a sequence of isometries (Vi)i ⊂ LB(HB), satisfying that
∑
i ViV

∗
i = 1,

and V ∗i Vj = 0, whenever i 6= j. To do so, let (Ni)i be a partition of N into infinite subsets and
let the φi : Ni → N be linear bijections. Then define Vi ∈ HB → HB by

Vi(b1, b2, ...)k =

{
bφi(k), k ∈ Ni
0, else

Then Vi ∈ LB(HB), with adjoint given by V i(b1, b2, ...)k = bφ−1(k), k ∈ N, and it straightforward
to check that V ∗i Vi(b1, b2, ...)k = bk, for all k ∈ N, V ∗i Vj = 0 and moreover that,

ViV
∗
i (b1, b2, ...)k =

{
bk, k ∈ Ni
0, else

Hence, (Vi)i is the desired sequence of isometries.
Now, employing Lemma 2.1.22 and Lemma 2.1.26, we obtain a sequence of isometries (Ui)i ⊂

M(B ⊗K) satisfying the same conditions, while since B stable, using Corollary 2.1.20, we get a
sequence of isometries (Wi)i ⊂ M(B) satisfying the same conditions. Define now ρ : HB → B by
ρ(b1, b2, ...) =

∑
iWibi, and firstly we note that ρ is well defined since the sequence (

∑n
i Wibi)n

is square summable, hence convergent in B. Also, ρ preserves "inner products" since

〈ρ(b1, b2, ...), ρ(b′1, b
′
2, ...)〉 = (

∑
i

Wibi)
∗(
∑
j

Wjb
′
j) =

∑
i

b∗iW
∗
i Wib

′
i

=
∑
i

b∗i b
′
i = 〈(b1, b2, ...), (b′1, b′2, ...)

This fact, also shows that ρ is injective, while for surjectivity, let b ∈ B, then the sequence
(W ∗1 b,W

∗
2 b, ...) belongs to HB , since∑

i

(W ∗i b)
∗(W ∗i b) =

∑
i

b∗WiW
∗
i b = b∗b <∞

and ρ(W ∗1 b,W
∗
2 b, ...) = b. So, we conclude that ρ is a Hilbert B-module isomorphism, as required.

In order to be fully prepared for the next section, we state few more results and definitions.
The proof of the first result consists of a combination of arguments that we have already presented
in this section, while the second result is more involved. The last proof is omitted and can be
found in the relevant reference.

Lemma 2.1.28. Let B be a stable C∗-algebra, then there is a path of isometries {vt : t ∈ (0, 1]} in
M(B) such that

i) t 7→ vt is a strictly continuous map

ii) v1 = 1

iii) vtv
∗
t
t→0−−−→ 0 in the strict topology.

Lemma 2.1.29. Let B be a stable C∗-algebra and let w ∈ M(B) be an isometry. Then, there exists
a strictly continuous path (wt)t in M(B), such that w0 = 1 and w1 = w.
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Proof. Let (vt)t be the strictly continuous path given the previous lemma. Set wt = vtwv
∗
t+1−vtv∗t

and w0 = 1. Then, for t ∈ (0, 1], t 7→ wt is a strictly continuous map, while if b ∈ B observe that

‖vtwv∗t b‖
2

= ‖b∗vtw∗v∗t vtwu∗t ‖ = ‖b∗utu∗t b‖ ≤ ‖b∗‖ ‖utu∗t b‖
t→0−−−→ 0

hence, wt
t→0−−−→ 1 = w0, which implies that t 7→ wt is a strictly continuous maps for all t ∈ [0, 1].

Moreover, trivially w1 = w and the proof is complete.

Definition 2.1.30. A Hilbert B-module E is called countably generated if there exists a countable set
{en} in E such that span{enb : b ∈ B} is dense in E.

Recall that a positive element h in a C∗-algebra B is strictly positive iff φ(h) > 0 for all states
φ on B.

Definition 2.1.31. A C∗-algebra B is called σ-unital if it contains a strictly positive element

Proposition 2.1.32 ([24], Propositions 3.10.4-3.10.5). Let B be a C∗-algebra. Then the following
are equivalent.

i) There is a is strictly positive element h ∈ B

ii) B has a countable approximate unit

2.2 Cuntz picture of KK-theory and absorbing representations

Let A be a C∗-algebra. Throughout the first results of this section we reserve the term rep-
resentation for a ∗-homomorphism A → LB(E), where B is a σ-unital C∗-algebra and E is a
Hilbert B-module. We start by defining the equivalence relations ∼a.u, ∼asymp, in the context
of Hilbert C∗-modules and we then proceed to give some interesting insights into these relations.
Afterwards, by emphasizing on specific Hilbert C∗-modules and on weakly nuclear representations,
which we define later, we introduce the notion of absorbing representations and the Cuntz picture
of KK-theory, KKnuc, for which we establish its main traits.

Definition 2.2.1. Fix B a σ-unital C∗-algebra and let γ : A → LB(E), γ′ : A → LB(E′) be two
representations. We say that γ, and γ′ are approximately unitarily equivalent and write γ ∼a.u γ′, if
there exist a sequence of unitaries (un)n ⊂ LB(E′, E) such that for any a ∈ A:

i) ‖γ(a)− unγ′(a)u∗n‖
n→∞−−−−→ 0

ii) γ(a)− unγ′(a)u∗n ∈ KB(E), for all n ∈ N

Moreover, we say that γ and γ′ are asymptotically unitarily equivalent, γ ∼asymp γ′, if there exists a
norm-continuous path of unitaries u : [0,∞)→ LB(E′, E), u = (ut)t such that for any a ∈ A:

iii) ‖γ(a)− utγ′(a)u∗t ‖
t→∞−−−→ 0

iv) γ(a)− utγ′(a)u∗t ∈ KB(E), for all t ∈ [0,∞)

Also, if σ : A → LB(F ), a representation, we define its "infinite repeat", σ∞ : A → LB(F∞),
where F∞ = F⊕F⊕···. Moreover, define w∞ : F∞ → F⊕F∞, by w∞(ξ1, ξ2, ξ3, ...) = ξ1⊕(ξ2, ξ3, ...)

As a first result, we state the following lemma but without embarking into it’s proof.

Lemma 2.2.2 ([9], Lemma 2.2). Let π : A → LB(E) and σ : A → LB(F ) be two representations.
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Then for any isometry v : F∞ → E, the unitary u = (1F ⊕v)w∞v
∗+1E−vv∗ ∈ LB(E,F ⊗E) satisfies

‖σ(a)⊕ π(a)− uπ(a)u∗‖ ≤ 6 ‖vσ∞(a)− π(a)v‖+ 4 ‖vσ∞(a∗)− π(a∗)v‖

Moreover, if vσ∞(a)− π(a)v ∈ KB(F∞, E), for all a ∈ A, then σ(a)⊕ π(a)− uπ(a)u∗ ∈ KB(F ⊕ E).

Lemma 2.2.3 ([9], Lemma 2.3). Let π : A → LB(E) and σ : A → LB(F ) be two representations.
Suppose that there exists a sequence of isometries vi : F∞ → E satisfying for all a ∈ A,

viσ∞(a)− π(a)vi ∈ KB(F∞, E), ‖viσ∞(a)− π(a)vi‖
i→∞−−−→ 0

and v∗i vj = 0 whenever i 6= j. Then π ⊕ σ ∼asymp π

Proof. For t ∈ [0, 1], set vi+t = (1− t)1/2vi + t1/2vi+1 : F∞ → E. Then, v∗i+tvi+t = 1, and

vi+tσ∞(a)− π(a)vi+t ∈ KB(F∞, E), ‖vi+tσ∞(a)− π(a)vi+t‖
i→∞−−−→ 0

for any t ∈ [0, 1], by hypothesis. Hence, we obtain a continuous path of isometries vt : F∞ → E,
t ∈ [0,∞), satisfying the above conditions, and so, by the previous lemma there is a continuous
path of unitaries (ut)t ⊆ LB(E,F ⊕ E) , t ∈ [0,∞), such that

‖σ(a)⊕ π(a)− utπ(a)u∗t ‖ ≤ 6 ‖vtσ∞(a)− π(a)vt‖+ 4 ‖vtσ∞(a∗)− π(a∗)vt‖

and
σ(a)⊕ π(a)− utπ(a)u∗t ∈ KB(F ⊕ E) ∀a ∈ A, t ∈ [0,∞)

Hence,
‖σ(a)⊕ π(a)− utπ(a)u∗t ‖

t→∞−−−→ 0, σ(a)⊕ π(a)− utπ(a)u∗t ∈ KB(F ⊕ E)

for all a ∈ A, t ∈ [0,∞), which implies that σ ⊕ π ∼asymp π

Lemma 2.2.4 ([9], Lemma 2.4). Let π : A → LB(E) and σ : A → LB(F ) be two representations. If
σ ⊕ π ∼a.u π, then σ ⊕ π∞ ∼asymp π∞.

Proof. Suppose that σ⊕π ∼a.u π, and find a sequence of unitaries (un)n ⊆ LB(F⊕E,E) satisfying
the conditions (i), (ii) in Definition 2.2.1. Then, define u∞n = (un, un, ...) and it is straightforward
that u∞n ∈ LB(F∞ ⊕ E∞, E∞), are unitaries for each n ∈ N, satisfying

u∞n σ∞ ⊕ π∞(a)u∞n
∗ − π∞(a) ∈ KB(E∞), ‖u∞n σ∞ ⊕ π∞(a)u∞n

∗ − π∞(a)‖ n→∞−−−−→ 0

for all a ∈ A. Hence, σ∞ ⊕ π∞ ∼a.u π∞. Now, using that (E∞)∞ = E∞ ⊕ E∞ ⊕ · · · = E∞, we
find out from (u∞n ), isometries vn : F∞ ⊕ E∞ → En∞(= E∞), taking values in "disjoint" copies of
E∞(i.e v∗mvn = 0, when n 6= m) and satisfying

vnσ∞ ⊕ π∞(a)− π∞(a)vn ∈ KB(E∞ ⊕ F∞, E∞), ‖vnσ∞ ⊕ π∞(a)− π∞(a)vn‖
n→∞−−−−→ 0

for all a ∈ A. Now, let W : F∞ → F∞ ⊕ E∞ be given by f 7→ f ⊕ 0E∞ . Then, W is a linear
isometry, and [σ∞ ⊕ π∞(a)]W = Wσ∞(a), for all a ∈ A. Thus,

vnWσ∞(a)− π∞(a)vnW = (vnσ∞ ⊕ π∞(a)− π∞(a)vn)W ∈ KB(F∞, E∞)

and
‖vnWσ∞(a)− π∞(a)vnW‖ ≤ ‖vnσ∞ ⊕ π∞(a)− π∞(a)vn‖

n→∞−−−−→ 0

Thus, if we set v′n = vnW , then v′n : F∞ → E∞ are isometries satisfying v′∗n v
′
m = 0, n 6= m,

and by the previous considerations, v′n finally satisfy all the conditions of Lemma 2.2.3 for the
representations σ and π∞. Hence, we conclude that σ ⊕ π∞ ∼asymp π∞, as desired.

Now, we move forward to introduce some related notions to approximately unitarily equivalent
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and asymptotically unitarily equivalent representations.

Definition 2.2.5. Let A,B be C∗-algebras, A separable, B σ-unital, and let Φ: A → LB(E) be a
representation and φ : A→ LB(F ) a c.p map, where E,F are countably generated Hilbert B-modules.
We say that Φ approximately dominates φ if there is a bounded sequence (un)n ⊂ LB(F,E) such that,

i) u∗nΦ(a)un − φ(a) ∈ KB(E)

ii) ‖u∗nΦ(a)un − φ(a)‖ n→∞−−−−→ 0

Furthermore, we say that Φ strongly approximately dominates φ, if there is sequence (un)n as above,
satisfying also that

iii) ‖u∗nTun‖
n→∞−−−−→ 0, ∀ T ∈ KB(E)

Moreover, if we may find a norm-continuous bounded path (ut)t∈[0,∞) satisfying the obvious analogues
of (i),(ii)(and (iii)) above, then we say that Φ (strongly) asymptotically dominates φ.

We are interested in these notions of dominant representations, mainly due to the next theorem,
that we will use critically in the rest of this section.

Theorem 2.2.6 ([12], Theorem 3.4). Let A,B be C∗-algebras, A separable, unital and B σ-unital.
Also, let Φ,Ψ: A→ LB(HB) be unital representations and Ψ∞ : A→ LB(H∞B ) the "infinite repeat" of
Ψ. The following are equivalent,

i) Φ strongly approximately dominates T ∗Ψ(−)T, for any T ∈ KB(HB)

ii) Φ strongly approximately dominates Ψ

iii) Φ strongly asymptotically dominates Ψ

iv) There is a unitary U ∈ LB(HB ⊕H∞B , HB) such that

U∗Φ(a)U − Φ⊕Ψ∞(a) ∈ KB(HB ⊕H∞B ), ∀ a ∈ A

v) Φ⊕Ψ∞ ∼a.u Φ

vi) Φ⊕Ψ∞ ∼asymp Φ

Proof. We will prove v) =⇒ iv) =⇒ iii) =⇒ ii) =⇒ i) =⇒ v), and iii) =⇒ vi) =⇒ v).
v) =⇒ iv): Follows from the definition of ∼a.u.
iv) =⇒ iii): Let U ∈ LB(HB ⊕ H∞B , HB) be the unitary given in iv), and let Vn : HB →

HB ⊕ H∞B be an isometry defined as the inclusion into the n-th coordinate. Now, define Vt =

(n+ 1− t)1/2Vn + (t− n)1/2Vn+1, t ∈ [n, n+ 1], and since V ∗n+1Vn = 0, we get that V ∗t Vt = 1, for
all t ∈ [n, n+ 1], n ∈ N. Hence, (Vt)t∈[0,∞) is a norm-continuous path of isometries and since for
any T ∈ KB(HB ⊕H∞B ), we have that V ∗n T

n→∞−−−−→ 0, we get that V ∗t TVt
t→∞−−−→ 0. Set Wt = UVt,

and since by the construction of Vt we have that V ∗t (Φ(a) ⊕ Ψ∞(a))Vt = Ψ(a), for all a ∈ A, it
follows

W ∗t (Φ(a))Wt −Ψ(a) = V ∗t U
∗Φ(a)UVt −Ψ(a)

= V ∗t U
∗Φ(a)UVt − V ∗t (Φ(a)⊕Ψ∞(a))Vt

= V ∗t (U∗Φ(a)U − Φ(a)⊕Ψ∞(a))Vt

where, U∗Φ(a)U − Φ(a)⊕Ψ∞(a) ∈ KB(HB ⊕H∞B ) by hypothesis, so we conclude that

W ∗t (Φ(a))Wt −Ψ(a) ∈ KB(HB), ∀ a ∈ A

and
‖W ∗t (Φ(a))Wt −Ψ(a)‖ t→∞−−−→ 0
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Hence, Φ strongly asymptotically dominates Ψ.
iii) =⇒ ii): If there is a norm-continuous bounded path satisfying conditions i), ii), iii) in

the definition above, then trivially we find a bounded sequence that satisfies the same conditions.
Hence, Φ strongly approximately dominates Ψ.
ii) =⇒ i): Let (un)n ⊂ LB(HB) be a bounded sequence satisfying i), ii), iii) in the definition

above, and let T ∈ KB(HB). Then, it is straightforward that Wn = unT , n ∈ N, define a bounded
sequence in LB(HB), satisfying the same conditions, but now for Φ and T ∗Ψ(−)T . Since T was
arbitrary the conclusion follows.
i) =⇒ v): This follows from Theorem 2.13 in [9].
iii) =⇒ vi): Since iii) ⇐⇒ iv), we can find a unitary U by iv), and follow the same

procedure as in the direction iv) =⇒ iii). But, using that Ψ∞ = (Ψ∞)∞, this time we get
(Wt)t∈[0,∞) norm-continuous bounded path of isometries satisfying

W ∗t (Φ(a))Wt −Ψ∞(a) ∈ KB(H∞B )

and
‖W ∗t (Φ(a))Wt −Ψ∞(a)‖ t→∞−−−→ 0

thus Φ strongly asymptotically dominates Ψ∞. Now, let Vt ∈ LB(H∞B , HB) be a bounded con-
tinuous family of elements such that V ∗t Φ(a)Vt − Ψ∞(a) is compact and tends to zero for every
a ∈ A. By a trick of Arveson (see proof of Corollary 1 in [1]), it follows that VtΨ∞(a)− Φ(a)Vt

is compact and tends to zero for all a ∈ A. So, if we identify Ψ∞ and (Ψ∞)∞, it follows from
Lemma 2.16 in [9] that Φ⊕Ψ∞ ∼asymp Φ.
vi) =⇒ v): Similarly to iii) =⇒ ii).

Another important aspect of the theory under examination is the concept of absorbing repre-
sentations. In the following, we slightly modify our setting, as we start working with A sepa-
rable C∗-algebra, B σ-unital C∗-algebra and we regard B ⊗ K as a Hilbert B ⊗ K-module. By
Lemma 2.1.26, LB(HB) ∼= M(B ⊗ K) and KB(HB) ∼= B ⊗ K and in the following we reserve
the term representation for any ∗-homomorphism φ : A → M(B ⊗K). Moreover, we call such a
representation, weakly nuclear, if the c.p map A → B ⊗ K, given by a 7→ b∗φ(a)b is nuclear, for
all b ∈ B ⊗K.

Definition 2.2.7. A representation φ : A → M(B ⊗ K) is called absorbing if φ ⊕ ψ ∼a.u φ, for any
representation ψ : A→M(B ⊗K). If moreover, A is unital, then a representation φ : A→M(B ⊗K)

is called unitally absorbing if φ⊕ ψ ∼a.u φ, for any unital representation ψ : A→M(B ⊗K).

Note 2.2.8. Suppose that φ : A→M(B⊗K) unital representation, ψ : A→M(B⊗K) non unital
representation, and assume that φ ⊕ ψ ∼a.u φ. Then, there exist (un)n ⊂ M(B ⊗ K) such that
‖φ⊕ ψ(a)− unφ(a)u∗n‖

n→∞−−−−→ 0, for all a ∈ A. Hence,
0 6= ‖ψ(1A)− 1A‖ = ‖φ⊕ ψ(1A)− unφ(1A)u∗n‖

n→∞−−−−→ 0, which is a contradiction, concluding that
a unital representation cannot absorb a non-unital representation.

Definition 2.2.9. A representation φ : A→M(B ⊗K) is called (unitally) nuclearly absorbing if
φ⊕ ψ ∼a.u φ, for any (unital) weakly nuclear representation ψ : A→M(B ⊗K).

An alternative definition of the "infinite repeat" of a representation, will be also rather useful
in the process of this section.

Definition 2.2.10. Let φ : A → M(B ⊗ K) be a representation and let a sequence of isometries
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(sn)n ⊆M(B⊗K) satisfying
∑
n sns

∗
n = 1, and s∗nsm = 0, when n 6= m. Then, we define the "infinite

repeat" of φ by
φ∞(a) =

∑
n

snφ(a)s∗n, a ∈ A

where the convergence is in the strict topology.

Note 2.2.11. It is straightforward to check that the "infinite repeat" φ∞ of a representation
φ : A→M(B ⊗K) is linear and ∗-preserving. Using that s∗nsm = 0, whenever n 6= m, we also see
that

φ∞(x)φ∞(y) = (
∑
n

snφ(x)s∗n)(
∑
m

smφ(y)s∗m) =
∑
n

snφ(x)s∗nsnφ(y)s∗n = φ∞(xy)

hence multiplicative. Moreover, that the convergence is in strict topology, implies that for any
b ∈ B ⊗K and a ∈ A,

sup
n

∥∥∥∥∥
n∑
k=1

skφ(a)s∗k(b)− φ∞(a)(b)

∥∥∥∥∥ <∞
and now Uniform Boundedness Principle shows that

sup
n

∥∥∥∥∥
n∑
k=1

skφ(a)s∗k − φ∞(a)

∥∥∥∥∥ <∞
which clearly implies that φ∞ is continuous. Furthermore, if (sn)n, (λn)n ⊂ M(B ⊗ K) are two
sequences of isometries defining φ∞, then u =

∑
n snλ

∗
n is a unitary in M(B ⊗K) satisfying

u(
∑
n

λnφ(a)λ∗n)u∗ =
∑
n

snφ(a)s∗n

This shows that φ∞ (up to unitary equivalence) is independent from the selection of isometries.
As a consequence, note that if we select our isometries to be the the n-th factor inclusions
sn : B ⊗K→ (B ⊗K)∞, then this definition coincides with the definition of the "infinite repeat"
at the beginning of this section. Another consequence is that φ∞ ⊕ φ is unitarily equivalent to
ψ∞. To see this, take a suitable sequence of isometries (sn)n ⊆ M(B ⊗ K) such that φ∞(−) =∑∞
n=1 snφ(−)s∗n and let v1, v2 ∈M(B ⊗K) isometries such that φ∞ ⊕ φ = v1φ∞(−)v∗1 + v2φ(−)v∗2 .

Then, if we set w1 = v2, and wn = v1sn−1, for n ≥ 2, we easily verify that (wn)n ⊆M(B ⊗K) is
a sequence of isometries, satisfying the conditions in the definition of φ∞, while

∞∑
n=1

wnφ(−)w∗n = v1(

∞∑
n=1

snφ(−)s∗n)v∗1 + v2φ(−)v∗2 = φ∞ ⊕ φ

Hence, φ∞ ⊕ φ is indeed unitarily equivalent to φ∞

Lastly, we claim that the "infinite repeat" is weakly nuclear whenever φ is weakly nuclear. To
this end, assume that φ is weakly nuclear, then for any b ∈ B⊗K, there are c.c.p maps ρn : A→
Mkn(C), ρ′n : Mkn(C)→ B ⊗K satisfying

‖bφ(a)b∗ − ρ′n ◦ ρn(a)‖ n→∞−−−−→ 0

Now, for each n ∈ N we find sufficiently large Kn ∈ N and we consider the c.c.p maps Pn : A→
MKn(C), P ′n : MKn(C)→ B ⊗K defined by

Pn(a) = ρn(a)⊕ ρn(a)⊕ · · ·, P ′n(a) = ρ′n(a)⊕ ρ′n(a)⊕ · · ·

Then,
‖bψ∞(a)b∗ − P ′n ◦ Pn(a)‖ = sup{‖bφ(a)b∗ − ρ′n ◦ ρn(a)‖} n→∞−−−−→ 0

and since b was arbitrary, it follows that φ∞ is a weakly nuclear representation.

Having these new notions in our possession, we proceed to prove the following interesting result,
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namely that nuclear absorbing representations satisfy an even stronger asymptotic absorption
property.

Proposition 2.2.12 ([30], Proposition 2.4). Suppose that φ : A→M(B⊗K) is a nuclearly absorbing
representation. If ψ : A→M(B ⊗K) is a weakly nuclear representation, then φ⊕ ψ ∼asymp φ.

Proof. Since ψ weakly nuclear, the previous note says that ψ∞ is also weakly nuclear, hence
φ⊕ψ∞ ∼a.u φ. Note that in view of Lemma 2.1.26, we can employ Theorem 2.2.6 ((v) ⇐⇒ (vi)),
to obtain that φ⊕ ψ∞ ∼asymp φ.
Now, since ψ∞ is unitary equivalent to ψ ⊕ ψ∞, we obtain

φ⊕ ψ ∼asymp φ⊕ ψ∞ ⊕ ψ ∼asymp φ⊕ ψ∞ ∼asymp φ

as desired.

At this point, we are ready to introduce Cuntz picture of KK-theory. Keeping exactly the
same setting as in the previous pages, we start by defining the notion of a Cuntz pair.

Definition 2.2.13. A pair (φ, ψ) of representations φ, ψ : A→M(B⊗K), is called Cuntz pair if φ, ψ
are weakly nuclear and φ(a) − ψ(a) ∈ B ⊗ K, for all a ∈ A. The set of all Cuntz pairs is denoted by
Enuc(A,B)

The central relation in constructing the KKnuc-group of Enuc(A,B) is the homotopy equivalence
between Cuntz pairs, which is defined right below.

Definition 2.2.14. Two Cuntz pairs (φ0, ψ0), (φ1, ψ1) are called homotopic if there is a path (λt, λ
′
t) ∈

Enuc(A,B) such that

i) the maps t 7→ λt(a), t 7→ λ′t(a), from [0, 1] to M(B ⊗K) are strictly continuous, for all a ∈ A

ii) the map t 7→ λt(a)− λ′t(a) from [0, 1] to B ⊗K is norm continuous, for all a ∈ A.

iii) (λ0, λ
′
0) = (φ0, ψ0), (λ1, λ

′
1) = (φ1, ψ1)

When these conditions are satisfied, we write (φ0, ψ0) ∼ (φ1, ψ1). Furthermore, we denote by

KKnuc(A,B) the set of homotopy classes of Cuntz pairs in E (A,B), and by [φ, ψ] the homo-

topy class of (φ, ψ) in KKnuc(A,B)

Lemma 2.2.15. Let φ : A→M(B ⊗K) be a representation, then (φ, φ) ∼ (0, 0).

Proof. Let (st)t, t ∈ (0, 1] be the path of isometries in M(B ⊗K) given in Lemma 2.1.28. Then,
set λt(−) = stφ(−)s∗t = λ′t(−), t ∈ (0, 1] and λ0 = 0 = λ′0. To see that t 7→ λt(a) strictly continuous
at 0, for any a ∈ A, note that as for any h ∈ B ⊗K, ‖sts∗t (h)‖ t→0−−−→ 0, then

‖stφ(a)s∗t (h)‖ = ‖stφ(a)s∗t sts
∗
th‖ ≤ ‖stφ(a)s∗t ‖ ‖sts∗th‖

t→0−−−→ 0

Since, the rest of the conditions of Definition 2.2.14 are easily verified, we get that (λt, λ
′
t) is an

homotopty path between (λ0, λ
′
0) = (0, 0) and (λ1, λ

′
1) = (φ, φ). Hence, (φ, φ) ∼ (0, 0)

In order to turn KKnuc(A,B) into a group, we need a group operation. This operation is
provided by the so called Cuntz sum.

Definition 2.2.16. Let s1, s2 ∈ M(B ⊗ K) be isometries such that s1s
∗
1 + s2s

∗
2 = 1 and s∗i sj = 0,

when i 6= j. If φ, ψ : A→M(B ⊗K) representations, then the representation φ⊕s1,s2 ψ = s1φ(−)s∗1 +

s2ψ(−)s∗2 is called the Cuntz sum of φ and ψ, with respect to s1 and s2.
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Note 2.2.17. If s1, s2, λ1, λ2 ∈ M(B ⊗ C) are two pairs of isometries as in the definition above,
then if we set u = s1λ

∗
1 + s2λ

∗
2, u ∈M(B⊗K) unitary satisfying that u(φ⊕λ1,λ2

ψ)u∗ = φ⊕s1,s2 ψ
for any two representations φ, ψ : A → M(B ⊗K). Hence, (up to unitary equivalence) the Cuntz
sum is independent from the choice of isometries.

Another way of expressing the Cuntz sum will also be useful, and it will create an immediate
connection with the first section. First we need the following.

Definition 2.2.18. Let B be a C∗-algebra. Then, a ∗-isomorphism Θ: Mn(B)→ B is called inner if
there are isometries s1, s2, .., sn in M(B) such that s∗i sj = 0, i 6= j,

∑
i sis

∗
i = 1 and

Θ((bij)ij) =
∑
i,j

sibijs
∗
j

Note 2.2.19. If Θ: Mn(B)→ B is an inner ∗-isomorphism given by some isometries w1, w2, ..., wn

then the same formula of the definition above gives a ∗-isomorphism from Mn(M(B)) onto M(B).
Also note that, Lemma 2.1.27 always provides isometries in M(B ⊗ K) satisfying the conditions
of Definition 2.2.18, and it is straightforward to check that the map given by these isometries as
above, is a ∗-isomorphism from Mn(M(B ⊗K)) onto M(B ⊗K), n ∈ N.

Now, if φ, ψ : A→M(B ⊗K) two representations, find s1, s2 ∈M(B ⊗K) by the previous note
and set Θs1,s2 the inner ∗-isomorphism expressed by these isometries as in definiton above. Then,
φ ⊕s1,s2 ψ = Θs1,s2 ◦

( φ(−) 0
0 ψ(−)

)
and therefore we see that both ways of expressing Cuntz sum,

coincide.
Now, we are ready to define the the group operation on KKnuc(A,B). Let [φ1, ψ1],

[φ2, ψ2] ∈ KKnuc(A,B) and define their addition as [φ1, ψ1]+[φ2, ψ2] = [φ1⊕s1,s2 φ2, ψ1⊕s1,s2 ψ2] =

[Θs1,s2 ◦
( φ1(−) 0

0 φ2(−)

)
,Θs1,s2 ◦

( ψ1(−) 0
0 ψ2(−)

)
]. It is a fact that the unitary group of M(B ⊗K) is

path connected in the operator norm topology (See [7]), hence the class [φ1⊕s1,s2 φ2, ψ1⊕s1,s2 ψ2]

in KKnuc(A,B) is independent of the choice of isometries, thus by abusing notation this element
will be written as [φ1⊕φ2, ψ1⊕ψ2]. Also, for any φ : A→ B nuclear ∗-homomorphism and p ∈ K
rank one projection, we define the representation φp : A → M(B ⊗ K) by φp(a) = φ(a) ⊗ p, for
all a ∈ A. Then, it is not hard to see that (φp, 0) is a Cuntz pair, and we denote it’s class
in KKnuc(A,B) by [φ]. It is a fact that [φ] is independent from the choice of the rank one
projection.

Now, we partly establish that KKnuc(A,B) is an abelian group.

Lemma 2.2.20. KKnuc(A,B) is an abelian group, where [(0, 0)] represents the zero element and
[φ, ψ] = −[ψ, φ].

Proof. We see first that [(0, 0)] is the zero element in KKnuc(A,B). Let (φ, ψ) be a Cuntz pair,
then for any isometry v ∈ M(B ⊗ K) it suffices to show that (Ads ◦ φ,Ads ◦ ψ) ∼ (φ, ψ). But
from Lemma 2.1.29 there is a strictly continuous path t 7→ vt in M(B ⊗ K), such that v0 = 1

and v1 = v. Set λt(−) = vtφ(−)v∗t and λ′t(−) = vtψ(−)v∗t . Then, t 7→ λt(a), t 7→ λ′t(a) are strictly
continuous maps, t 7→ λt(a) − λ′t(a) is in B ⊗ K and is norm continuous for all a ∈ A. Finally,
(λ0, λ

′
0) = (φ, ψ), (λ1, λ

′
1) = (Ads ◦ φ,Ads ◦ ψ), concluding that [φ, ψ] = [φ, ψ] + [0, 0].

Now, we argue that the inverse of [φ, ψ] is [ψ, φ]. First, consider the rotational matrix

Rt =

(
cosπ2 t sinπ2 t

−sinπ2 t cosπ2 t

)
∈M2(M(B)), t ∈ [0, 1]

Then, set λt = Θ◦

(
φ 0

0 ψ

)
, λ′t = Θ◦AdRt ◦

(
ψ 0

0 φ

)
, and observe that all conditions of Definition
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2.2.14 are satisfied and moreover (λ0, λ
′
0) = (φ ⊕ ψ,ψ ⊕ φ), (λ1, λ

′
0) = (φ ⊕ ψ, φ ⊕ ψ). Thus by

Lemma 2.2.15 we obtain that [φ⊕ ψ,ψ ⊕ φ] = 0, hence [φ, ψ] = −[ψ, φ] as desired.
Commutativity of KKnuc(A,B) is proven in same manner and for associativity look up to

Lemma 1.3.12 in [18].

We end this first discussion about KKnuc with some functorial properties followed by a rather
interesting result. Let ρ : B → C be a ∗-homomorphism between σ-unital C∗-algebras, then there
is an induced group homomorphism

ρ∗ : KKnuc(A,B)→ KKnuc(A,C)

In this way, KKnuc(A,−) becomes a covariant functor from the category of σ-unital C∗-algebras
to the category of groups; see Chapter 4 in [18] for details. The proof of the following proposition
is omitted.

Proposition 2.2.21 ([30], Proposition 2.1). Let A,E be separable C∗-algebras, I a closed two sided
ideal in E, such that I⊗K ∼= I and φ, ψ : A→ E two nuclear ∗-homomorphisms. Also let λ : E →M(I)

be the canonical ∗-homomorhphism and note that (λφ, λψ) ∈ Enuc(A, I).
If j : I → E is the inclusion, then j∗[λφ, λψ] = [φ]− [ψ] in KKnuc(A,E)

2.3 Destabilizing KK-theory

The main concern of this section is to prove one theorem and two propositions that will be
critical towards the end of this project. We keep in mind the theory already presented and we
proceed to define a new equivalence relation for representations. Also, we briefly introduce a
picture of KK-theory, which is equivalent to Cuntz picture, and offers some extra information,
expanding our capacity of tackling KK-theoretical problems.
Again, throughout this section A is a separable C∗-algebra and B is a σ-unital C∗-algebra,

except otherwise is mentioned.

Definition 2.3.1. Two representations φ, ψ : A → M(B ⊗ K) are called properly asymptotically
unitarily equivalent, written φ u ψ, if there exists a norm-continuous path of unitaries (ut)t≥0 in
B ⊗K + C1M(B⊗K) satisfying that

i) ‖φ(a)− utψ(a)u∗t ‖
t→∞−−−→ 0

ii) φ(a)− utψ(a)u∗t ∈ B ⊗K, for all t ≥ 0 , a ∈ A

Lemma 2.3.2 ([10], Lemma 3.2). Let φ, ψ : A → M(B ⊗ K) be representations such that (φ, ψ) ∈
Enuc(A,B). If (ut)t≥0 is a norm continuous path of unitaries such that utφ(a)u∗t −ψ(a) ∈ B⊗K, and
‖utφ(a)u∗t − ψ(a)‖ t→∞−−−→ 0, then [φ, ψ] = [φ, u1φu

∗
1].

Proof. Set
λt(a) = φ(a), ∀a ∈ A

and
λ′t(a) = utφ(a)u∗t , t > 0, ∀a ∈ A

λ′0(a) = ψ(a), ∀a ∈ A

Then (λt, λ
′
t) ∈ Enuc(A,B) for all t ≥ 0, t 7→ λt(a), t 7→ λ′t(a) are strictly continuous maps for

all a ∈ A and t 7→ λt(a) − λ′t(a) is norm-continuous map in B ⊗ K. Since, (λ0, λ
′
0) = (φ, ψ),
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(λ1, λ
′
1) = (φ, u1φu

∗
1), we obtain that [φ, ψ] = [φ, u1φu

∗
1].

Now, as we promised, we introduce an another picture of KK-theory, namely the Fredholm
picture, using general Hilbert modules, that will enable us to prove the following lemmas. The
source of the following lines is [10].
Let A be a separable C∗-algebra, B a σ-unital C∗-algebra and E0, E1 some countably generated

Hilbert B-modules. The Fredholm picture of KK-theory is described in terms of triples (φ, ψ, v),
where φ : A → LB(E0), ψ : A → LB(E1) are ∗-homomorphisms, v ∈ LB(E0, E1), satisfying for all
a ∈ A the following

vφ(a)− ψ(a)v ∈ KB(E0, E1)

and
φ(a)(v∗v − 1) ∈ KB(E0), ψ(a)(vv∗ − 1) ∈ KB(E1)

Moreover, a cycle (φ, ψ, v) is called degenerate if

vφ(a)− ψ(a)v = 0, φ(a)(v∗v − 1) = 0, ψ(a)(vv∗ − 1) = 0

for all a ∈ A.
An operatorial homotopy of cycles is a homotopy (φ, ψ, vt), where (vt)t≥0 is a norm continuous

path. Now, if we denote by E(A,B) the set of these cycles, then it is fact shown by Kasparov
that KK(A,B) is isomorphic to the quotient of E(A,B) with respect to the equivalence rela-
tion generated by unitary equivalence, operatorial homotopy and addition of degenerate cycles.
In order to become more acquainted with Fredholm picture, we state the fact that the map
[φ, ψ]→ [φ, ψ, 1M(B⊗K)] defines an isomorphism between Cuntz and Fredholm picture, where here
φ, ψ : A→M(B ⊗K) are some representations.

Lemma 2.3.3 ([10], Lemma 3.3). If φ, ψ : A→M(B⊗K) are representations such that φ u ψ, then
φ(a)− ψ(a) ∈ B ⊗K, for all a ∈ A, and moreover [φ, ψ, 1] = 0.

Proof. Let (ut)t≥0 ⊆ B ⊗ KC1M(B⊗K) be the norm continuous path of unitaries witnessing the
relation φ u ψ. If ut = wt + zt1M(B⊗K), then as

utφ(a)u∗t − ψ(a) ∈ B ⊗K

and ztz
∗
t = 1, we immediately see that φ(a) − ψ(a) ∈ B ⊗K, for all a ∈ A. Moreover, using the

isomorphism between the two pictures of KK-theory and Lemma 2.3.2, we get that

[φ, ψ, 1M(B⊗K)] = [φ, u1φu
∗
1, 1M(B⊗K)]

Now, it is straightforward to see that (φ, φ, u∗1) satisfies all the conditions for being a cycle
and moreover as u1 is unitary the cycle (φ, u1φu

∗
1, 1M(B⊗K)) is unitarily equivalent to the cycle

(φ, φ, u∗1). Also, as u1 = w1 + z1M(B⊗K), we define a norm continous path by

λt : t 7→ tw∗1 + z∗1M(B⊗K), t ∈ [0, 1]

and therefore (φ, φ, λt) is an operatorial homotopy between (φ, φ, u∗1) and (φ, φ, z∗1M(B⊗K)). As,
the latter cycle is unitarily equivalent to (φ, zφz∗, 1M(B⊗K)) and zz∗ = 1, we get that

[φ, φ, u∗1] = [φ, zφz∗, 1M(B⊗K)] = [φ, φ, 1M(B⊗K)]

and since we already showed that [φ, ψ, 1M(B⊗K)] = [φ, u1φu
∗
1, 1M(B⊗K)], it follows that

[φ, ψ, 1M(B⊗K)] = [φ, φ, 1M(B⊗K)]

By employing again the isomorphism between the two KK-pictures and Lemma 2.2.15, we obtain
that [φ, φ, 1M(B⊗K)] = 0, thus [φ, ψ, 1M(B⊗K)] = 0, as desired.

53



Lemma 2.3.4 ([10], Lemma 3.4). Let φ, ψ, γ, θ : A→M(B⊗K) be representations such that φ⊕γ u
ψ ⊕ γ and γ ∼assymp θ. Then, φ⊕ θ u ψ ⊕ θ

Proof. Let (ut)t≥0 ⊆M2(B⊗K)+C1M2(M(B⊗K)) be a norm continuous path of unitaries such that

ut(φ⊕ γ(a))u∗t − ψ ⊕ γ(a) ∈M2(B ⊗K) (1)

‖ut(φ⊕ γ(a))u∗t − ψ ⊕ γ(a)‖ t→∞−−−→ 0

for all a ∈ A. Moreover, let (wt)t≥0 ⊆M(B⊗K) be a norm cotinuous path of unitaries satisfying
that

wtγ(a)w∗t − θ(a) ∈ B ⊗K (2)

‖wtγ(a)w∗t − θ(a)‖ t→∞−−−→ 0

for all a ∈ A. Now, if we set vt = (1⊕ wt)ut(1⊕ w∗t ), it is easily verified that (vt)t≥0 is a norm
continuous path of unitaries in M2(B ⊗K) + C1M2(M(B⊗K)) which satisfies the following

‖vt(φ⊕ θ(a))v∗t − ψ ⊕ θ(a)‖ ≤ ‖ut(φ⊕ w∗t θ(a)wt)u
∗
t − ψ(a)⊕ w∗t θ(a)wt‖

≤ ‖ut(φ(a)⊕ γ(a))u∗t − ψ ⊕ γ(a)‖+ 2 ‖w∗t θ(a)wt − γ(a)‖ t→∞−−−→ 0

Also, (1) and (2) imply that in M(M2(B ⊗K))/M2(B ⊗K) the following holds

‖ut(φ(a)⊕ γ(a))u∗t − ψ ⊕ γ(a)‖ = 0 = ‖w∗t θ(a)wt − γ(a)‖

So, by the inequality above, we get that

‖vt(φ⊕ θ(a))v∗t − ψ ⊕ θ(a)‖ = 0

in M(M2(B ⊗K))/M2(B ⊗K), which shows that

vt(φ⊕ θ(a))v∗t − ψ ⊕ θ(a) ∈M2(B ⊗K)

for all a ∈ A. Thus, φ⊕ θ u ψ ⊕ θ, as required.

We now turn to the main results of this section. Taking motivation by Lemma 2.3.3, we firstly
aim to show that the relevance of proper asymptotic unitary equivalence in KK-theory is even
stronger than what we have already seen. All the following results are derived from [30].

Theorem 2.3.5. Let (φ, ψ) ∈ Enuc(A,B). Then the following are equivalent

i) [φ, ψ] = 0

ii) there exists weakly nuclear representation θ : A→M(B ⊗K) such that φ⊕ θ u ψ ⊕ θ

iii) for any weakly nuclear, nuclearly absorbing representation θ : A→M(B ⊗K), φ⊕ θ u ψ ⊕ θ

Proof.

i) =⇒ ii) ([10], Theorem 3.6)

ii) =⇒ i) Since φ⊕ θ u ψ ⊕ θ, by Lemma 2.3.3 we get that [φ⊕ θ, ψ ⊕ θ] = 0,

hence [φ, ψ] + [θ, θ] = 0, and therefore Lemma 2.2.15 implies that [φ, ψ] = 0.

Now, Theorem 3.8 in [10] asserts that ii) is equivalent to

iii′) for any weakly nuclear, nuclearly absorbing representation θ : A→M(B ⊗K),

φ⊕ θ∞ u ψ ⊕ θ∞
hence it suffices to show that iii) ⇐⇒ iii′). To this end, let θ : A → M(B ⊗ K) be a weakly
nuclear, nuclearly absorbing representation, then by Note 2.2.11 θ∞ is weakly nuclear, and there-
fore θ ⊕ θ∞ ∼asymp θ by Proposition 2.2.12. So, θ∞ ∼asymp θ and by Lemma 2.3.4 the desired
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result folllows.

Proposition 2.3.6. Let A and B be C∗-algebras such that A is separable and B σ-unital. If x ∈
KKnuc(A,B) and ψ : A → M(B ⊗ K) is a weakly nuclear, nuclearly absorbing representation, then
there exists weakly nuclear, nuclearly absorbing representation φ : A→M(B ⊗K) such that x = [φ, ψ]

Proof. Let (θ, ρ) ∈ Enuc(A,B) such that x = [θ, ρ]. Then by Proposition 2.2.12 there is a norm
continuous path of unitaries (ut)t≥0 ⊂M(B ⊗K) witnessing ρ⊕ ψ ∼asymp ψ. Now, since

utρ⊕ ψu∗t − ψ(a) ∈ B ⊗K for all t ≥ 0

it follows that
utρ⊕ ψu∗t − u0ρ⊕ ψu∗0 ∈ B ⊗K for all t ≥ 0

Moreover, since (θ, ρ) is a Cuntz pair we get that

θ ⊕ ψ(a)− ρ⊕ ψ(a) ∈ B ⊗K, for all a ∈ A

hence Adu0(θ ⊕ ψ(a) − ρ ⊕ ψ(a)) ∈ B ⊗ K, for all a ∈ A. So, if we set λt = Adu0(θ ⊕ ψ),
λ′t = Adut(ρ ⊕ ψ), by the observations above we have that λt(a) − λ′t(a) ∈ B ⊗ K, for all a ∈ A,
t ≥ 0, while both λt and λ′t are weakly nuclear representations, for any t ≥ 0, since θ, ρ, ψ

are weakly nuclear representations. Thus, (λt, λ
′
t) ∈ Enuc(A,B) and since all the conditions of

Definition 2.2.14 are satisfied, we obtain an homotopy(defined in [0,∞), instead of [0, 1])between
(Adu0

(θ ⊕ ψ),Adu0
(ρ⊕ ψ)) and (Adu0

(θ ⊕ ψ), ψ). Hence,

[Adu0
(θ ⊕ ψ),Adu0

(ρ⊕ ψ)] = [Adu0
(θ ⊕ ψ), ψ]

and using the fact that homotopy classes in KKnuc(A,B) are independent of the selection of
isometries, it follows that

[θ ⊕ ψ, ρ⊕ ψ] = [Adu0(θ ⊕ ψ),Adu0(ρ⊕ ψ)] = [Adu0(θ ⊕ ψ), ψ]

and in turn that
[θ, ρ] = [Adu0(θ ⊕ ψ), ψ]

So, x = [Adu0(θ⊕ψ), ψ], and if we set φ = Adu0(θ⊕ψ), then φ is a weakly nuclear representation
and since ψ is nuclearly absorbing representation, it follows that φ is nucleraly absorbing , as
required.

Proposition 2.3.7. Let A be a separable C∗-algebras and E a separable, unital, Q-stable C∗-algebra.
Also, let φ, ψ : A → E be two nuclear ∗-homomorphisms, λ : E → M(I) the canonical ∗-homorphism
and note that (λφ, λψ) ∈ Enuc(A, I).
If λφ, λψ are nuclearly absorbing representations and [λφ, λψ] = 0 in KKnuc(A, I), then there exists

(un)n ⊆ E sequence of unitaries such that

‖φ(a)− unψ(a)u∗n‖
n→∞−−−−→ 0

for all a ∈ A.

Proof. Since [λφ, λψ] = 0 and λφ, λψ nuclearly absorbing representations, by Theorem 2.3.5 we
get that λφ ⊕ λψ u λψ ⊕ λψ and λφ ⊕ λφ u λψ ⊕ λφ. In particular, since there is a unitary
u ∈ M2(I + C1M(I)) such that Adu ◦ (λφ ⊕ λψ) = λψ ⊕ λφ, then there is a sequence of unitaries
(un)n ⊆M2(I + C1M(I)) satisfying

‖λφ⊕ λφ(a)− un(λψ ⊕ λψ(a))u∗n‖
n→∞−−−−→ 0, ∀ a ∈ A

Now, since λ is unital, there are u′n ∈ M2(I + C1E) unitaries, such that λ2(u′n) = un, for each
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n ∈ N. Thus,

‖λφ⊕ λφ(a)− un(λψ ⊕ λψ(a))u∗n‖ = ‖λ2[φ⊕ φ(a)− u′n(ψ ⊕ ψ(a))u′∗n ]‖

and since the restriction of λ2 to M2(I + C1E) is injective we obtain that

‖φ⊕ φ(a)− u′n(ψ ⊕ ψ(a))u′∗n ‖ = ‖λφ⊕ λφ(a)− un(λψ ⊕ λψ(a))u∗n‖
n→∞−−−−→ 0

i.e φ⊕ φ and ψ ⊕ ψ are apprroximately unitarily equivalent as ∗-homomorphisms A→M2(E).
Now, consider a unital embedding M2(C) ↪→ Q, which induces a unital embedding E⊗M2(C)→

E ⊗ Q, and if we apply this embedding to the approximate unitary equivalence above we get
that φ ⊗ 1Q is approximately unitarily equivalent to ψ ⊗ 1Q as ∗-homorphisms A → E ⊗Q. So,
let ε > 0 and employ the sequence of ∗-homomorphisms θn : E ⊗Q → E constructed in the proof
of Theorem 1.1.11, which satisfy that

‖θn(x⊗ 1Q)− x‖ n→∞−−−−→ 0, ∀ x ∈ E

Then, there exist unitaries (wn)n ⊆ E ⊗Q and N ∈ N such that

‖φ(a)− θN (φ(a)⊗ 1Q)‖ < ε/3

‖φ(a)⊗ 1Q − wN (ψ(a)⊗ 1Q)w∗N‖ < ε/3

‖ψ(a)− θN (ψ(a)⊗ 1Q)‖ < ε/3

from which relations it follows that,

‖φ(a)− θN (wN )ψ(a)θN (w∗N )‖ < ε

where θN (wN )) unitary in E, as desired.

2.4 Trace-kernel extensions

In this section we introduce the notion of a trace-kernel extension and the class of admissible
kernel C∗-algebras. Again, as in the previous section, we will emphasize on specific results that
will be rather important in the proofs of the following chapter. But before entering the main
core of this section, we digress momentarily to define some notions that emerge in the sequel of
the project.

Definition 2.4.1. Let B, I be two C∗-algebras. An extension of B by I is a short exact sequence

0 I E B 0ι q

of C∗-algebras. When A and B are fixed we refer to the above extension by the triple (ι, E, q). More-
over, E is called the extension algebra.

Note 2.4.2. An interesting fact about extensions is that there is a way to transform them into
∗-homomorphisms without losing any essential information. The ∗-homorphism that does this
work, is called Busby invariant. For details see chapter 3 in [18].

There are plenty of types of extensions. Below we give the definition for a portion of them.
Recall, that an element in a C∗-algebra is called full, if it is not contained to any proper two-
sided ideal of the C∗-algebra. Moreover, a ∗-homomorphism φ : A→ B is called full, if φ(a) is a
full element, for any a ∈ A, while if B is unital then φ is called unitizably full if the unitization
φ̃ : Ã→ B is full. It is a fact that if both A,B are unital, then φ is unitizably full if, and only
if, φ is full and 1B − φ(1A) is full.
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Definition 2.4.3. Let B, I be two C∗-algebras and let

0 I E B 0ι q

be the extension of B by I. Then,i) we say that the extension is trivial if the short exact sequence above splits,

ii) we say that the extension is full if the corresponding Busby invariant is full ∗ − homomorphism,

iii) we say that is weakly nuclear, if the splitting map is weakly nuclear and that is nuclearly absorbing,

if it is equivalent to its own sum with any trivial weakly nuclear extension,

iv) we say that the extension algebra E has the purely large property if: for every e ∈ E+ that is not

contained in I, the hereditary subalgebra that it generates, eIe, contains a stable subalgebra that

is not contained to any proper two-sided ideal in I, i.e it is full in I

One more notion that we will need is the one of corona factorization property. Below, we collect
equivalent conditions for a C∗ algebra having the corona factorization property.

Definition 2.4.4 ([19], Definition 2.1). Let B be a separable C∗-algebra. We say that B has the
corona factorization property if it satisfies one of the following equivalent conditions:

i) every full extension of B is nuclearly absorbing,

ii) every full trivial extension of B is nuclearly absorbing,

iii) for every projection p which is full in M(B) there is an element x in M(B) such that xpx∗ = 1M(B)

iv) for every projection q which is full in M(B)/B there is an element

y in M(B)/B such that yqy∗ = 1M(B)/B

We end this brief discussion about extensions and the corona factorization property with a
result that incorporates these new notions and which will be employed in the last chapter. The
proof is ommited and it can be found in [30].

Theorem 2.4.5. If A is a separable C∗-algebra and B is a σ-unital C∗-algebra with the corona
factorization property, then every unitizably full representation A→M(B⊗K) is nuclearly absorbing.

Now, we get back to the main scope of this section and in the following lines we set up the
environment that we are going to work with.

Let B be a simple, unital C∗-algebra, with unique tracial state τB and define the 2-norm on
B by ‖b‖2 = τ(b∗b)1/2, for all b ∈ B. Moreover, denote by l∞(B) the C∗-algebra of bounded
sequences in B and for a free ultrafilter ω on the natural numbers, we define

Bω = l∞(B)/{b = (bn)n ∈ l∞(B) : lim
n→ω
‖b‖ = 0}

Bω = l∞(B)/{b = (bn)n ∈ l∞(B) : lim
n→ω
‖b‖2 = 0}

Since τB is contractive, ‖b‖ ≤ ‖b‖2 and therefore we can define the following extension

0 JB Bω Bω 0
jB qB

where qB is the quotient map, JB = Ker(qB) and jB the inclusion map. The C∗-algebra JB is
referred to as the trace-kernel ideal associated to B, while the extension defined above is called
the trace-kernel extension associated to B.

Definition 2.4.6. A C∗-algebra I is called admissible kernel if it has real rank zero and stable rank
one, K0(I) is divisible, K1(I) = 0, the von Neumann - Murray semigroup D(I) = P∞(I)/∼0

is almost
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unpreforated, and every projection in I ⊗K is von Neumann - Murray equivalent to a projection in I.
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Our main goal is to prove the following result, which collects important characteristics of trace-
kernel extensions and it will be used extensively in the sequel.

Proposition 2.4.7 ([30], Proposition 3.2). Let B be a simple, unital, Q-stable C∗-algebra with unique
tracial state τB, such that every quasi-trace on B is a trace and K1(B) = 0, then

i) Bω is a II1-factor

ii) Bω has real rank zero and stable rank one, has unique tracial state τBω ,

has strict comparison of positive elements with respect to its trace, is separably

Q-stable and has trivial K1-group

iii) JB is an admissible kernel

Proof. i) Firstly we claim that if πτB : B → B(HτB ) is the GNS-representation of B with respect
to its unique tracial state τB , then (πτB (B)′′)ω ∼= Bω/JB . To this end, set N = πτB (B)′′, and
consider the ∗-homomorphism

Φ: Bω → Nω

given by
Φ([(b1, b2, b3, ...)]) = [(πτB (b1), πτB (b2), πτB (b3), ...)]

Φ is well defined: let b ∈ Bω such that b = 0, since B is simple, πτB is a faithful representation
and therefore limn→ω ‖bn‖ = 0 implies that limn→ω ‖πτB (bn)‖ = 0 and since τB is contractive it
follows that ‖πτB (bn)‖2 = ‖bn‖2 ≤ ‖bn‖ = ‖πτB (bn)‖, for all n ∈ N, hence limn→ω ‖πτB (bn)‖2 = 0,
which shows that Φ(b) = 0.
Now, we aim to show that Φ is surjective. So, let x ∈ N, self-adjoint, ‖x‖ ≤ 1, then by

Kaplansky’s Density Theorem, there are bn ∈ B, n ∈ N, such that πτB (bn) ∈ (πτB (B))1, self-adjoint
and πτB (bn)

sot−−→ x. Furhermore, we want to restrict the norm of bn, such that ‖bn‖ ≤ ‖x‖, for
all n ∈ N. To do so, define a continuous function f : R→ R by

f(t) =

{
t, |t| ≤ ‖x‖
‖x‖2 /t, |t| ≥ ‖x‖

since πτB (bn)
sot−−→ x, Proposition 19.2 in [34] implies that f(πτB (bn))

sot−−→ f(x) = x and moreover
we observe that ‖f(πτB (bn))‖ = r(f(πτB (bn))) = f(r(πτB (bn))) ={

‖πτB (bn)‖ , ‖πτB (bn)‖ ≤ ‖x‖
‖x‖2 / ‖πτB (bn)‖ , ‖πτB (bn)‖ ≥ ‖x‖

which shows that ‖f(πτB (bn))‖ ≤ ‖x‖ for all n ∈ N. Hence, if we set cn = f(bn), we have that
cn

sot−−→ x and ‖cn‖ = ‖πτB (f(bn))‖ = ‖f(πτB (bn))‖ ≤ ‖x‖, for all n ∈ N, as desired. Since any
element in N is a linear combination of self-adjoint elements, we get that for any x ∈ N we can
find such a sequence cn in B satisfying these conditions.
Before continuing, consider the quotient maps

ρB : l∞(B)→ Bω

and
ρN : l∞(N)→ Nω

and let x = ρN (x1, x2, x3, ...), xn ∈ N, n = 1, 2, 3, .... Then, for each k ∈ N we find by
the previous observation an element bk ∈ B such that ‖bk‖ ≤ ‖xk‖ and moreover such that
‖πτ (bk)− xk‖2 < 1/k. Then, Φ(ρB(b1, b2, b3, ...)) = ρN ((πτB (b1), πτB (b2), πτB (b3), ...)), and since
limk ‖πτ (bk)− xk‖2 = 0, it follows that ρN ((πτB (b1), πτB (b2), πτB (b3), ...)) = x. Hence Φ(b) = x,
where b = ρB((b1, b2, b3, ...)) ∈ Bω, showing that Φ is surjective.
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At this point, in order to establish the desired isomorphism (πτB (B)′′)ω ∼= Bω/JB , it remains
to show that JB = KerΦ. So, let b = ρB(b1, b2, b3, ...) ∈ JB , then limn→ω ‖bn‖2 = 0, and if ξτB is
a cyclic vector for the GNS-representation (πτB , HτB ), we obtain that

〈πτB (b∗nbn)ξτB , ξτB 〉 = τB(b∗nbn)
n→ω−−−→ 0

Hence, limn→ω ‖πτB (bn‖2 = 0, or equivalently Φ(b) = ρN (πτB (b1), πτB (b2), πτB (b3), ...) = 0. On the
other hand, if b = ρB(b1, b2, b3, ...) ∈ KerΦ, then

lim
n→ω
‖πτB (bn)‖2 = 0 =⇒ lim

n→ω
〈πτB (b∗nbn)ξτB , ξτB 〉 = 0 =⇒ ‖bn‖2 = 0

hence b ∈ JB , concluding that JB = KerΦ. Thus, since Φ is also surjective, we obtain our first
claim, namely that (πτB (B)′′)ω ∼= Bω/JB . Moreover, since by consrtuction Bω/JB ∼= Bω, in order
to show that Bω is a II1 - factor, it is enough to show that (πτB (B)′′)ω is a II1 - factor.
To this end, let us first observe that since 〈πτB (b1)πτB (b2)ξτB , ξτB 〉 = 〈πτB (b2)πτB (b1)ξτB , ξτB 〉,

for any b1, b2 ∈ B, then weak density of πτB (B) in N , implies that the following map

τN : N → C

given by
τN (x) = 〈x(ξτB ), ξτB 〉

is a normal tracial state on N , τN |πτB (B) = τB , and we claim that it is faithful. To show this,
it suffices for ξτB to be a separating vector for N . So, let T ∈ N such that TξτB = 0, then for
any b ∈ B,

‖TπτB (b)ξτB‖
2

= τN (πτB (b∗)T ∗TπτB (b)) = τN (πτB (b)πτB (b∗)T ∗T ) = 0

Thus, T is zero in πτB (B)ξτB , and since ξτB is cyclic, we obtain that T = 0, and in turn that
ξτB is a separating vector of N , as claimed. Now, let p ∈ πτB (B)′ ∩N and define the function

θ : N → C

by
θ(x) = τN (px) x ∈ N

Then, θ is a weakly continuous, positive linear functional, and so if we restrict it to πτB (B) it
is constant t times the unique tracial state on πτB (B). Thus, by weak continuity of θ and weak
density of πτB (B) in N we get that θ(x) = tτN (x), for any x ∈ N. Therefore, τN (p) = t, and
0 = θ(1 − p) = tτN (1 − p) = τN (p)τN (1 − p). But, as p, 1 − p are positive and τN is faithful,
it follows that p = 0 or 1 − p = 0, thus in any case p is a trivial projection. Since p was
arbitrary and πτB (B)′ ∩N as a von Neumann algebra is the closed linear span of its projections,
we conclude that πτB (B)′ ∩ N = C, which shows that N is a factor. Now, the existence of a
faithful, tracial state on N immediately implies that N is a finite factor, and that N is infinite
dimensional, implies that N is a II1 - factor (See [29], Corollary 12). Then, the ultrapower of N ,
Nω is again a II1 - factor by Theorem 17 in [29]. Hence, we conclude that Bω is a II1 - factor,
as desired.
ii) That B has strict comparison of positive elements with respect to its trace follows from

Theorem 1.2.22 and Theorem 1.2.25, and the assumption that any quasi-trace on B is a trace.
Furthermore, since τB is faithful tracial state, then the induced trace on Mn(B) is again faithful,
for any n ∈ N, and so B is stably finite. Hence, by Corollary 1.3.13, B has stable rank one,
while B has real rank zero by Theorem 7.2 in [28]. Now, it is a fact that all three properties are
preserved by ultraproducts; for strict comparison see Lemma 1.23 in [3] and for real rank zero
see Proposition 3.2 in [31]. To see that Bω has stable rank one, let ε > 0 and b = (bn)n ∈ l∞(B),
then density of the invertible group in B, implies that for each bn we can find cn ∈ GL(B) to
be ε-close to bn. But, since we have to be able to control the norm of these invertible elements,
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we employ the fact that we can select these cn ∈ B such that

‖cn − bn‖ < ε

and ∥∥c−1
n

∥∥ ≤ 2ε−1

Then, c = (cn) ∈ l∞(B) invertible and

‖b− c‖ = sup{‖bn − cn‖ : n ∈ N} < ε

Hence, l∞(B) has stable rank one. Now, for ε > 0, let the quotient map πB : l∞(B) → Bω, and
take x = πB(b), b ∈ l∞(B). Then, there exists c ∈ GL(l∞(B)) such that ‖b− c‖ < ε, and since
πB(c) ∈ GL(Bω) and

‖πB(c)− x‖ = ‖πB(c)− πB(b)‖ ≤ ‖c− b‖ < ε

we deduce that Bω has stable rank one as well. Now, since B is Q-stable, that Bω is separably
Q-stable follows from Proposition 1.4.16. Hence it remains to show that Bω admits unique tracial
state and that K1(Bω) = 0. For the uniquensess of the tracial state on Bω, firstly let T (Bω) to
be the set of all traces on Bω, and

Tω(Bω) = { lim
n→ω

τn : τn tracial state on Bn = B}

If τB is the unique tracial state on B, then the map τ defined by

τ(b) = lim
n→ω

τB(bn), b ∈ Bω

belongs in Tω(Bω) and in fact uniqueness of τB shows that

Tω(Bω) = {τ}

Now, it is a fact that T (Bω) = Tω(Bω)
w∗

(see [23], Theorem 8), hence T (Bω) = {τ}, as required.
Finally, we embark to show that K1(Bω) = 0. Since Bω has stable rank one Theorem 2.10

in [25], asserts that K1(Bω) ∼= GL(Bω)/GL0(Bω), where GL0(Bω) is the connected component
of the identity in GL(Bω). So, by using the well known map GL(Bω) → U(Bω), given by
x 7→ x|x|−1(= u), and assuming that U(Bω) is path connected, we get that for any x ∈ GL(Bω),
x is homotopic to u(i.e x ∼h u), and since u ∼h 1, it follows that x ∼h 1 in GL(Bω). Thus, if
we show that U(Bω) is path connected then K1(Bω) ∼= GL(Bω)/GL0(Bω) = 0. To this end, let
u ∈ U(Bω) and let (un)n ∈ l∞(B) representing u. Since B has stable rank one and K1(B) = 0,
by employing again Theorem 2.10 in [25], we get that un ∼h 1, for all n ∈ N. Moreover, since
B has real rank zero it is a fact that B has the weak (FU) property, i.e the set of unitaries in
Bω with finite spectrum is dense in U(Bω) (see main result in [21]). Hence, for any un we find
wn ∈ U(B) with finite spectrum such that ‖un − wn‖ < 1/n, and moreover we can find hn ∈ B
self-adjoint, ‖hn‖ ≤ π such that wn = exp ihn (See Lemma 2.1.3 and Proposition 2.1.6 in [20]).
Set h = πB(h1, h2, h3, ...) ∈ Bω and w = exp ih, then since

‖un − wn‖
n→ω−−−→ 0

it follows that u = w = exp ih in Bω, thus again by Proposition 2.1.6 in [20], u ∈ U0(Bω). Since
u was an arbitrary element in U(Bω), we get that U(Bω) is path connected, hence K1(Bω) = 0

iii) Let us show first that any projection in JB ⊗ K is von Neumann-Murray equivalent to a
projection in JB . Since considering projections in JB ⊗K is the same as considering projections
in M∞(JB), let d ≥ 1 and p ∈ Md(JB) a projection. Then p = (pij)ij , where pij = (pnij)n ∈ JB ,
which implies that

0 = lim
n→ω

∥∥pnij∥∥2
= lim
n→ω

τB((pnij)
∗pnij) = τBω (p∗ijpij), ∀ i, j = 1, 2, ..., d
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In particular, τBω (pii) = 0, for all i = 1, 2, ..., d, hence

(τBω ⊗ Trd)(p) = 0

where Trd is the usual normalised trace on Md(C). Now, observe that

(τBω ⊗ Trd)(p) = 0 < 1 = (τBω ⊗ Trd)(1Bω⊕0d−1
)

and since Bω has strict comparison, there is a partial isometry w ∈ Md(Bω) such that w∗w = p

and ww∗ ≤ 1Bω ⊕ 0d−1. As w∗w ∈ Md(JB), then ww∗ = ww∗ww∗ ∈ Md(JB), and therefore
ww∗ = q⊕0d−1, for some projection q ∈ JB . Since q⊕0d−1 is von Neumann-Murray equivalent to
q, we obtain that p is von Neumann-Murray equivalent to q. Thus, every projection in JB ⊗ K
is von Neumann-Murray equivalent to a projection in JB .
Now, we argue that K1(JB) = 0. Firstly, the trace-kernel extension induce the following exact

sequence in K-groups (See Proposition 10.2.4 in [20])

K0(Bω) K0(Bω) K1(JB) K1(Bω)
K0(qB) δ0 K1(jB)

and since K1(Bω) = 0, to prove that K1(JB) = 0, it suffices to show that Ker(δ0) = Im(K0(qB)) =

K0(Bω), or equivalently that K0(qB) is a surjective group homomorphism. So, let t ∈ [0, 1] and
find tn ∈ Q ∩ [0, 1] such that limn→ω tn = t. Since B is Q-stable we find a unital embedding
Q → Q⊗B ∼= B, given by the map x 7→ x⊗ 1B . Then, for each n ∈ N, we can find a projection
pn ∈ B such that τB(pn) = tn. Let p be the projection in Bω defined by the sequence (pn)n,
and we see that

τBω (p) = lim
n→ω

τB(pn) = t

hence, for any t ∈ [0, 1] and n ∈ N we can select a projection p ∈Mn(Bω) such that τBω (pii) = t,
i = 1, 2, ..., n. Thus, the induced trace τ̂Bω = τBω ⊗ Trn : K0(Bω) → R, is surjective. Moreover,
since Bω is a II1-factor, τBω is faithful, and so τ̂Bω is faithful, and by Proposition E in [29], we
get that

{τBω (p) : p ∈ Proj(Bω)} = [0, 1]

so arguing as above we obtain that τ̂Bω is also surjective. Now, since by construction τBω =

τBω ◦ qB , it follows that τ̂Bω = τ̂Bω ◦K0(qB), hence K0(qB) is a surjective group homomorphism,
as desired.
Let us now show that K0(JB) is a divisible group. Since Bω is separably Q-stable, then

also JB is separably Q-stable by Proposition 1.4.16. Thus, we can find an increasing sequence
(Ji)i of Q-stable, separable C∗-subalgebras of JB , such that ∪iJi = JB . Now, since each Ji is
Q-stable, we can view it as the inductive limit of the inductive sequence (Mkj (Ji), φj), where
φj : Mkj (Ji)→Mkj+1(Ji), are injective, unital ∗-homomorphisms with multiplicity kj+1/kj , j ∈ N.
By continuity of K0, we see K0(Ji), as the inductive limit of (K0(Mkj(Ji)),K0(φj)), and let
g ∈ K0(Ji), n ∈ N. Suppose that g ∈ K0(Mkj (Ji)), for some j ∈ N, and if we select m ∈ N
such that km/kj = n, it follows that K0(φkm,kj )(g) = ng. But, K0(φkm,kj )(g) and g represent
the same element in K0(Ji), hence ng = g in K0(Ji), and since g, n were arbitrary, we conclude
that K0(Ji) is a divisible group, for any i ∈ N. Now, since ∪iJi = JB , we can view JB as the
inductive limit of (Ji, ψi), where ψi are the inclusions, and using continuity of K0 along the fact
that inductive limits preserve divisibility, we obtain that K0(JB) is a divisible group.
For proving that D(JB) is almost unperforated, we find again the increasing sequence (Ji)i and

we see each Ji as an inductive limit exactly in the same fashion as above. Now, by continuity
of D(−), we can see D(Ji) as the inductive limit of (D(Mkj (Ji), D(φj)) and let m,m′ ∈ N,
xj ∈ D(Mkj (Ji)), j = 1, 2, such that m′ < m and mx1 ≤ m′x2. Then, there exists y ∈ D(Ji) such
that mx1 = y and y ≤ m′x2, and observe that since mx1 = x1 ⊕ x1 ⊕ · · · ⊕ x1, then if j1, j2 ∈ N,
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such that kj1/k1 = m and kj2/k2 = m′, we get that

mx1 = D(φ(φkj1 ,k1))(x1)

and
m′x2 = D(φ(φkj2 ,k2))(x2)

But, D(φ(φkj1 ,k1))(x1) represents the same element as x1 in D(Ji) and similarly for x2. Hence,
x1 = y ≤ m′x2 = x2, showing that D(Ji) is an almost unperforated semigroup for all i ∈ N. So,
by regarding again JB as an inductive limit, using continuity of D(−) and the fact that the
property "almost unperforated" is preserved by inductive limits, we conclude that D(JB) is an
almost unperforated semigroup.
Finally, that JB has stable rank one and real rank zero follows from Corollary 2.8 in [5] and

Theorem 4.3 in [26], respectively.

We end this chapter by introducing the UCT class of C∗-algebras without delving into details,
and by stating one more result about admissible kernels that will be critical in the sequel. The
proof is ommited and can be found in [30].

Definition 2.4.8 ([32], Definition 1.7). A separable C∗-algebra is said to satisfy the universal coeffi-
cient theorem (UCT) if

0 ExtZ(K∗(A),K∗+1(B)) KK(A,B) HomZ(K∗(A),K∗+1(B)) 0

is an exact sequence, for any σ-unital C∗-algebra B.

Proposition 2.4.9.

i) The property of being admissible kernel is separably inheritable.

ii) If I is an admissible kernel, then Mn(I) is an admissible kernel for all n ∈ N.

iii) If I is a separable admissible kernel, then it is stable and has the corona factorization property.

iv) If A is a separable C∗ − algebra satisfying the UCT and I is a separable admissible kernel, then

the canonical homomorphism KKnuc(A, I)→ HomZ(K0(A),K0(I)) is an isomorphism.
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3 Main results

3.1 An existence and a classification result

In this chapter we present the main outcomes of this project. We will start with a preliminary
result, an then we proceed to show one existence and one classification result. As a last step
we will embark in improving these results, finally reaching to a rather interesting theorem about
unital, simple AF -algebras with unique trace and divisible K0-group. This will be the ending
point of this project. All the material of this chapter is from [30].

Lemma 3.1.1. Let the following commuting diagram

0 I P B1 0

0 I B2 D 0

j1 α1

α2 β1

j2 β2

of C∗-algebras with exact rows. If A is a C∗-algebra and φi : A → Bi, i = 1, 2 are ∗-homomorphisms
satisfying that β1 ◦ φ1 = β2 ◦ φ2, then there exists a unique ∗-homomorphism φ : A → P such that
ai ◦ φ = φi, i = 1, 2. Moreover, φ is nuclear if, and only if, φ1 and φ2 are nuclear.

Proof. Let Q be the pullback C∗-algebra of

B1

B2 D

β1

β2

i.e. Q = {(b1, b2) ∈ B1 ⊕ B2 : β1(b1) = β2(b2)} and define a ∗-homomorphism π : P → Q by
π(p) = (a1(p), a2(p)). We claim that π is an ∗-isomorphism. For injectivity, let p ∈ P such that
a1(p) = a2(p) = 0, then ∃ x ∈ I such that j1(x) = p, but since 0 = a2(p) = a2(j1(x)) = j2(x) and
j2 injective, we get that x = 0 and in turn that p = 0. Now, let q = (b1, b2) ∈ Q, and see that
∃ p ∈ P , such that a1(p) = b1, which implies that β2(a2(p) − b2) = 0. Hence, j2(x) = a2(p) − b2
for some x ∈ I and therefore a2(p− j1(x)) = b2, but since a1(p− j1(x)) = a1(p) = b1, we conclude
that π is surjective.
So, if we set φ(−) = π−1(φ1(−), φ2(−)) : A→ P , then φ is a well defined ∗-homomorphism, since

b1φ1 = b2φ2, and it is trivially checked that aiφ = φi, i = 1, 2. This φ is unique, since if there
exists φ′ : A→ P such that aiφ′ = φi, i = 1, 2, then φ(a)−φ′(a) ∈ Ker(a1)∩Ker(a2) = Ker(π) = 0,
for all a ∈ A.
Now, if φ is nuclear then it is obvious that φ1 and φ2 are nuclear. On the other hand, suppose

that φ1, φ2 are nuclear ∗-homomorphisms and we claim that φ is nuclear as well. To this end,
fix a C∗-algebra C and consider the canonical map

ρ : A⊗max C → A⊗min C

Moreover, using the fact that maximal tensor product respects exact sequences we get the fol-
lowing commuting diagram

0 I ⊗max C P ⊗max C B1 ⊗max C 0

0 I ⊗max C B2 ⊗max C D ⊗max C 0

j1⊗id α1⊗id

α2⊗id β1⊗id
j2⊗id β2⊗id

of C∗-algebras with exact rows. Since φi is nuclear, there is a ∗-homomorphism ψi : A⊗min C →
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Bi ⊗max C such that ψi ◦ ρ = φi ⊗max idC , for each i = 1, 2 by Corollary 3.8.8 in [6]. Then,

(β1 ⊗max idC) ◦ ψ1 = (β2 ⊗max idC) ◦ ψ2

and so by the first part of the proof, there exists unique ∗-homomorphism ψ : A⊗minC → P⊗maxC

satisfying that (ai⊗idC)◦ψ = ψi, for each i = 1, 2. But then ai⊗idC(φ⊗max idC(x)−ψ◦ρ(x)) = 0,
for all x ∈ A⊗max C, i = 1, 2, and since Ker(a1 ⊗ idC) ∩Ker(a2 ⊗ idC) = 0, we get that

φ⊗max idC = ψ ◦ ρ

Hence, φ⊗max idC factors through A⊗minC and since C was arbitrary, φ is nuclear by Corollary
3.8.8 in [6].

Before proceeding to the proof of the first major result of this section, let us collect some
∗-homomorphisms that are going to be employed without further explanation. First, recall from
the previous chapter that for B simple, unital C∗-algebra we have the trace-kernel extension

0 JB Bω Bω 0
jB qB

Moreover, for any C∗-algebra C, ι2 : C →M2(C) denotes the inclusion into the (1, 1)-corner and
for any ∗-homomorphism f : A→ B we denote the induced map Mn(A)→Mn(B), again by f .

Proposition 3.1.2. Suppose A is a separabe, unital, exact C∗-algebra satisfying the UCT and B

simple, unital, Q-stable C∗-algebra with unique trace τB such that every quasi trace on B is a trace
and K1(B) = 0.
If τA is a faithful, amenable trace on A and σ : K0(A)→ K0(Bω) is a group homomorphism such that

σ([1A]0) = [1Bω ]0 and τ̂Bωσ = τ̂A, then there is a full, unital, nuclear ∗-homomorphism φ : A → Bω

such that K0(φ) = σ and τBωφ = τA.

Proof. Since B is Q-stable there is a unital embedding Q
ι
↪−→ B, which is also trace-preserving due

to the uniqueness of the trace in Q and B. Moreover consider the induced map ιω : Qω → Bω

which makes the following diagram commutative

Q B

l∞(Q) l∞(B)

Qω Bω

ι

ι∞

πQ πB

ιω

Hence, ιω is a unital embedding ∗-homomorphism, and we observe that it is also trace-preserving,
since if x = πQ((xn)n) ∈ Qω, then ιω(x) = πB((xn)n) and therefore

τBω ιω(x) = lim
n→ω

τB(xn) = lim
n→ω

τQ(xn) = τQω (x)

Then, we compose ιω with the unital, full, nuclear, trace-preserving ∗-homomorphism A → Qω

given in Theorem A.0.6, we get a unital, full, nuclear, ∗-homomorphism ψ : A → Bω, satisfying
τBωψ = τA. From these conditions on ψ the only non-trivial is that ψ is full, but this follows in
the exact same fashion as in the proof of Theorem A.0.6.
Note that since τ̂Bω = τ̂BωK0(qB), and τ̂Bωσ = τ̂A , it follows that

τ̂BωK0(qBψ) = τ̂BωK0(qB)σ

but, by Proposition 2.4.7, Bω is a II1-factor, which entails that τ̂Bω is an isomorphism, hence

K0(qBψ) = K0(qB)σ
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So the image of σ − K0(ψ) lies inside Ker(K0(qB)) = ImK0(jB). Now, by the long exact
sequence of K-groups induced by the trace-kernel extension and the fact that K1(Bω) = 0 (see
Proposition A.0.12) it follows that K0(jB) is injective. Using injectivity of K0(jB), we can define
a group homomorphism κ : K0(A)→ K0(JB) by

κ([a]0) = [y]0

where K0(jB)([y]0) = σ −K0(ψ)([a]0), and note that K0(jB)κ = σ −K0(ψ).
Furthermore, ψ satisfies the conditions of Proposition A.0.9 and therefore there is E0 ⊆ Bω

separable C∗-subalgebra such that the corestriction of ψ to E0 is again unital, full and nuclear,
while by Proposition A.0.11 we find I0 ⊆ JB separable C∗-subalgebra and k0 : K0(A) → K0(I0)

group homomorphism such that, k = K(ι0)k0, where ι0 : I0 ↪→ JB is the inclusion map. As
JB is an admissible kernel and being an admissible kernel is a separably inheritable property by
Proposition 2.4.7 and Proposition 2.4.9, respectively, we can then find I ⊆ JB separable admissible
kernel containing I0, E ⊆ Bω separable C∗-algebra containing E0 and D ⊆ Bω separable C∗-
algebra by Proposition 2.4.7, such that the following diagram

0 I E D 0

0 JB Bω Bω 0

ĵ

ιI

q̂

ιE ιD

jB qB

(1)

commutes, and the vertical maps are the inclusions. Let ψ̂ : A → E be the corestriction of ψ
to E and κ̂0 : K0(A) → K0(I) the group homomorphism which factors through K0(I0). As the
corestriction of ψ to E0 ⊆ E is unital, full and nuclear then ψ̂ is unital, full and nuclear and we
now claim that ι2ψ̂ : A→M2(E) is unitizably full and nuclear.
Nuclearity of ι2ψ̂ is immediate, and for being unitizably full it suffices to show that ι2ψ̂ is full

and the element 1M2(E) − ι2ψ̂(1A) is full in M2(E). Let us observe first that if we denote by J

the ideal in M2(E) containing
(

1E 0
0 0

)
then, if v =

(
0 0

1E 0

)
it follows that v∗v =

(
1E 0
0 0

)
∈ J and

so v∗ = v∗vv∗ ∈ J , which in turn implies that vv∗ =
(

0 0
0 1E

)
∈ J . Hence, J contains the identity

1M2(E), and therefore J = M2(E). Now, let a ∈ A then that ψ̂(a) is full implies that there is
n ∈ N and x1, x2, ..., xn ∈ E such that

n∑
i=1

xiψ̂(a)x∗i = 1E

thus, (
1E 0

0 0

)
=

n∑
i=1

(
xi 0

0 0

)(
ψ̂(a) 0

0 0

)(
x∗i 0

0 0

)
∈ 〈i2ψ̂(a)〉

and by the previous argument we get that 〈i2ψ̂(a)〉 = M2(E), hence i2ψ̂ is a full ∗-homomorphism.
Moreover, since 1M2(E) − i2ψ̂(1A) =

(
0 0
0 1E

)
, using again the argument above we know that this

element is full in M2(E), concluding that i2ψ̂ is a unitizably full ∗-homomorphism.
If λ : M2(E)→M(M2(I)) is the canonical ∗-homomorphism, then λι2ψ̂ is unitizably full, since

λ is unital and ι2ψ̂ is unitizably full, and note that since I is a separable admissible kernel then
M2(I) is a separable admissible kernel and in turn is stable and has the corona factorization
property by Proposition 2.4.9. Hence, λι2ψ̂ is nuclearly absorbing by Theorem 2.4.5. Now, since
A satisfies the UCT and M2(I) is a separable admissible kernel we obtain by Proposition 2.4.9
the following group isomorphism

KKnuc(A,M2(I))→ HomZ(K0(A),K0(M2(I))

and since K0(ι2)κ̂0 ∈ HomZ(K0(A),K0(I)), there exist a lifting x ∈ KKnuc(A,M2(I)). Now,
λι2ψ̂ is weakly nuclear, since it is nuclear, and nuclearly absorbing, thus by Proposition 2.3.6
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there exists a weakly nuclear, nuclearly absorbing representation θ : A → M(M2(I)), such that
x = [θ, λι2ψ̂]. As A is exact and θ is weakly nuclear Proposition A.0.7 asserts that θ is nuclear.
Consider the following commuting diagram

0 M2(I) M2(E) M2(D) 0

0 M2(I) M(M2(I)) M(M2(I))/M2(I) 0

ĵ q̂

λ ρ1

ρ2

(2)

where ρ1 is defined in a way that makes the RHS square commutative. Now, observe that
ρ1q̂ι2ψ̂ = ρ2λι2ψ̂ and since (θ, λι2ψ̂) is a Cuntz pair, it follows that λι2ψ̂(a)−θ(a) ∈M2(I) for all
a ∈ A. Hence, ρ2(λι2ψ̂(a)− θ(a)) = 0, for all a ∈ A, and therefore ρ2θ = ρ1q̂ι2ψ̂. So, if we apply
the previous lemma for θ and q̂ι2ψ̂, there exists φ̂2 : A→M2(E) ∗-homomorphism satisfying that

λφ̂2 = θ and q̂φ̂2 = q̂ι2ψ̂

while, since both θ and q̂ι2ψ̂ are nuclear ∗-homomorphisms, we get by the same lemma that φ̂2

is nuclear as well.
Now, consider the group homomorphism induced by ĵ

ĵ∗ : KKnuc(A,M2(I))→ KKnuc(A,M2(E))

and note that, since λ(φ̂2(a)− ι2ψ̂(a)) ∈M2(I), for all a ∈ A, then (φ̂2 − ι2ψ̂)(a) ∈M2(I), for all
a ∈ A, while φ̂2 and ι2ψ̂ are nuclear, hence it follows from Proposition 2.2.21 that

j∗[λφ̂2, λι2ψ̂] = [φ̂2]− [ι2ψ̂]

Since x lifts K0(ι2)κ̂0, then ĵ∗(x) lifts K0(ĵι2)κ̂0 = K0(ι2ĵ)κ̂0, and in particular

K0(ι2ĵ)κ̂0 = K0(φ̂2)−K0(ι2ψ̂)

Hence, if we set φ2 = ιEφ̂2 : A → M2(Bω), then by how κ is constructed, commutativity of (1)
and the relation above, we get

K0(φ2)−K0(ι2ψ) = K0(ιEι2ĵ)κ̂+K0(ιEι2ψ̂)−K0(ι2ψ)

= K0(ι2jB)κ = K0(ι2)σ −K0(ι2ψ)

So, K0(φ2) = K0(ι2)σ, from which it follows that

K0(φ2)([1A]) = K0(ι2)σ([1A]) = [1Bω ]

Now, as Bω has stable rank one by Proposition 2.4.7, then Bω has cancellation of projections
by Proposition A.0.11, which implies that φ2(1A) ∼0 1Bω and in turn that there exists unitary
u ∈M2(Bω) satisfying uφ2(1A)u∗ = 1Bω ⊕ 0Bω . Thus, for any a ∈ A,

φ2(a) = φ2(a)u∗(1Bω ⊕ 0Bω )u =⇒ uφ2(a)u∗ = uφ2(a)u∗(1Bω ⊕ 0Bω )

=⇒ Aduφ2(a) = φ(a)⊕ 0Bω = ι2φ(a)

for some φ : A→ Bω unital, ∗-homomorphism.
We claim that φ is the desired ∗-homomorphism. Firstly, since Aduφ2(p) ∼0 φ(p) for any

p ∈ P∞(A), it follows that
K0(ι2φ) = K0(φ2) = K0(ι2)σ

and now, by stability of K0 (See Proposition 4.3.8 in [20]), K0(ι2) is a group isomorphism, hence
K0(φ) = σ. Moreover, by construction we have the following

qBφ2 = qBιEφ̂2 = ιD q̂φ̂2 = ιD q̂ι2ψ̂ = qBι2ψ

thus,
(τBω ⊗ TrM2(C))φ2 = (τBω ⊗ TrM2(C))ι2ψ
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But, as ψ is a trace-preserving ∗-homomorphism, it follows that

τA = τBωψ = 2(τBω ⊗ TrM2(C))ι2ψ = 2(τBω ⊗ TrM2(C))φ2

= 2(τBω ⊗ TrM2(C))ι2φ = τBωφ

showing that φ is trace-preserving. For nuclearity of φ, we observe that, since φ2 is nuclear
∗-homomorphism and φ is a compression of φ2, then φ is also a nuclear ∗-homomorphism. It
remains to show that φ is full. To this end, note that faithfulness of τA, implies that for any
a ∈ A+, a 6= 0, τBωφ(a) = τA(a) > 0, and considering that Bω has strict comparison of positive
elements, Lemma 1.2.23 asserts that φ(a) is a full element in Bω. Now, as any element in A is
a linear combination of positive elements, we conclude that for any non-zero a ∈ A, φ(a) is full
in Bω. Hence φ is a full ∗-homomorphism and the proof is complete.

Keeping the same conditions on A, B, apart from the existence result that we just proved, there
is also a classification result for unital, full, nuclear ∗-homomorphisms from A to Bω, satisfying
some mild conditions. The machinery and the proof techniques used in Proposition 3.1.2, are
the driving forces in proving this classification result as well, and therefore we prefer to omit the
proof and instead move towards the direction of refining these two results. The statement of this
classification result follows.

Proposition 3.1.3. Suppose A is a separabe, unital, exact C∗-algebra satisfying the UCT and B

simple, unital, Q-stable C∗-algebra with unique trace τB such that every quasi trace on B is a trace
and K1(B) = 0.
If φ, ψ : A → Bω are unital, full, nuclear ∗-homomorphisms such that K0(φ) = K0(ψ) and τBωφ =

τBωψ, then there exists unitary u ∈ Bω such that φ = Aduψ.

It is the case that with a bit more work we can upgrade the existence result of the Proposition
3.1.2, by finding a ∗-homomorphism from A to B, instead of Bω, satifying the same properties,
where we keep the same conditions on A and B. The main problem to tackle in this direction,
is that only approximately multiplicative maps from A to B can be produced directly from a
∗-homomorphism from A to Bω. In order to address this issue, we introduce the notions of
(G , δ)-multiplicative maps and K0-triples. The same idea for refining Proposition 3.1.2 will be
applicable for refining Proposition 3.1.3 too, as it will be evident in the following.

Let A, B be two C∗-algebras, G ⊆ A finite set and δ > 0. Then we say that a linear,
self-adjoint map φ : A→ B is (G , δ)-multiplicative if

‖φ(aa′)− φ(a)φ(a′)‖ < δ, for all a, a′ ∈ G

Now, a K0-triple for a unital C∗-algebra A is a triple (G , δ, P ), where G ⊆ A finite set, δ > 0,
and P ⊆ P∞(A) finite set of projections, such that whenever φ : A→ B is a (G , δ)-multiplicative
map, then ∥∥φ(p2)− φ(p)2

∥∥ < 1/4, for all p ∈ P

It must be evident that for any P ⊆ P∞(A) finite set, we can find sufficiently large G and
sufficiently small δ such that (G , δ, P ) becomes a K0-triple for A. Also, note that, if (G , δ, P )

is a K0-triple for A and φ : A → B is a (G , δ)-multiplicative map then 1/2 is not contained in
the spectrum of φ(p). Thus, if χ is the characteristic function on [1/2,∞) defined on the real
numbers, we can then define a map φ# : P → K0(B), by φ#(p) = [χ(φ(p))]0. In this way, every
linear, self-adjoint, (G , δ)-multiplicative map φ : A → corresponds to a function φ# : P → K0(B).
Now we present, the "counterpart" of Proposition 3.1.2 in the setting of linear, self-adjoint,
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(G , δ)-multiplicative maps and K0-triples.

Lemma 3.1.4. Suppose A is a separabe, unital, exact C∗-algebra satisfying the UCT and B simple,
unital, Q-stable C∗-algebra with unique trace τB such that every quasi trace on B is a trace and
K1(B) = 0.
If τA is a faithful, amenable trace on A and σ : K0(A)→ K0(B) is a group homomorphism such that

σ([1A]0) = [1B ]0 and τ̂Bσ = τ̂A, then for any K0-triple (G , δ, P ) for A, there is a unital, completely
positive, nuclear, (G , δ)-multiplicative map φ : A → B such that σ([p]0) = φ#(p) for all p ∈ P and
|τBφ(a)− τA(a)| < δ for all a ∈ G .

Proof. Let (G , δ, P ) be a K0-triple for A and let ιB : B → Bω the diagonal embedding. Then,
KιBσ([1A]0) = [1Bω ] and τ̂BωK0(ιB)σ = τ̂A. Therefore, by Proposition 3.1.2 there is a unital,
nuclear ∗-homomorphism φω : A → Bω, satisfying that K0(φω) = K0(ιB)σ and τBωφω = τA.
Then, by Choi-Effros lifting theorem there exist φn : A → B u.c.p, nuclear maps such that
πω((φn(a))n) = φω(a), for all a ∈ A, where πω : l∞(B)→ Bω the quotient map. Now, set

S1 = ∩a,a′∈G {n ≥ 1: ‖φn(aa′)− φn(a)φn(a′)‖ < δ}

and since limn→ω ‖φn(aa′)− φn(a)φn(a′)‖ = 0, for any a, a′ ∈ A, we get that for any a, a′ ∈ G

there is Iδ ∈ ω, such that Iδ ⊆ {n ≥ 1: ‖φn(aa′)− φn(a)φn(a′)‖ < δ}. Hence,
{n ≥ 1: ‖φn(aa′)− φn(a)φn(a′)‖ < δ} ∈ ω and since G is finite, it follows that S1 ∈ ω. Also, note
that for each n ∈ S1, φn is (G , δ)-multiplicative.
Take p ∈ P , and d, k ∈ N, such that p ∈ Md(A) and σ([p]0) = [e] − [f ], where e, f projections

in Mk(B). Then, K0(φω)([p]0) = [ιB(e)]0 − [ιB(f)]0 which implies that φω(p) ⊕ ιB(f) is stably
equivalent to ιB(e). Thus, there exists l ∈ N and u ∈Md+k+l(Bω) partial isometry such that

u∗u = φω(p)⊕ ιB(f)⊕ 1⊕lBω and uu∗ = 0⊕dBω ⊕ ιB(e)⊕ 1⊕lBω

Since χ(φω(p)) = φω(p), under the identification Md+k+l(l
∞(B)) ∼= l∞(Md+k+l(B)) we find a

bounded sequence (un)n ⊆Md+k+l(B) satisfying that

lim
n→ω

∥∥u∗nun − χ(φn(p))⊕ f ⊕ 1⊕lB
∥∥ = lim

n→ω

∥∥unu∗n − 0⊕dB ⊕ e⊕ 1⊕lB
∥∥ = 0

and observe that since P is finite and p was arbitrary

S = ∩p∈P {n ∈ S1 : (φn)#(p) = σ([p]0)} ∈ ω

Now, let
T = ∩a∈G {n ≥ 1: |τBφn(a)− τA(a)| < δ}

As, limn→ω τB(φn(a)) = τBωφω(a) = τA(a), for all a ∈ A, we obtain that T ∈ ω. Hence, S∩T 6= ∅,
and if we fix any n ∈ S ∩ T , and set φ = φn, we get the desired unital, completely positive,
nuclear, (G , δ)-multiplicative map.

There is also a "counterpart" of the classification result (Proposition 3.1.3) and it has the
following form.

Lemma 3.1.5. Suppose A is a separabe, unital, exact C∗-algebra satisfying the UCT and B simple,
unital, Q-stable C∗-algebra with unique trace τB such that every quasi trace on B is a trace and
K1(B) = 0.
For any τA faithful trace on A, F ⊆ A finite set, ε > 0, there exists a K0-triple (G , δ, P ) for A, such

that if φ, ψ : A→ B unital, completely positive, nuclear (G , δ)-multiplicative maps with φ#(p) = ψ#(p)

for all p ∈ P , and |τBφ(a)− τA(a)| < δ, |τBψ(a)− τA(a)| < δ, for all a ∈ G then there exists unitary
u ∈ B such that

‖φ(a)− uψ(a)u∗‖ < ε, for all a ∈ F.
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Proof. We assume that the result does not hold for some τA faithful trace on A, F ⊆ A finite
set and ε > 0. Then, we note that since A is separable then A ⊗ K is separable and since any
subspace of a separable metric space is separable, we get that P∞(A) = P (M∞(A)) is separable.
So, we can find an increasing sequence of finite sets (Pn)n with dense union in P∞(A). Now,
for each n ∈ N, there is N(n) ∈ N such that Pn ⊆ P (∪N(n)

j=1 Mj(A)), since Pn is finite. But,
separability of A also allow us to choose Gn finite sets in A, such that ∪nGn dense in A,
Gn ⊆ Gn+1 and Pn ⊆ P (∪N(n)

j=1 Mj(Gn)), for all n ∈ N. Finally, we select δn to be a decreasing
sequence to zero, such that whenever φ : A→ B is a (Gn, δn)-multiplicative map then its inflation
φ : Mj(A) → Mj(B) is (Mj(Gn), 1/4)-multiplicative, for all 1 ≤ j ≤ N(n). This last assertion,
guarantees that (Gn, δn, Pn) are K0-triples for A, for each n ∈ N.

By our assumption on τA, F and ε, we can find for each K0-triple (Gn, δn, Pn), a pair of unital,
nuclear, completely positive, (Gn, δn)-multiplicative maps φn, ψn : A → B such that (φn)#(p) =

(ψn)#(p), |τBφn(a) − τA(a)| < δn, |τBψn(a) − τA(a)| < δn, for all a ∈ Gn, p ∈ Pn, but such that
for each unitary un ∈ B, there is a ∈ F satisfying

‖φn(a)− unψn(a)u∗n‖ ≥ ε

Since φn, ψn are (Gn, δn)-multiplicative we have that

‖φn(aa′)− φn(a)φn(a′)‖ < δn and ‖ψn(aa′)− ψn(a)ψn(a′)‖ < δn

for all a, a′ ∈ Gn and n ∈ N. Moreover, as δn −→ 0, Gn ⊆ Gn+1, for all n ∈ N, and ∪nGn = A, it
follows that

lim
n→ω
‖φn(aa′)− φn(a)φn(a′)‖ = lim

n→ω
‖ψn(aa′)− ψn(a)ψn(a′)‖ = 0

for a, a′ ∈ A, where ω is a free ultrafilter on the natural numbers. So, the maps φω, ψω : A→ Bω,
induced by (φn)n, (ψn)n, are unital ∗-homomorphisms and employing the same arguments we see
that

τBωφω(a) = lim
n→ω

τBφn(a) = τA(a) = lim
n→ω

τBψn(a) = τBωψω

for all a ∈ A. Furhermore, as φn, ψn are nuclear, u.c.p maps and A is exact we obtain from
Proposition A.0.3 that φω, ψω are nuclear ∗-homomorphisms, and since τA is a faithful trace and
Bω has strict comparison of positive elements with respect to its trace (see Proposition 2.4.7),
we get by Lemma 2.2.3 that φω, ψω are also full ∗-homomorphisms.
Now, take p ∈ Pn such that p ∈ Md(A) for some d ∈ N then, as (φk)#(p) = (ψk)#(p) for all

k ≥ n, or equivalently [χ(φk(p))]0 = [χ(ψk(p))]0, for all k ≥ n, and since B has cancellation of
projections by the proof of Proposition 2.4.7, there are partial isometries uk ∈Md(B), satisfying

u∗kuk = χ(φk(p)) and uku
∗
k = χ(ψk(p))

for all k ≥ n. Let, u = πω((uk)k) be the corresponding element in Bω, where πω : l∞(B) → Bω

the quotient map. Then,

u∗u = πω((χ(φk(p)))k≥n) = χ(πω((φk(p))k≥n)) = χ(φω(p)) = φω(p)

and similarly
uu∗ = χ(ψω(p)) = ψω(p)

So, [φω(p)]0 = [ψω(p)]0 and since p was arbitrary, it follows that K0(φω) = K0(ψω).
Now, if we apply Proposition 3.1.3 to φω and ψω, we find a unitary w ∈ Bω satisfying that

φω = Adwψω. From the proof of Proposition 2.4.7, Bω has path connected unitary group, hence
w ∼h 1Bω = πω(1l∞(B)), which implies that w ∈ πω(U(l∞(B))). So, if (wn)n ⊆ B is the sequence
of unitaries lifting w, then

lim
n→ω
‖φn(a)− wnψn(a)w∗n‖ = 0
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for all a ∈ A, and in fact there is n0 ∈ N such that∥∥φn0(a)− wn0ψn0(a)w∗n0

∥∥ < ε

for all a ∈ F , which is a contradiction.

These last two lemmas are the cornerstones in refining Proposition 3.1.2 and Proposition 3.1.3.
The key factor lies in the idea that we can now globalise the local essence results of the last two
lemmas in a way that all the K-theoretical information will remain intact after this transition.
The rigorous statement of this refinement follows.

Theorem 3.1.6. Suppose A is a separable, unital, exact C∗-algebra satisfying the UCT and B simple,
unital, Q-stable C∗-algebra with unique trace τB such that every quasi trace on B is a trace and
K1(B) = 0.

1) If τA is a faithful, amenable trace on A and σ : K0(A)→ K0(B) is a group homomorphism such

that σ([1A]0) = [1B ]0 and τ̂Bσ = τ̂A, then there exists a unital, faithful, nuclear ∗-homomorphism

φ : A→ B satisfying K0(φ) = σ and τBφ = τA.

2) If φ, ψ : A→ B are unital, faithful, nuclear ∗-homomorphisms such that K0(φ) = K0(ψ) and

τBφ = τBψ, then there exists a sequence of unitaries un ∈ B such that

lim
n→∞

‖φ(a)− unψ(a)u∗n‖ = 0

for all a ∈ A.

Proof. 1) Let Fn ⊆ A be an increasing sequence of finite sets with dense union in A and εn > 0

a sequence such that
∑
n εn < ∞. Then, by the previous lemma we find (Gn, δn, Pn) K0-triples

corresponding to the pairs (Fn, εn). Following the same ideas as in the proof of the last lemma
we arrange Gn, Pn and δn, such that Gn, Pn are increasing sequences of finite subsets with dense
union in A and P∞(A), respectively, and δn is a sequence decreasing to zero.
Now, by Lemma 3.1.4 we find for each K0-triple (Gn, δn, Pn) a unital, completely positive,

nuclear, (Gn, δn)-multiplicative map ψn : A→ B satisfying that σ([p]0) = (ψn)#(p) and |τBψn(a)−
τA(a)| < δn, for all p ∈ Pn and a ∈ Gn. Since by contstruction, for any n ∈ N, ψn+1 is (Gn, δn)-
multiplicative and (Gn+1, δn+1)-multiplicative map, by Lemma 3.1.5 there exists unitary un+1 ∈ B
such that ∥∥ψn(a)− un+1ψn+1(a)u∗n+1

∥∥ < εn, for all a ∈ Fn

Define φ1 = ψ1 and φn = Ad(u1u2 · · · un)ψn which are clearly unital, completely positive, nuclear,
(Gn, δn)-multiplicative maps, and observe that for any n ∈ N and a ∈ Fn we have that

‖φn(a)− φn+1(a)‖ = ‖Ad(u1u2 · · · un)ψn(a)−Ad(u1u2 · · · un+1)ψn+1(a)‖

= ‖Ad(u1u2 · · · un)(ψn(a)−Ad(un+1)ψn+1(a))‖ < εn

Hence, (φn(a)) is a Cauchy sequence in B for any a ∈ ∪nFn. So, for ε > 0 and a ∈ A we can
find n ∈ N and a′ ∈ Fn such that ‖a− a′‖ < ε/3 and ‖φn(a′)− φn+1(a′)‖ < ε/3, which implies
that

‖φn(a)− φn+1(a)‖ = ‖φn(a)− φn(a′) + φn(a′)− φn+1(a′) + φn+1(a′)− φn+1(a)‖ < ε

From this, we obtain that (φn(a))n is a Cauchy sequence in B for any a ∈ A and therefore we
are allowed to define a map φ : A→ B by

φ(a) = lim
n→∞

φn(a)
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We claim that φ is the desired ∗-homomorphism. Firstly, we see that since for any n ∈ N and
a ∈ Gn, we have that

‖φk(aa′)− φk(a)φk(a′)‖ < δk, for all k ≥ n

it follows that φ(aa′) = φ(a)φ(a′), for any a, a′ ∈ ∪nGn. Thus, using that ∪nGn is dense in A,
an ε/3 argument as above, shows that φ(aa′) = φ(a)φ(a′), for all a, a′ ∈ A, and as φ is already
a u.c.p map, we get that φ is a ∗-homomorphism. Moreover, note that τBφn = τBψn, for any
n ∈ N. Hence, in a similar manner as above, we use that for any n ∈ N and a ∈ Gn

|τBφk(a)− τA(a)| < δk, for all k ≥ n

to obtain first that τBφ(a) = τA(a), for all a ∈ ∪nGn, and by an ε/3 argument that τBφ(a) =

τA(a), for all a ∈ A. That φ is trace-preserving, implies that φ is faithful, since τA is faithful.
Now, It remains to show that σ = K0(φ). To this end, firstly note that as unitary equivalence
implies von Neumann-Murray equivalence of projections, it follows that for any n ∈ N and p ∈ Pn,
σ([p]0) = (ψk)#(p) = (φk)#(p), for any k ≥ n. Thus, for any n ∈ N, p ∈ Pn and k ≥ n

K0(φ)([p]0) = [φ(p)]0 = [χ(φ(p))]0 = [χ(φk(p))]0 = σ([p]0)

As (Pn) is a dense sequence of finite sets in P∞(A), for any n ∈ N and p ∈ Pn(A), there exists
q ∈ ∪nPn such that ‖p− q‖ < 1. But then p ∼0 q (See Proposition 2.2.4 in [20]) which shows
that

σ([p]0) = σ([q]0) = K0(φ)([q]0) = K0(φ)([p]0)

concluding that σ = K0(φ).
2) Since φ is a faithful ∗-homomorphism, then τA = τBφ defines a faithful trace on A. Now,

let ε > 0 and (Fn)n ⊆ A be an increasing sequence of finite sets with dense union in A. As,
φ, ψ trivially satisfy the conditions of the previous lemma for any K0-triple for A, there exists
unitary un ∈ B satisfying that

‖φ(a)− unψ(a)u∗n‖ < ε/3 for all a ∈ Fn
Since, for any a ∈ A we can find n ∈ N and b ∈ Fn such that ‖a− b‖ < ε/3, we obtain that

‖φ(a)− unψ(a)u∗n‖ ≤ ‖φ(a)− φ(b)‖+ ‖φ(b)− unψ(b)u∗n‖+ ‖ψ(a)− ψ(b)‖ < ε

as desired.

As an ending point of this project, we restrict our attention to simple, unital AF -algebras
with unique trace and divisible K0-group and we aim to show that the conclusion of Theorem
3.1.6 still holds when the C∗-algebra B is replaced by an AF -algebra with the aforementioned
conditions.

Corollary 3.1.7. Suppose A is a separabe, unital, exact C∗-algebra satisfying the UCT and B simple,
unital, AF -algebra with unique trace τB and divisible K0-group.
1) If τA is a faithful, amenable trace on A and σ : K0(A)→ K0(B) is a group homomorphism such

that σ([1A]0) = [1B ]0 and τ̂Bσ = τ̂A, then there exists a unital, faithful ∗-homomorphism

φ : A→ B satisfying K0(φ) = σ and τBφ = τA.

2) If φ, ψ : A→ B are unital, faithful ∗-homomorphisms such that K0(φ) = K0(ψ) and

τBφ = τBψ, then there exists a sequence of unitaries un ∈ B such that

lim
n→∞

‖φ(a)− unψ(a)u∗n‖ = 0

for all a ∈ A.

Proof. As B is a unital AF -algebra, it is isomorphic to the inductive limit of an inductive
sequence (Bn, φn), where Bn are finite dimensional C∗-algebras and φn : Bn → Bn+1 are unital

72



∗-homomorphisms. Since Bn are finite dimensional C∗-algebras it is a well known fact that

Bn = Mj1(C)⊕Mj2(C)⊕ · · · ⊕Mjkn
(C)

for some ji ∈ N, i = 1, 2, ..., kn. Hence, by continuity of K1-functor we obtain that K1(B) = 0,
since K1(Bn) = 0 for any n ∈ N. Moreover, by Exercise 2.9 and Paragraph 3.1.1 in [20],
K0(Mji(C)) ∼= Z, for all i = 1, 2, ..., kn, and since K0-functor preserves direct sums and is contin-
uous we get that

K0(B) ∼= lim−→ (Zjkn ,K0(φn))

But, as Zjkn are torsion free abelian groups for each n ∈ N, it is easily verified that K0(B) is
also a torsion free abelian group.
Now, using this observation, we claim that the group homomorphism

K0(B)
Λ−→ K0(B)⊗Z Q

given by
[p]0 7→ [p]0 ⊗ 1Q

where p is a projection in M∞(B), is an isomorphism. Let us show first that it is surjective.
Let [p]0⊗m/n ∈ K0(B)⊗ZQ, where m,n ∈ Z. Then, [p]0⊗m/n = m([p]0⊗1/n), and since K0(B)

is divisible, we find [q]0 ∈ K0(B) such that n[q]0 = [p]0. Hence,

m([p]0 ⊗ 1/n) = m(n[q]0 ⊗ 1/n) = (m[q]0 ⊗ 1Q) = Λ(m[q]0)

which proves that Λ is surjective. For injectivity, we use a standard fact from commutative
algebra (see for example [4]) that for any Z-module M , if S = Z \ {0}, and S−1Z, S−1M are the
localizations of Z and M with respect to the multiplicatively closed set S, then there exists an
isomorphism

M ⊗Z S
−1Z→ S−1M

given by
m⊗ z/s 7→ mz/s

As S−1Z = Q, if we set M = K0(B), then it suffices to show that [p]0 = 0 when [p]0/1Q = 0 in
S−1K0(B). By the definition of localizations, [p]0/1Q = 0 if there exists s ∈ S = Z \ {0}, such
that s[p]0 = 0. But, as K0(B) is torsion free, this not possible, except [p]0 = 0, which shows the
injectivity of Λ.
Now, we view B ⊗Q as the inductive limit of the the inductive sequence (Mki(B), ψi), where

ψi : Mki(B) → Mki+1
(B) are unital ∗-homomorphisms with multiplicity ki+1/ki, i ≥ 1, and we

define the following group homomorphisms

ρi : K0(Mki(B))→ K0(B)⊗Z Q

by
ρi([p]0) = [p]0 ⊗ 1/ki

Then, by continuity of K0, K0(B⊗Q) is isomorphic to the inductive limit of (K0(Mki(B)),K0(ψi)),
and observe that the following diagram

K0(Mki+1
(B))

K0(Mki(B)) K0(B)⊗Z Q

ρi+1

ρi

K0(ψi))

commutes for all i ≥ 1. Hence, by the universal property of inductive limits there exists a group
homomorphism λ : K0(B ⊗Q)→ K0(B)⊗Z Q making the diagram
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K0(Mki(B))

K0(B ⊗Q) K0(B)⊗Z Q

ιi
ρi

λ

commutative for any i ≥ 1, where the vertical map amounts to the inclusion. Now, we claim
that λ is a group isomorphism.
To this end, let [p]0 ∈ K0(B ⊗Q) and suppose that λ([p]0) = 0. Since, [p]0 ∈ K0(Mki(B)) for

some i ≥ 1, then by the commutative diagram above we have that ρi([p]0) = [p]0 ⊗ 1/ki = 0. So,
ki[p]0 ⊗ 1Q = 0 and as previously, it follows that [p]0 = 0, since K0(B) is torsion free.
For surjectivity, it suffices to show that for any [p]0 ⊗ 1/n ∈ K0(B) ⊗Z Q, there exists i ≥ 1

and [p′]0 ∈ K0(Mki(B)) such that ρi([p
′]0) = [p]0 ⊗ 1/n. But since we can find i, j ∈ N such

that kj/ki = n, divisibility of K0(B), provides us with [p′]0 ∈ K0(B) such that ki[p]0 = kj [p
′]0 ∈

K0(Mkj (B)). Hence, it follows that

ρj(kj [p
′]0) = kj [p

′]0 ⊗ 1/kj = ki[p]0 ⊗ 1/kj = [p]0 ⊗ 1/n

thus λ is surjective.
Summarizing, we have shown that K0(B ⊗Q) ∼= K0(B) ⊗Z Q ∼= K0(B), and it is obvious by

construction that this group isomorphism preserve distinguished order units and maps K0(B)+

onto K0(B ⊗Q)+. Thus by Elliot’s classification of unital AF -algebras, we obtain that

B ∼= B ⊗Q

i.e B is Q-stable. Moreover, as any AF -algebra is nuclear, B is nuclear, hence exact, and since
any quasi-trace on exact C∗-algebra is a trace (see [17]), and any ∗-homomorphism A → B is
nuclear, as long as B is nuclear, we can apply the previous theorem, from which the desired
conclusion follows immediately.
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A Appendix

The main reason for creating this appendix it to collect results that are used heavily in the proofs
of Chapter 3. As a starting point, we show that for any unital, separable, exact C∗-algebra in
the UCT class which admits a faithful, amenable trace there is a unital, full, nuclear and trace-
preserving ∗-homomorphism into an ultrapower of the universal UHF algebra, Q, with respect to
a fixed free ultrafilter defined on the natural numbers. The proof consists of a critical middle
step concerning quasidiagonal traces and their relation to faithful, amenable traces. Therefore we
start by giving the definitions of an amenable and quasidiagonal trace.

Definition A.0.1. Let A be a C∗-algebra. We say that a trace τA on A is amenable if there exists a
net of c.c.p maps φi : A→Mki(C) such that

i) ‖φi(aa′)− φi(a)φi(a
′)‖2,Tr −→ 0, for all a, a′ ∈ A

ii) Trk(i)φi(a) −→ τA(a), for all a ∈ A

Moreover, we say that τA is quasidiagonal, if there exists a net of c.c.p maps φi : A→Mki(C) satisfying
condition (ii) and the following property

iii) ‖φi(aa′)− φi(a)φi(a
′)‖ −→ 0, for all a, a′ ∈ A

The first preliminary result that we are after is the following. We postpone its proof for a
moment for reasons that we explain right after the statement

Proposition A.0.2 ([13], Proposition 1.4). Let A be a separable, unital, exact C∗-algebra and τA a
trace on A. The following statements are equivalent:

i) τA is quasidiagonal,

ii) there exists a unital, nuclear, trace-preserving ∗-homomorphism θ : A→ Qω

In order to establish the nuclearity of the ∗-homomorphism θ above, we will need an argument
showing that the c.c.p maps given in the definition of quasidiagonal trace induce a nuclear map
into the product l∞(Q). The following proposition does this important work for us.

Proposition A.0.3 ([8], Proposition 3.3 ). Let A be a separable C∗-algebra and let φn : A→ Bn be
a sequence of nuclear c.c.p maps into C∗- algebras Bn. Then, if A is exact, the map φ = (φn)n : A→∏
nBn is a nuclear c.c.p map.

Proof. Since A is exact, it is a fact that there is a nuclear embedding ψ : A→ C, into some C∗-
algebra, C. Let ε > 0 and F ⊂ A finite, then it suffices to find a c.c.p map λ : C →

∏
nBn such

that ‖φ(a)− λ ◦ ψ(a)‖ < ε, for all a ∈ F .
Since φn are nuclear, we can find kn ∈ N and c.c.p maps λn : A→Mk(n) and µn : Mk(n) → Bn

such that ‖µn ◦ λn(a)− φn(a)‖ < ε for all a ∈ F . Now, by Arverson’s Extention Theorem find
c.c.p maps λ̃n : C →Mk(n) satisfying λ̃n ◦ψ = λn and set λ = (µn ◦ λ̃n)n : C →

∏
nBn. Then λ is

a c.c.p map and

‖φ(a)− λ ◦ ψ(a)‖ = sup
n

∥∥∥φn(a)− µn ◦ λ̃n ◦ ψ(a)
∥∥∥ = sup

n
‖φn(a)− µn ◦ λn(a)‖ < ε

for all a ∈ F . Now by separability of A the desired conclusion follows.
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Note A.0.4. If we restrict our attention to the universal UHF -algebra Q, since Q is nuclear,
any c.c.p map into Q has to be nuclear. So if we additionally suppose that we have a c.c.p map
from a separable, exact C∗-algebra A into l∞(Q), then by the proposition above we obtain that
it must be nuclear.

Now, we are ready to prove Proposition A.0.2.

Proof. (Proposition A.0.2) Suppose first that there exists θ : A→ Qω unital, nuclear, ∗-homomorphism.
Then, by Choi-Efrros Lifting Theorem there exist a sequence θn : A → Q of c.c.p maps which
satisfy the following conditions

‖θn(aa′)− θn(a)θn(a′)‖ n→ω−−−→ 0, for all a, a′ ∈ A

and
lim
n→ω

τQθn(a) = τA(a), for all a ∈ A

Now, as Q = ∪nMkn(C), where (kn) ⊆ N and kn+1|kn for all ∈ N, we can find for sufficiently large
n, surjective, contractive linear maps ψn : Q →Mkn(C), such that ψ2

n = ψn. Then, by Tomiyama’s
Theorem, we know that ψn(ab) = ψn(a)ψn(b) and ψn(ba) = ψn(b)ψn(a) for all a ∈Mkn(C), b ∈ Q.
Now, this condition combined with the density of ∪nMkn(C) in Q, show that

‖ψnθn(aa′)− ψnθn(a)ψnθn(a′)‖ n→ω−−−→ 0, for all a, a′ ∈ A

and
lim
n→ω

Trknψnθn(a) = τA(a), for all a ∈ A

Since, ψnθn : A → Mkn(C) is a sequence of c.c.p maps, it follows that τA is a quasidiagonal on
A.
On the other hand, suppose that τA is a quasidiagonal trace. Then, as A is separable we can

find a sequence θn : A→Mkn(C) ⊂ Q of c.c.p maps satisfying that

‖θn(aa′)− θn(a)θn(a′)‖ n→ω−−−→ 0, for all a, a′ ∈ A (1)

and
lim
n→∞

Trknθn(a) = τA(a), for all a ∈ A (2)

As θn are nuclear c.c.p maps, Proposition A.0.3 implies that the induced map θ : A → Qω

is nuclear. Moreover, conditions (1), (2) imply that θ is also unital and trace-preserving ∗-
homomorphism, hence θ has all the desired properties and the proof is done.

The last fact needed in order to establish the result that we promised at the beginning of the
appendix is the following. The proof is ommited.

Theorem A.0.5 ([13], Theorem 3.7). Any faithful, amenable trace on a separable, unital, exact
C∗-algebra satisfying the UCT is quasidiagonal.

Theorem A.0.6 ([30], Theorem 1.2). Let A be a separable, unital, exact C∗-algebra satisfying the
UCT and τA faithful, amenable trace on A, then there is a unital, full, nuclear, trace-preserving ∗-
homomorphism θ : A→ Qω.

Proof. Employing Proposition A.0.2 and Theorem A.0.5 we immediately get a unital, nuclear,
trace-preserving ∗- homomorphism θ : A→ Qω. Moreover, as Qω has strict comparison of positive
elements with respect to its trace (see Proposition 2.4.7), θ is trace-preserving and τA is a faithful
trace, Lemma 1.2.23 implies that θ is a full ∗-homomorphism, as required.
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In the previous results we already used the fact that exact C∗-algebras are nuclearly embed-
dable. To this end, we recall that in Proposition 3.1.2 an another characterization of exact
C∗-algebras in terms of c.p weakly nuclear maps was used critically. The proof of this charac-
terization follows.

Proposition A.0.7 ([14], Proposition 3.2). If A is a C∗-algebra and B is a σ-unital C∗-algebra then
A is exact iff any weakly nuclear c.p map φ : A→M(B) is nuclear.

Proof. First of all, note that if A is non unital, then we can extend φ to a u.c.p weakly nuclear
map from the unitization Ã of A into M(B). Therefore, we may assume that φ and A are
unital. Moreover, using that nuclearity is a local property, it is sufficient to show that for any
unital, separable C∗-subalgebra A0 of A, φ|A0

is nuclear.
Let A0 ⊆ B(H) be a non-degenerate representation over some separable Hilbert space H. Then,

as K is a closed two-sided ideal inside B(H), B(H) = M(K) (see Note 1.1.3). Let ι : A0 →M(K)

be the unital inclusion. Since A is exact, then any separable C∗-subalgebra of A is exact and in
particular A0 is exact. Thus, A0 is nuclearly embeddable and by Arverson’s extention Theorem
we get that ι must be nuclear. Now, consider the composition

Φ: A0
ι
↪−→M(K)

1M(B)⊗idM(K)

↪−−−−−−−−−→M(B)⊗M(K) ↪→M(B ⊗K)

which is again nuclear, and it is a fact that Φ absorbs any unital, weakly nuclear c.p map (see
[9]).
So, if φ0 is the map given by the following composition

A0
φ|A0−−−→M(B)

idM(B)⊗e11
↪−−−−−−−→M(B)⊗M(K)

ι1
↪−→M(B ⊗K)

then φ0 is a c.p map since φ is, and we claim that is weakly nuclear.
Let b = b1 ⊗ k1 ∈ B ⊗ K, consider the map A0 → B ⊗ K given by a 7→ b∗φ0(a)b and let

ρn : A→Mk(n)(C), θn : Mk(n)(C)→ B be the c.c.p maps exhibiting the weakly nuclearity of φ|A0

for b1 i.e, the nuclearity of the map a 7→ b∗1φ|A0
(a)b1. Define ρ′n = ρn ⊗ e11 : A → Mkn(C) and

θ′n = θn ⊗ k∗1(−)k1 : Mkn(C) → B ⊗ K, and note that they are both c.c.p maps and they exhibit
the nuclearity of a 7→ b∗φ0(a)b since

‖θ′n ◦ ρ′n(a)− b∗φ0(a)b‖ = ‖θn ◦ ρn ⊗ k∗1e11k1 − b∗1φ|A0
(a)b1 ⊗ k∗1e11k1‖ =

‖(θn ◦ ρn(a)− b∗1φ|A0(a)b1)⊗ k∗1e11k1‖ = ‖(θn ◦ ρn(a)− b∗1φ|A0(a)b1)‖ ‖k∗1e11k1‖ −→ 0

As, b ∈ B ⊗K was an arbitrary simple tensor, it follows that φ0 is a weakly nuclear c.p map.
Now, since Φ absorbs φ0, there is a sequence of unitaries (un)n ⊆M(B ⊗K) such that

‖unΦ(a)u∗n − Φ⊕ φ0(a)‖ −→ 0, for all a ∈ A0

So, if s1, s2 ∈ M(B ⊗ K) are isometries satisfying that s1s
∗
1 + s2s

∗
2 = 1M(B⊗K), s1s

∗
2 = 0 and

s∗1s2 = 0, then we have that

‖φ(a)− s∗2unΦ(a)u∗ns2‖ = ‖s∗2(s1φ(a)s∗1 + s2φ(a)s∗2 − unΦ(a)u∗n)s2‖

≤ ‖unΦ(a)u∗n − Φ⊕ φ0(a)‖ −→ 0

Set, wn = s∗2un, isometries in M(B ⊗ K), and use nuclearity of Φ to find λn : A0 → Mk(n)(C)

and µn : Mk(n)(C) → M(B ⊗ K) c.c.p maps such that for ε > 0 there exists N0 ∈ N so that if
n ≥ N0 then

‖Adwn ◦ µn ◦ λn(a)− φ0(a)‖ < ε, for all a ∈ A0

This shows that φ0 is nuclear.
Finally, let

Ψ: M(B ⊗K)
1M(B)⊗e11(−)1M(B)⊗e11−−−−−−−−−−−−−−−−→M(B)⊗ e11

∼= M(B)
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and it is easy to see that Ψ is a surjective, projection, which is also contractive. Moreover,
Ψ ◦ φ0 = φ|A0 , which implies that φ|A0 is a nuclear c.p map, as desired.

For the other direction, let A0 ⊆ A be a separable C∗-subalgebra, and let π : A0 → M(K) be
a faithful representation. By Arverson’s extention theorem, we may extend π to a c.c.p map
π̃ : A→M(K), which is weakly nuclear since K is a nuclear C∗-algebra. Thus, by assumption π̃

is nuclear, and so π is nuclear. This shows that A0 is nuclearly embeddable, hence by a well
known fact, A0 is exact. Now, using that A is exact if, and only if, any A0 ⊆ A separable
C∗-subalgebra is exact, the desired result follows.

The second main goal of this appendix is to present two results used in tackling non-separability
issues. We first show that under some rather mild assumptions, the properties of a ∗-homomorphism
to be nuclear and full can be preserved after passing to a suitable corestriction. Before proving
this claim, we need a preliminary result which has its own particular interest.

Lemma A.0.8. Let A be a separable, unital C∗-algebra. Then, there is a sequence (an)n ⊂ A such
that (an)n ∩ I ⊂dense I, for any closed two sided ideal I CA.

Proof. Firstly, we claim that if a ∈ A+, b ∈ I+ and δ = ‖a− b‖ then (a − ε)+ ∈ I whenever
‖a− b‖ < ε. To do so, define f : R+ → R+ continuous function such that f(x) = 0, when x ≤ δ,
and f(x) = 1, when x ≥ ε. Then, as a− b ∈ As.a, it follows that a− b ≤ ‖a− b‖ = δ, so we have

(a− ε)+ = f(a)(a− ε1A)f(a) ≤ f(a)(a− δ1A)f(a) ≤ f(a)bf(a)

But, I as an ideal, is also a hereditary subalgebra of A, which implies that (a − ε)+ ∈ I, since
f(a)bf(a) ∈ I.
Now, let (bn)n ⊆ A+ be a dense sequence and take c ∈ I+. Then, for any k ∈ N, there is

n ∈ N, such that ‖bn − c‖ < 1
k . Hence, from the previous argument, (bn − 1

k )+ ∈ I and moreover,∥∥bn − (bn − 1
k )+

∥∥ ≤ 1
k , which shows that

∥∥(bn − 1
k )+ − c

∥∥ < 2
k . So, if we set

T = {(bn −
1

k
)+ : n, k ∈ N}

then T is a countable set and T ∩ I dense in I+, for any I C A. But, as any element in I can
be expressed as a linear combination of elements in I+, if we set

T ′ = {a1 − a2 + ib1 − ib2 : a1, a2, b1, b2 ∈ T}

then T ′ is a countable set in A satisfying that T ′ ∩ I ⊂dense I, for any I CA, as desired.

Proposition A.0.9 ([30], Proposition 1.9). Let A be a separable C∗-algebra and B a unital C∗-
algebra. If φ : A→ B is a full, nuclear ∗- homomorphism, then there is a separable, unital C∗-subalgebra
B0 ⊆ B such that the corestriction of φ to B0 is full and nuclear.

Proof. Firstly, let φn : A→Mk(n)(C), φ′n : Mk(n)(C)→ B be c.c.p maps such that

‖φ′n ◦ φn(a)− φ(a)‖ n→∞−−−−→ 0

for all a ∈ A.
As A is separable, by Lemma A.0.8 we can find a sequence (αn)n ⊆ A so that for any I ⊆ A

closed two-sided ideal, ∃ n ∈ N such that αn ∈ I. Now, for each n ∈ N, φ(αn) is a full element
in B, and threfore we can find k(n) ∈ N and βn,i, β

′
n,i ∈ B satisfying

k(n)∑
i=1

βn,iφ(αn)β′n,i = 1B

.
Let B0 be the C∗-algebra generated by φ(A), φ′n(Mk(n)(C)) and βn,i, β

′
n,i, for all i = 1, 2, ..., k(n)
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and n ≥ 1. Note that, as A and Mkn(C) are separable, it follows that φ(A) and φ′n(Mk(n)(C)

are separable, for all n ≥ 1. Hence, B0 is a separable C∗-subalgebra of B. Now, if φ0 is the
corestriction of φ in B0, then φ0 is nuclear, since φ′n(Mk(n)(C)) ⊂ B0, for all n ≥ 1

Let us now argue that φ0 is a full ∗-homomorphism. If a ∈ A \ {0} and I = (φ(a)) is the ideal
generated by φ(a) then, φ−1(I) is a non-zero ideal in A and so there exists n ∈ N such that
αn ∈ I. Hence, φ(an) ∈ I and therefore 1B =

∑k(n)
i=1 βn,iφ(αn)β′n,i ∈ I, showing that I = B0. But

this clearly implies that φ0 is full, as desired.

Another result employed in the proofs of Chapter 3 for addressing non-separability issues is
the following.

Proposition A.0.10 ([30], Proposition 1.10). Suppose that G is a countable abelian group and A is
a C∗-algebra. For i = 0, 1 the natural group homomorphisms

lim−→ HomZ(G,Ki(A0))→ HomZ(G,Ki(A))

and
lim−→ Ext1Z(G,Ki(A0))→ Ext1Z(G,Ki(A))

are isomorphisms where the limit is taken over all separable C∗-subalgebras A0 of A.

Proof. Since G is a Z-module there exist X, Y countable sets such that the sequence

0 −→ ZX −→ ZY −→ G −→ 0

is exact. Now, using the long exact sequence induced by the ExtZ functor, that Z is a projective
Z-module and that HomZ(−,Ki(B)) is a contravariant right exact functor for any C∗-algebra B,
we get the following exact sequence

0 −→ HomZ(G,Ki(B)) −→ HomZ(ZY,Ki(B)) −→ HomZ(ZX,Ki(B)) −→ Ext1Z(G,Ki(B)) −→ 0

Moreover, is a standard fact from Homological algebra that in the category of abelian groups,
inductive limits commute with exact sequences, and therefore we have the following exact sequence

0 −→ lim−→ HomZ(G,Ki(A0)) −→ lim−→ HomZ(ZY,Ki(A0)) −→ lim−→ HomZ(ZX,Ki(A0)) −→

lim−→ Ext1Z(G,Ki(A0)) −→ 0

where the limit is taken over all separable C∗-subalgebras A0 of A. Hence, by a diagram chasing,
it suffices to show that

lim−→ HomZ(ZY,Ki(A0))→ HomZ(ZY,Ki(A))

is a group isomorphism.
We may assume, without loss of generality, that A is unital. Let us start with case of i = 0.
For surjectivity, let f : ZY → K0(A), then for each y ∈ Y there exist n(y) ≥ 1 and projections

py, qy ∈ Mn(y)(A) such that f(y) = [py]0 − [qy]0. Let A0 be the separable C∗-subalgebra of
A generated by the entries of py and qy, for each y ∈ Y , and define g : ZY → K0(A0) by
g(y) = [py]0 − [qy]0. Then g is a well defined group homomorphism and if ι0 : A0 ↪−→ A is the
inclusion, we get that K0(ι0) ◦ g = f .
For injectivity, take f, g ∈ lim−→ HomZ(ZY,K0(A0)) group homomorphisms, and take A0 unital,

separable C∗-subalgebra of A such that f, g ∈ HomZ(ZY,K0(A0)). Now, suppose that K0(ι0)f =

K0(ι0)g. As previously, for any y ∈ Y there are n(y) ≥ 1 and py, qy, p
′
y, q
′
y projections in Mn(y)(A)

such that f(y) = [py]0−[qy]0 and g(y) = [p′y]0−[q′y]0. Then, [py⊕q′y]0 = [p′y⊕qy]0 in K0(A), i.e they
are stably equivalent, and so we can find s(y) ∈ N such that py ⊕ q′y ⊕ 1

⊕s(y)
A ∼0 p

′
y ⊕ qy ⊕ 1

⊕s(y)
A .

Thus, there is uy ∈ M2n(y)+s(y)(A) partial isometry satisfying, u∗yuy = py ⊕ q′y ⊕ 1⊕sA and uyu
∗
y =

p′y ⊕ qy ⊕ 1⊕sA , for each y ∈ Y . Now, if we set A1 to be the C∗-subalgebra of A generated by
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A0 and the entries of uy, for each y ∈ Y , then A1 is separable, and by the above considerations
f(y) = g(y) in K0(A1), for each y ∈ Y . Hence, if ι0,1 : A0 → A1 is the inclusion, we obtain that
K0(ι0,1)f = K0(ι0,1)g, which shows that f = g as elements in lim−→ HomZ(ZY,K0(A0)).
Finally, for i = 1, it is straightforward to see that if we employ Bott periodicity, the desired

result follows.

We end this exposition with two propositions concerning the K-theoretical behaviour of stable
rank one C∗-algebras and of von Neumann algebras. Both results are omnipresent in K-theory
literature, but their versatility and usefulness in the current project lead us to include them in
this appendix.

Proposition A.0.11. Let A be a unital C∗-algebra. If A has stable rank one, then the von Neumann
- Murray semigroup, (D(A),+), has the cancellation property.

Proof. First, we show that, if p, q projections in A and p ∼0 q, then 1− p ∼0 1− q. To see this,
initially let v ∈ A, such that v∗v = p and vv∗ = q. Then, for ε < 1

2 , find z ∈ GL(A), satisfying
‖z − v‖ < ε/3, and let z = u|z| be the (unitary) polar decomposition of z. Since, u, v are both
contractions, we get that

‖z − v‖ < ε/3 =⇒ ‖|z| − u∗v‖ < ε/3 =⇒ ‖(|z| − u∗v)∗(|z| − u∗v)‖ < ε/3

=⇒ ‖z∗z − z∗v − v∗z + p‖ < ε/3 (1)

and,
‖z∗v − p‖ < ε/3 (2)

‖v∗z − p‖ < ε/3 (3)

Hence, by (1), (2), (3)

‖z∗z − p‖ = ‖z∗z − z∗v + z∗v − p− p− v∗z + v∗z + p‖

≤ ‖z∗z − z∗v − v∗z + p‖+ ‖z∗v − p‖+ ‖v∗z − p‖ < ε

so,
‖uz∗zu∗ − upu∗‖ = ‖zz∗ − upu∗‖ < ε (4)

Similarly, we see that ‖zz∗ − q‖ < ε, and combining it with (4), we obtain

‖upu∗ − q‖ < 2ε < 1

which implies that p ∼u upu∗ ∼u q, and in turn that 1− p ∼0 1− q.
Now, let r ∈ A projection, such that p ⊥ r, q ⊥ r and p+r ∼0 q+r. Then, 1−(p+r) ∼ 1−(q+r),

and let w ∈ A, be the partial isometry exhibiting this equivalene. If we set v = w + r, we get
that v∗v = 1− (p+ r) + r and vv∗ = 1− (q + r) + r, i.e 1− (p+ r) + r ∼0 1− (q + r) + r, thus, by
the first part again, it follows that p ∼ q, and the proof is complete.

Proposition A.0.12. Let M be a (unital) von Neumann algebra. Then K1(M) = 0

Proof. Let u ∈ M be a unitary and define the Borel measurable function σ : T → [0, 2π), by
σ(exp (it)) = t. Using Borel functional calculus, set h = σ(u), which is a self-adjoint in M . Since,
exp (iσ(x)) = x for every x ∈ T, we have that exp (ih) = u, which shows that u ∈ U0(M) i.e u
belongs to the connected component of the identity. Thus [u]1 = 0, and since u was arbitrary,
we conclude that K1(M) = 0.
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