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Abstract

This thesis describes the Banach-Tarski paradox and related subjects. The thesis contains

two main results: The Banach-Tarski paradox and Tarski's theorem, described in chapter 1

and chapter 2, respectively. The concept of paradoxicality is de�ned and used throughout the

thesis. A number of propositions concerning this concept are proved and used to show the

Banach-Tarski paradox � both in its original form and in a stronger version. Tarski's theorem

links paradoxicality to measure theory and gives a measure theoretical criterion for, when a

paradoxical decomposition exists. In chapter 3, an application of the Hahn-Banach theorem

shows that the Banach-Tarski paradox can not be transferred to the plane. In connection

with this we will study the class of amenable groups, and a number of fundamental results

on these will be proved.

Resumé på dansk (Abstract in Danish)

Dette bachelorprojekt beskriver Banach-Tarskis paradoks og beslægtede emner. Projektet

indeholder to hovedresultater: Banach-Tarskis paradoks og Tarskis sætning, som beskrives

i henholdsvis kapitel 1 og kapitel 2. Begrebet paradoksalitet de�neres og benyttes gennem

resten af projektet. En række sætninger vedrørende dette begreb bevises og bruges til at vise

Banach-Tarskis paradoks � både i dets oprindelige form og i en stærkere version. Tarskis

sætning knytter paradoksalitet til målteori og giver et målteoretisk kriterium for, i hvilke

tilfælde paradoksale opspaltninger �ndes. I kapitel 3 anvendes Hahn-Banachs sætning til at

bevise, at Banach-Tarskis paradoks ikke kan overføres til planen. I denne forbindelse indføres

de amenable grupper, og en række grundlæggende resultater om disse bevises.
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Introduction

Through history the concept of in�nity has puzzled mankind and maybe particularly math-

ematicians. An early example of this is Galilei's attempt to compare the size of the set of

square numbers with the size of the set of all natural numbers. By using di�erent approaches

he was justi�ed in answering both yes and no to the question: Are there more natural num-

bers than square numbers? This was of course most unsatisfactory. Paradoxes like that show

us how careful we must be, if we want to work with the concept of in�nity in a satisfactory

manner, and how the concept often leads to results that may seem paradoxical.

With the development of Cantor's set theory and the concept of cardinality, mathematicians

found a way to deal with the in�nite. But results that seem counter-intuitive still �nd their

way into the mathematical world. Often such results are related to the Axiom of Choice, which

was formulated in the early 20th century by Zermelo. It has several equivalent formulations,

one of which is the following:

Axiom of Choice.

If {Ai}i∈I is a collection of disjoint sets, it is possible to �nd a set C, such that

C contains exactly one element from each of the sets Ai, i ∈ I.

This seemingly harmless axiom has many applications in modern mathematics, but has also

brought with it a number of highly counter-intuitive results. The Banach-Tarski paradox is

one example of this, but before stating it we should be clear about one thing: The Banach-

Tarski paradox is not a paradox in the usual sense of the word. It is simply a theorem which

at �rst seems false, but nevertheless can be proved rigorously. It may be formulated as

The Banach-Tarski paradox.

There exists a partition of the unit ball B into �nitely many pieces A1, . . . , An,

B1, . . . , Bm and isometric mappings ϕ1, . . . , ϕn, ψ1, . . . , ψm such that

B =
n⋃
i=1

ϕi(Ai) =
m⋃
j=1

ψj(Bj).

Loosely, the Banach-Tarski paradox may be formulated as: an orange may be cut into a �nite

number of pieces and rearranged to collect two oranges of the same size as the original. Of
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course the theorem questions whether the axiom of choice is a reasonable axiom to include or

not. There has been a long discussion about the use of the axiom of choice in mathematics,

but most mathematicians agree that it should be part of the standard axioms. We shall not

go into this discussion.

The Banach-Tarski paradox is named after the two mathematicians Stefan Banach and Alfred

Tarski, who proved the theorem in 1924. Their work was related to measure theory, which was

developed in the early 20th century. In 1905 Vitali showed the existence of a non-measurable

set and thereby proved the non-existence of a (countably additive) extension of the Lebesgue

measure to all subsets of the real line. In 1914 Hausdor� proved the non-existence of a

certain kind of measure by constructing a paradox related to the sphere. These are some of

the results that motivated Banach and Tarski.

The strong connection between paradoxicality and measure theory will not be emphasized

until chapter two. The reader is supposed to be familiar with elementary group theory and in

particular group actions. Chapter two and especially chapter three use basic measure theory,

and a few proofs in these chapters also use the Hahn-Banach theorem, in connection with

which some aquaintance with functional analysis may be helpful. Chapter three also uses

general topology and Tychono�'s theorem in a single proof.

I wish to thank my advisor Mikael Rørdam for his ideas and advice.
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CHAPTER 1

The Banach-Tarski paradox

1.1 Paradoxicality

Usually the Banach-Tarski paradox is formulated through the concept of paradoxicality, which

will be de�ned below. Paradoxicality is a way of formalizing the idea of duplicating a set by

splitting it into pieces and moving the pieces around. Group actions are a natural way of

moving the pieces, so �rst recall the de�nition of a group action. A group G is said to act

on a set X, if there is a mapping from G ×X to X, denoted (g, x) 7→ g.x, such that for all

x ∈ X, g, h ∈ G
1.x = x, g.(h.x) = (gh).x

where 1 denotes the neutral element of G. To each g ∈ G is associated a map x 7→ g.x, and

we will denote this map also by g. This should not cause any confusion. Often we will omit

the dot and just write g(x) or simply gx instead of g.x.

Example 1.1. The group En of isometries of the Euclidean space Rn acts on Rn. The

subgroup SOn of orientation-preserving orthogonal transformations also acts on Rn. SOn is

called the rotation group. The unit sphere Sn−1 is stable under this action, so SOn also acts

on Sn−1.

Example 1.2. Any group acts on itself by left multiplication, and a subgroup also acts on

the whole group by left multiplication. A group also acts on its power set P(G) by left

multiplication, and if Y is any set, then G acts on Y G (the set of maps from G to Y ), by

letting g.f be the map h 7→ f(g−1h). Here g, h ∈ G and f ∈ Y G.

The reader is supposed to be familiar with these standard actions. We will now formulate

the concept of paradoxicality.

De�nition 1.3. Let G be a group acting on a set X, and let E ⊆ X. If there exist disjoint

subsets A1, . . . , An, B1, . . . , Bm of E and group elements g1, . . . , gn, h1, . . . , hm such that

E =
n⋃
i=1

gi.Ai =
m⋃
j=1

hj .Bj

1



1.1 Paradoxicality

then we say that E is G-paradoxical. If it is obvious which group is meant we simply say that

X is paradoxical, or if X = G and the action is left multiplication we will also just say that

G is paradoxical.

Remark 1.4. Let us make a few comments on this de�nition since it is the most important

de�nition in the thesis. It is not required that the pieces {Ai}ni=1 ∪ {Bj}mj=1 cover all of E.

It will nevertheless be shown later (corollary 1.23) that it is always possible to choose the

pieces so that they cover E.

There are no restrictions on how the pieces may look, eg. measurability, connectedness, etc.

That is one of the reasons why some results in connection with paradoxicality may seem

counter-intuitive.

Also note that we only allow �nitely many pieces.

With the terminology of paradoxicality in place we can formulate the Banach-Tarski paradox

as follows:

Theorem 1.5 (The Banach-Tarski paradox). The unit ball in R3 is E3-paradoxical.

The proof will be postponed until section 1.5. We will now show how the paradoxicality of

a group G can be used to produce a paradoxical decomposition of a set X, if G acts on X.

This is not always the case, but if the action is free, i.e. only the neutral element of G has

�xed points, it can be done. Recall that if g ∈ G \ {1} we say that x is a non-trivial �xed

point if g.x = x.

Proposition 1.6. If G acts on X without non-trivial �xed points and G is paradoxical, then

X is G-paradoxical.

Proof. Let A1, . . . , An, B1, . . . , Bm ⊆ G, g1, . . . , gn, h1, . . . , hm ∈ G witness the paradoxicality

of G. If X/G denotes the orbit space it is possible to choose exactly one element from each

orbit (this requires the axiom of choice). If we collect these representatives in a set M then

{g.M | g ∈ G} is a partition of X. To see this assume �rst that g.M ∩ h.M 6= ∅. Then

g.x = h.y for some x, y ∈ M . Hence h−1g.x = y, so x and y belong to the same orbit, and

we see x = y by the choice of M . Since the action is free, and x is �xed by h−1g, we get

h−1g = 1, or h = g, so g.M = h.M .

To see that {g.M | g ∈ G} covers all of X suppose that x ∈ X is given. M contains an

element from each orbit, so let y ∈ G.x ∩M be such an element. Then g.y = x for some

g ∈ G and hence x ∈ g.M .

Now, for 1 ≤ i ≤ n, 1 ≤ j ≤ m de�ne

A∗i =
⋃
g∈Ai

g.M = Ai.M, B∗j =
⋃
g∈Bj

g.M = Bj .M.

2



The Banach-Tarski paradox

Then clearly A∗1, . . . , A
∗
n, B

∗
1 , . . . , B

∗
m are disjoint subsets of X. Further

n⋃
i=1

gi.A
∗
i =

n⋃
i=1

gi.(Ai.M) =

(
n⋃
i=1

giAi

)
.M = G.M = X

and in a similar way we get
m⋃
j=1

hj .B
∗
j = X

showing that X is G-paradoxical.

Since a subgroup acts without nontrivial �xed points on the whole group we get the following

immediate corollary:

Corollary 1.7. If a group G has a paradoxical subgroup then G itself is paradoxical.

The following proposition is a converse of proposition 1.6, but will not be important (until

chapter 3). We provide it only for completeness and to work with the concept of paradoxi-

cality.

Proposition 1.8. If X is G-paradoxical, then G is paradoxical.

Proof. Let A1, . . . , An, B1, . . . , Bm ⊆ X, g1, . . . , gn, h1, . . . , hm ∈ G witness the paradoxica-

lity of X with respect to G. Fix some x ∈ X, and for i = 1, . . . , n, j = 1, . . . ,m de�ne

A∗i = {g ∈ G | g.x ∈ Ai} and B∗j = {g ∈ G | g.x ∈ Bj}.

These are all disjoint, because A1, . . . , An, B1, . . . , Bm are. The orbit G.x is the union of the

sets gi.Ai ∩ G.x, where i = 1, . . . , n, so if g ∈ G then g.x is in some gi.Ai. This means that

g.x = gi.a for some i and a ∈ Ai. Then g−1
i g.x = a ∈ Ai. So g−1

i g is in A∗i , and hence

g ∈ gi.A∗i , which shows that

G =
n⋃
i=1

gi.A
∗
i

A similar argument shows that G

G =
m⋃
j=1

hj .B
∗
j

demonstrating the paradoxicality of G.

1.2 Free groups

Free groups will be an important source of paradoxical groups. Since the reader is not assumed

to be familiar with free groups we introduce the concept. If S is a set, the free group generated

by S is the group of all reduced �nite words with letters from {s, s−1 | s ∈ S}. A word is
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1.3 The Hausdor� paradox

called reduced if it contains no pairs of adjacent letters of the form ss−1 or s−1s. The group

composition is concatenation of words followed by reduction, that is removing pairs of the

mentioned forms. Unless otherwise mentioned, the generators are always assumed to have

in�nite order.

It can be proved that if the sets S and T generate the same free group, then they have the

same cardinality. The cardinality of a generating set is called the rank of the free group. A

free group is completely determined (up to isomorphism) by its rank, if we assume that all

generators have in�nite order.

Proposition 1.9. The free group F2 of rank two is paradoxical.

Proof. Let {σ, τ} be a generating set for F2. For ρ ∈ {σ, σ−1, τ, τ−1} let W (ρ) denote the set
of all words beginning (on the left) with ρ. Then F2 can be written as the disjoint union

F2 = {1} ∪W (σ) ∪W (σ−1) ∪W (τ) ∪W (τ−1)

We claim that F2 = W (σ) ∪ σW (σ−1). To see this suppose that w ∈ F2 \ W (σ). Then

σ−1w ∈ W (σ−1), and from this we infer that w = σ(σ−1w) ∈ σW (σ−1). In a similar way it

can be shown that F2 = W (τ) ∪ τW (τ−1), showing that F2 is paradoxical.

The combination of corollary 1.7 and the above proposition yields the following corollary:

Corollary 1.10. If a group G contains a free subgroup of rank 2, then G is paradoxical.

1.3 The Hausdor� paradox

As a step on the way to prove the Banach-Tarski paradox we will prove the Hausdor� paradox

which gives a paradoxical decomposition of almost all of the unit sphere S2. The way to do

this is to realize F2 as a subgroup of SO3 and then use proposition 1.6 to lift the paradoxical

behavior of the subgroup to a major part of the unit sphere. A set S of elements in a group

are called independent, if no non-trivial, reduced word using letters from S and their inverses

is the identity. Hence a pair of independent elements will generate a free subgroup of rank

two.

Lemma 1.11. There exist two independent rotations about axes through the origin in R3.

Hence SO3 contains a free subgroup of rank 2.

Proof. Let σ be a counter-clockwise rotation about the z-axis through the angle θ = arccos 3/5,

and let τ be a rotation about the x-axis through the same angle. The rotations are represented

by the matrices

σ =

 3/5 −4/5 0
4/5 3/5 0
0 0 1

 , τ =

 1 0 0
0 3/5 −4/5

0 4/5 3/5

 .
4



The Banach-Tarski paradox

We must show that no non-trivial, reduced word in {σ, σ−1, τ, τ−1} is the identity. Since

conjugation by σ does not change whether or not a word is the identity, we need only consider

the case with words ending (on the right) with σ. We claim that for any such word w the point

w(1, 0, 0) will be of the form (a, b, c)/5n where n is the length of w, and a, b, c are integers.

Moreover b is not divisible by 5. This will be su�cient because then w(1, 0, 0) 6= (1, 0, 0), so
w is not the identity.

The claim is shown by induction over n. For n = 1, we have w = σ and w(1, 0, 0) = (3, 4, 0)/5.
Assume now that w is a word of length n ≥ 2. There are the possibilities

w = σ±1w′ or w = τ±1w′,

where w′ is a word of length n− 1. If w′(1, 0, 0) = (a′, b′, c′)/5n−1, then

σ±1w′(1, 0, 0) = (3a′ ± 4b′, 3b′ ∓ 4a′, 5c′)/5n (1.1)

and

τ±1w′(1, 0, 0) = (5a′, 3b′ ± 4c′, 3c′ ∓ 4b′)/5n. (1.2)

By the induction hypothesis a′, b′, c′ are integers, so a, b, c are integers. We must check that

5 is not a divisor of b. We split this into four cases according to the �rst two letters of w:

w = σ±1τ±1w′′, w = τ±1σ±1w′′, w = τ±1τ±1w′′, w = σ±1σ±1w′′,

where w′′ is any (possibly empty) word. We will only go through the �rst and the last case,

since the remaining two cases are similar to those. The last case only refers to the possibilities

w = σσw′′ and w = σ−1σ−1w′′, since w is assumed to be reduced. We remark that w′′(1, 0, 0)
is of the form (a′′, b′′, c′′)/5n−2, where a′′, b′′, c′′ are integers, but we can not assume that b′′

is not divisible by 5, since this is not a part of the induction hypothesis.

If w = σ±1τ±1w′′, then by (1.1) and (1.2) we get b = 3b′ ∓ 4a′ where a′ = 5a′′ and (by the

induction hypothesis) 5 does not divide b′. This shows that b is not divisible by 5.

If w = σ±1σ±1 then by applying (1.1) twice we see that a′ = 3a′′ ± 4b′′ and b = 3b′ ∓ 4a′.
From this

b = 3b′ ∓ 4(3a′′ ± 4b′′) = 3b′ ∓ 12a′′ − 16b′′ − 9b′′ + 9b′′

= 3b′ + 3(3b′′ ∓ 4a′′)− 25b′′ = 6b′ − 25b′′,

and since 5 does not divide b′ we conclude that b is not divisible by 5. This completes the

proof.

Let F be the subgroup of SO3 generated by σ and τ . F is paradoxical by proposition 1.9,

but in order to apply proposition 1.6 to the action of F on the sphere, the action must be

5



1.4 Equidecomposability

free. Since any rotation through origo apart from the identity has exactly two �xed points

(the intersection of the axis of rotation with the sphere) it is not free. However, if we let

D = {x ∈ S2 | ρ.x = x for some ρ ∈ F \ {1}}, (1.3)

then S2 \D is stable under the action of F . To see this suppose ρ.x ∈ D where ρ ∈ F . Then
ϕ(ρ.x) = ρ.x for some ϕ ∈ F . Hence ρ−1ϕρ.x = x, so x ∈ D. This shows that x ∈ S2 \D
implies that ρ.x ∈ S2 \D. Hence S2 \D is F -stable, so F acts on S2 \D.

F \ {1} is countable and each ρ ∈ F \ {1} has only two �xed points, so D is countable.

Also the action of F on S2 \ D is free, and an application of proposition 1.6 now gives an

F -paradoxical decomposition of S2 \D. Since F is a subgroup of SO3 we have now proved

Theorem 1.12 (The Hausdor� paradox). There exists a countable subset D of the unit

sphere S2 such that S2 \D is SO3-paradoxical.

The proof is easily generalized to spheres of arbitrary radius.

1.4 Equidecomposability

We will now introduce the important concept of equidecomposability. It turns out that

equidecomposability is an equivalence relation on P(X), and that G-paradoxicality is a class

property with respect to this relation. We will be able to show that S2 and S2 \ D, where

D is as in (1.3), belong to the same equivalence class, yielding the SO3-paradoxicality of S2.

Then we will be ready to prove the Banach-Tarski paradox.

De�nition 1.13. If G acts on X and A,B are subsets of X we say that A and B are G-

equidecomposable and write A ∼G B if there exist a partition {Ai}ni=1 of A and a partition

{Bi}ni=1 of B and g1, . . . , gn ∈ G, such that

Bi = gi.Ai for every i ∈ {1, . . . , n}.

If
∐

denotes a disjoint union then we may formulate G-equidecomposability as

A =
n∐
i=1

Ai, B =
n∐
i=1

Bi, Bi = gi.Ai for i ∈ {1, . . . , n}.

Loosely speaking two subsets of X are G-equidecomposable if one of them can be cut into

�nitely many pieces, and the pieces can be used to build up the other. It is clear from the

de�nition that A ∼G B if and only if there is a bijection γ : A→ B such that

γ(x) =


g1.x if x ∈ A1

...

gn.x if x ∈ An

(1.4)

6



The Banach-Tarski paradox

In other words there exist �nitely many elements g1, . . . , gn ∈ G and a bijection γ : A → B

such that γ(x) ∈ {g1.x, . . . , gn.x} for every x ∈ A. Such a bijection will be called a G-

transformation from A to B. We use the notation A ∼γ B to indicate that γ : A → B is

a G-transformation from A to B. We will use this alternative view on equidecomposability

many times.

Proposition 1.14. Let G act on X. The relation ∼G is an equivalence relation on P(X).

Proof. Re�exivity and symmetry are obvious so we will focus on transitivity. Suppose A ∼G
B and B ∼G C. Then there are two G-transformations ϕ and ψ such that A ∼ϕ B and

B ∼ψ C. Then ψϕ : A → C is a bijection. If ϕ(x) ∈ {g1.x, . . . , gn.x} for every x ∈ A and

ψ(x) ∈ {h1.x, . . . , hm.x} for every x ∈ B then

(ψϕ)(x) ∈ {hjgi.x | j = 1, . . . ,m, i = 1, . . . , n} for every x ∈ A

showing that ψϕ is a G-transformation. Hence A ∼ψϕ C, so A ∼G C.

What we have actually shown is that if ϕ : A → B and ψ : B → C are G-transformations,

then ψϕ : A→ C is a G-transformation.

There is an intimate connection between paradoxicality and equidecomposability. That is

the content of the following proposition.

Proposition 1.15. If G acts on X and E ⊆ X, then E is G-paradoxical if and only if there

are disjoint subsets A and B of E, such that A ∼G E ∼G B.

Proof. If A ∼G E ∼G B where A and B are disjoint subsets of E, then clearly E is para-

doxical. The problem with the other direction is that the pieces used in the de�nition of

paradoxicality may overlap when they have been moved, i.e. the Ai's are disjoint, but the

gi.Ai's are not necessarily disjoint. But if there are overlaps we can just use smaller pieces

to begin with. Let us formalize this idea.

Suppose A1, . . . , An, B1, . . . , Bm and g1, . . . , gn, h1, . . . , hm witness the G-paradoxicality of E.

De�ne inductively

A∗1 = A1, A∗i = Ai \ g−1
i

(
i−1⋃
k=1

gk.A
∗
k

)
for i = 2, . . . , n

Then A∗i ⊆ Ai for i = 1, . . . , n so the A∗i 's are disjoint. Further

E =
n∐
i=1

gi.A
∗
i ,

so if we let

A∗ =
n∐
i=1

A∗i ,

7



1.5 The Banach-Tarski paradox

then A∗ ∼G E. In the same way we may de�ne B∗ and show B∗ ∼G E.

Now we can show that paradoxicality is a class property with respect to equidecomposability.

Proposition 1.16. If A ∼G B and A is G-paradoxical, then B is G-paradoxical.

Proof. Let ϕ : A → B be a G-transformation, such that A ∼ϕ B, and let A1 ∼G A ∼G A2,

where A1 and A2 are disjoint. Since ϕ is a bijection, ϕ(A1) and ϕ(A2) are disjoint, and

ϕ(A1) ∼G A1 ∼G A ∼G ϕ(A) and ϕ(A2) ∼G A2 ∼G A ∼G ϕ(A),

so if we put B1 = ϕ(A1) and B2 = ϕ(A2) then B1, B2 ⊆ ϕ(A) are disjoint. Since ϕ(A) = B

we get

B1 ∼G B ∼G B2,

and so B is G-paradoxical.

1.5 The Banach-Tarski paradox

With equidecomposability well in place we are almost ready to prove the Banach-Tarski

paradox. The proof of the following lemma is called a proof of absorption, beacuse it shows

how a set that is somehow small in the context of paradoxicality can be ignored.

Lemma 1.17. If D is a countable subset of S2, then S2 \D ∼SO3 S
2.

Proof. Let l be a line through the origin that does not intersect the countable set D. For

θ ∈ [0, 2π[ we let ρθ denote the rotation about l through the angle θ. The orientation of l is

immaterial; just choose one of the two possible. For d ∈ D,n ∈ N de�ne

Ad,n = {θ ∈ [0, 2π[ | ρnθ (d) ∈ D} and A =
⋃
d∈D

∞⋃
n=1

Ad,n

Each Ad,n is countable, and so is A. Now let θ ∈ [0, 2π[\A. Then ρnθ (D) ∩D = ∅ for every
natural number n. Also ρnθ (D) ∩ ρmθ (D) = ∅ for n 6= m, so the sets D, ρθ(D), ρ2

θ(D), . . . are
pairwise disjoint. If we let

D =
∞⋃
n=0

ρθ(D),

then we conclude

S2 = (S2 \D) ∪D ∼SO3 (S2 \D) ∪ ρθ(D) = S2 \D.
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The lemma shows that S2 and S2\D belong to the same equidecomposability class, and since

paradoxicality is a class property the Hausdor� paradox shows that S2 is SO3-paradoxical.

Theorem 1.18 (The Banach-Tarski paradox). The unit ball B in R3 is E3-paradoxical.

So is any other solid ball in R3.

Proof. Since S2 is SO3-paradoxical, the radial correspondence P 7→ {αP | 0 < α ≤ 1} of the
unit sphere with the unit ball except origo yields a paradoxical decomposition of B \ {0}.
Again we use the trick of absorption to show B ∼E3 B \ {0} from which the �rst assertion

will follow.

Let l be the line parallel to the x-axis and through the point (1/2, 0, 0), and let ρ ∈ E3 be a

rotation about l of in�nite order. Put D = {ρn(0) | n ≥ 0}. Then

B = (B \D) ∪D ∼E3 (B \D) ∪ ρ(D) = B \ {0}

By using another radial correspondence P 7→ {αP | 0 < α ≤ r} we get in exactly the same

way that any solid ball centered at origo of radius r > 0 is E3-paradoxical, and since E3

contains all translations, any solid ball is E3-paradoxical.

Remark 1.19. If we use the correspondence P 7→ {αP | 0 < α} between S2 and R3 \{0} we
get a paradoxical decomposition of R3 \ {0}, and also here {0} can be absorbed, so actually

R3 is E3-paradoxical.

We can improve the result of the theorem even more. But �rst a de�nition.

De�nition 1.20. If A,B ⊆ X we write A �G B if A is G-equidecomposable with a subset

of B.

Notice that �G is a class property with respect to G-equidecomposability. The notation

suggests that �G is a partial order on the ∼G-equivalence classes, and this is indeed the case.

Since �G re�exivity and trasitivity are obvious the claim is justi�ed by the following theorem

by Banach which uses the idea of the famous Schröder-Bernstein theorem.

Lemma 1.21. Suppose G acts on X and A,B,A′, B′ ⊆ X.

(a) If γ : A → B is a G-transformation and A′ ⊆ A, then γ|A′ is a G-transformation

between A′ and γ(A1). In particular A′ ∼G γ(A′).

(b) If A and A′ are disjoint, γ : A ∪ A′ → B ∪ B′, γ|A : A → B and γ|A′ : A′ → B′ are

G-transformations, then γ is a G-tranformation. In particular A ∪A′ ∼G B ∪B′.

Proof. The �rst assertion is immediate, since γ|A′ is also of the form (1.4). Since γ|A : A→ B

and γ|A′ : A′ → B′ are bijections and A∩A′ = ∅, then γ : A∪A′ → B∪B′ is a bijection. It is
clear that γ can be written in the form (1.4) with n+m elements from G (sometimes fewer)

if γ|A and γ|A′ can written in that form with respectively n and m elements from G.
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Theorem 1.22 (Banach-Schröder-Bernstein). If A �G B and B �G A, then A ∼G B.

Hence �G is a partial order of the ∼G-equivalence classes.

Proof. By assumption there exist G-transformations f and g, such that A ∼f B′ and B ∼g A′

where A′ ⊆ A and B′ ⊆ B. De�ne C0 = A \ A′ = A \ g(B) and for n ∈ N de�ne inductively

Cn = g(f(Cn−1)). Put

C =
∞⋃
n=0

Cn.

Then A \C ⊆ A′ and g−1(A \C) = B \ f(C). By lemma 1.21 (a) we get A \C ∼G B \ f(C)
and C ∼G f(C). We conclude the proof by applying part (b) to get

A = (A \ C) ∪ C ∼G (B \ f(C)) ∪ f(C) = B.

As a consequence of the Banach-Schröder-Bernstein theorem we can prove the claim from

remark 1.4.

Corollary 1.23. E ⊆ X is G-paradoxical, if and only if there is a partition of E

E = A
∐

B

with A ∼G E ∼G B. In other words the pieces used in the decomposition of E may be chosen

so that they partition E.

Proof. Using the characterization of proposition 1.15 we assume A ∼G E ∼G B for disjoint

subsets A,B ⊆ E. Let A′ = E \ B. Then A ⊆ A′ ⊆ E, so A �G A′ �G E �G A, and the

Banach-Schröder-Bernstein theorem yields A′ ∼G E. Then A′ and B are the required pieces.

This shows the corollary up to a change of notation.

It is now time to improve the Banach-Tarski paradox by using the Banach-Schröder-Bernstein

theorem.

Theorem 1.24 (Banach-Tarski � strong version). Any two bounded subsets of R3 with

non-empty interior are E3-equidecomposable. In particular, any such set is E3-paradoxical.

Proof. Let A and B be bounded subsets of R3 with non-empty interior. By the assumptions

we can �nd solid balls K,L with A ⊆ K and L ⊆ B. Choose n so large that K may be

covered by n copies of L. This is possible, because K is bounded. Thus if we let M be a

union of n disjoint copies of L, K �E3 M . By using the Banach-Tarski paradox repeatedly

L ∼E3 M , and hence

A �E3 K �E3 M �E3 L �E3 B

showing A �E3 B.
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The Banach-Tarski paradox

By a similar argument B �E3 A, and the �rst part of the theorem is now a consequence of

the antisymmetry of �E3 .

To prove the second part, let A be a bounded subset of R3 with non-empty interior, and let

K be an open ball contained in A. K contains two disjoint, open balls K1 and K2, and by

the �rst part of the theorem K1 ∼E3 A ∼E3 K2, so A is E3-paradoxical.
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CHAPTER 2

Tarski's theorem

We will now set out to prove Tarski's theorem which links paradoxicality to measure theory.

It states that a set E ⊆ X is not G-paradoxical if and only if there is a �nitely additive

measure µ de�ned on all subsets of X, normalizing E and invariant under the group action.

One part of the theorem is trivial, because if E is G-paradoxical there can not exist such a

measure: if A and B partition E and A ∼G E ∼G B, then

1 = µ(E) = µ(A ∪B) = µ(A) + µ(B) = µ(E) + µ(E) = 2.

The other part of the theorem is the interesting part and requires some work. We start by

giving a de�nition. In all of the following G is a group acting on a set X.

De�nition 2.1. Let E ⊆ X. A function µ : P(X) → [0,∞] satisfying µ(∅) = 0 and

µ(A ∪ B) = µ(A) + µ(B) if A ∩ B = ∅ for all A,B ⊆ X is called a �nitely additive measure

on X. If µ(E) = 1, we say that µ normalizes E, and if µ(gA) = µ(A) for all A ⊆ X, g ∈ G,
we say that µ is G-invariant.

Remark 2.2. If µ(E) = 1, it follows from the �nite additivity that µ(∅) = 0, because

µ(E) = µ(E ∪ ∅) = µ(E) + µ(∅).

Subtracting µ(E), which is possible because µ(E) is �nite, gives µ(∅) = 0.

In the light of the �nite additivity, the invariance property may be stated as µ(A) = µ(B) if
A ∼G B.

Recall that a G-transformation is a bijection γ : A→ B between subsets A and B of X with

�nitely many g1, . . . , gn ∈ G such that γ(x) ∈ {g1.x, . . . , gn.x} for every x ∈ A. We note that

E is G-paradoxical if and only if there are G-transformations γ1, γ2 such that γ1 : A → E

and γ2 : B → E for some disjoint sets A,B ⊆ E.

We will also consider several copies of X, and for this purpose we introduce the notation

In = {1, . . . , n} and En = E× In for a subset E of X. If Sn denotes the symmetric group on
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In, then the group Gn = G× Sn acts on Xn by the componentwise action

(g, σ).(x,m) = (g.x, σ.m),

where (g, σ) ∈ G× Sn and (x,m) ∈ Xn. This is the natural generalization of the action of G

on X to an action on n copies of X.

The reason for introducing several copies of X is that we may now formulate paradoxicality

as: E is G-paradoxical if and only if E × {1} ∼G2 E × {1, 2}, i.e. E is G2-equidecomposable

with two copies of itself. Another reason for introducing this is that it may often be easier

to prove that En is Gn-paradoxical for some suitably large n ∈ N than to prove directly that

E is G-paradoxical. Fortunately this will su�ce to prove the G-paradoxicality of E as stated

in proposition 2.3.

Note that if En is Gn-paradoxical, then En is automatically Gm-paradoxical for any natural

number m ≥ n when we consider En as a subset of Xm. Also if En is Gm-paradoxical, then

Ekn is Gm-paradoxical if kn ≤ m, k ∈ N.

2.1 A cancellation law

Proposition 2.3. E is G-paradoxical if and only if En is Gn-paradoxical for some n ∈ N.

Proof. One direction is trivial. The proof of the other direction is based on the following two

lemmas.

Lemma 2.4. If E is partitioned in two ways, E = A
∐
B = C

∐
D, and A ∼G B and

C ∼G D, then A ∼G C.

Proof. Let f and g be G-transformations witnessing A ∼f B and C ∼g D. De�ne ϕ : E → E

by ϕ|A = f and ϕ|B = f−1, and de�ne ψ in a similar way with g. Then ϕ and ψ are

G-transformations of E with no �xed points and ϕ2 = ψ2 = idE .

Consider the group H = 〈ϕ,ψ〉 of G-transformations and its cyclic subgroup N = 〈ψϕ〉.
Since both ϕ and ψ have order two, a simple computation will show that N is normal in H.

We note that ϕN = ψN . Let E/N denote the orbit space. If N.x ∈ E/N is an orbit, then

ϕN.x = ψN.x. Hence ϕ and ψ induce the same transformation on E/N , which we denote

by ρ.

The transformation ρ has order two and no �xed points. For suppose that ρ(N.x) = N.x for

some x ∈ E. Then ϕ(ψϕ)m.x = (ψϕ)n.x for some m,n ∈ Z. Hence (ψϕ)−nϕ(ψϕ)m.x = x,

which can be reduced by using

(ψϕ)−nϕ(ψϕ)m = (ϕψ)nϕ(ψϕ)m = ϕ(ψϕ)m+n

to ϕ(ψϕ)m+n.x = x.
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If n +m is even, then ϕ(ψϕ)m+n and ϕ are conjugates, i.e. there is a δ ∈ 〈ϕ,ψ〉, such that

δ−1ϕδ = ϕ(ψϕ)m+n. Simply choose δ = (ψϕ)
m+n

2 . We now get a contradiction because

ϕ(ψϕ)m+n.x = x implies ϕ.(δ.x) = δ.x, but ϕ had no �xed points, and now δ.x is a �xed

point. If m + n is odd, then we get the same contradiction with ψ instead by choosing

δ = ϕ(ψϕ)
m+n−1

2 , ψδ.x = δ.x for an appropriate δ ∈ 〈ϕ,ψ〉.

Now, ρ partitions E/N in orbits. If Z consists of one element from each orbit (note the use

of the axiom of choice), then E/N = Z
∐
ρ(Z). If κ : E → E/N is the quotient map that

maps an element to its orbit, then E′ = κ−1(Z) and E′′ = κ−1(ρ(Z)) partitions E. Also, E′

and E′′ are interchanged by ϕ and also by ψ.

Let α : A→ E′ be

α(x) =

{
x, x ∈ E′ ∩A
ϕ(x), x ∈ E′′ ∩A

We claim that α is a G-transformation. Since ϕ is a G-transformation, and α(x) ∈ {x, ϕ(x)}
for every x ∈ A, all that remains is to check that α is a bijection.

Injectivity: If x ∈ E′ ∩ A and y ∈ E′′ ∩ A, then α(x) = x ∈ A while α(y) = ϕ(y) ∈ B, so
α(x) 6= α(y), since A and B are disjoint. The other cases are trivial.

Surjectivity: Let y ∈ E′. If y ∈ A, then y = α(y). Otherwise y ∈ B, so y = ϕ(x) for some

x ∈ A (actually x = f−1(y)), and since ϕ interchanges E′ and E′′, we must have x ∈ E′′. We

conclude y = ϕ(x) = α(x).

We have now shown that A ∼G E′. In a similar way we can show C ∼G E′, and the proof is

complete, since then A ∼G C.

Lemma 2.5 (Cancellation law). Let n ∈ N. If E2n is G2n-paradoxical, then En is Gn-

paradoxical.

Proof. Using the characterization of corollary 1.23 we may state the assumption as

E2n = A
∐

B where A ∼G2n E2n ∼G2n B.

If we de�ne E′ = E × {1, . . . , n} and E′′ = E × {n+ 1, . . . , 2n}, then clearly

E2n = E′
∐

E′′ and E′ ∼G2n En ∼G2n E
′′.

It follows from lemma 2.4 that En ∼G2n E2n. This is equivalent to En being Gn-paradoxical.

Proof of proposition 2.3. In the case where n is a power of two, i.e. n = 2m for some m ∈ N,
the result is an easy consequence of the previous lemma using induction over m.

If n is not a power of two we may replace n by some larger integer which is a power of two

and then derive the result for that integer. This is because if En is Gn-paradoxical, then Em
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is Gm-paradoxical for m ≥ n. This can be proved by induction. We know that

En �G2n+2 En+1 �G2n+2 E2n ∼G2n+2 En

so by the Banach-Schröder-Bernstein theorem En+1 ∼G2n+2 En, which shows that En+1 is

G2n+2-paradoxical. Then E2n+2 must also be G2n+2-paradoxal. By the previous lemma En+1

is Gn+1-paradoxical.

2.2 Tarski's theorem

The proof of Tarski's theorem presented here is based on the Hahn-Banach theorem which

plays a central role in functional analysis. It is an extention theorem used to extend con-

tinuous functionals de�ned on a subspace such that the extension is somehow well-behaved.

There are several versions of the Hahn-Banach theorem. The one used here is stated in

appendix B.

Let L∞(E) be the real Banach space of bounded real functions on a set E with the supremum

norm, and let d∞(E) be the subspace generated by functions of the form 1B − 1A where

A,B ⊆ E and A ∼G B. Here 1A denotes the characteristic function of A. Further we denote

by C the set of functions f ∈ L∞(E) that satisfy inf{f(x) | x ∈ E} > 0. Note that C is

open.

We begin with a lemma using the Hahn-Banach theorem.

Lemma 2.6. If d∞(E)∩C = ∅, then there exists a �nitely additive, G-invariant measure on

X normalizing E.

The converse is actually also true, but we will not prove it here. The idea is to look at the

integral of functions in L∞(E). But since we are dealing with �nitely additive measures,

things become complicated when we try to explain what we mean by an integral. We will

return to this issue in chapter 3.

Proof. Suppose that d∞(E) ∩ C = ∅. Then let V0 be the subspace of L∞(E) generated by

d∞(E) and 1E , and let F0 : V0 → R be

F0(f + λ1E) = λ, f ∈ d∞(E), λ ∈ R.

It is easy to check that F0 is a well-de�ned, linear functional on V0, and that p : L∞(E)→ R

p(f) = sup{f(x) | x ∈ E}

is a sublinear form on L∞(E) which is an upper bound of F0. By the Hahn-Banach theorem

it is possible to extend F0 to a linear functional F : L∞(E) → R, such that −p(−f) ≤
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F (f) ≤ p(f) for all f ∈ L∞(E). Now, de�ne a function µ : P(E)→ R by

µ(A) = F (1A), A ⊆ E.

First we will establish a few properties of µ, and then we will extend µ to P(X). For any

A ⊆ E we see

F (−1A) ≤ p(−1A) ≤ 0

so F (1A) ≥ 0, and hence µ takes only non-negative values. It is obvious that µ(∅) = 0 and

µ(E) = 1. If B ⊆ E and A∩B = ∅, then 1A∪B = 1A + 1B, and since F is linear, µ is �nitely

additive. If A ∼G B, then 1B − 1A ∈ d∞, and so

µ(B)− µ(A) = F (1B − 1A) = 0,

which shows that

µ(A) = µ(B) if A ∼G B for A,B ⊆ E (2.1)

We shall now extend µ to all of P(X), so that the extension becomes a �nitely additive, G-

invariant measure on X. We de�ne the extension ν : P(X) → [0,∞] as follows: For A ⊆ X

it may happen that there is a partition of A into subsets {Ai}ni=1 where each Ai ∼G A′i for

some A′i ⊆ E. In that case we de�ne

ν(A) =
n∑
i=1

µ(A′i).

Otherwise we de�ne ν(A) =∞. We must check that ν is well-de�ned, and that ν is a �nitely

additive, G-invariant measure.

Well-de�ned: If

A =
n∐
i=1

Ai =
m∐
j=1

Bj , ϕi(Ai) = A′i, ψj(Bj) = B′j

where ϕi, ψj are G-transformations and A′i, B
′
j ⊆ E for i ∈ In, j ∈ Im, then de�ne

Aij = Ai ∩Bj , A′ij = ϕi(Aij), B′ij = ψj(Aij).

Then A′ij ∼G Aij ∼G B′ij , so µ(A′ij) = µ(B′ij) by the invariance of µ. Since {A′ij}mj=1 is a

�nite partition of A′i and, similarly, {B′ij}ni=1 partitions B′j , we �nd

n∑
i=1

µ(A′i) =
n∑
i=1

m∑
j=1

µ(A′ij) =
m∑
j=1

n∑
i=1

µ(B′ij) =
m∑
j=1

µ(B′j),

and so ν is well-de�ned.

Finite additivity: Suppose A ∩ B = ∅ where A,B ⊆ X. If ν(A ∪ B) is �nite, then ν(A) and
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ν(B) must both be �nite. Hence if either ν(A) or ν(B) is in�nite, then ν(A ∪B) is in�nite,
so ν(A ∪B) = ν(A) + ν(B).

If µ(A) and µ(B) are both �nite, then it follows from the additivity of µ that ν(A ∪ B) =
ν(A) + ν(B). We leave the details to the reader.

G-invariance: If A ∼G B, then A has �nite measure if and only if B has �nite measure. In

the case where they both have �nite measure the G-invariance follows from (2.1) and the way

we de�ned our extension. Again, we leave the details to the reader.

We need yet another lemma.

Lemma 2.7. Let U1, U2 ⊆ En, and let π1 and π2 be the canonical projection from En to E,

but restricted to U1 and U2, respectively. If π
−1
1 (x) and π−1

2 (x) have the same cardinality for

all x ∈ E, then there exists a Gn-transformation ψ : U1 → U2 such that the diagram below

commutes.

U1

π1   A
AA

AA
AA

ψ //_______ U2

π2~~}}
}}

}}
}

E

Proof. For any x ∈ E, put Fx = {q ∈ In | (x, q) ∈ U1} and Gx = {q ∈ In | (x, q) ∈ U2}.
By assumption Fx and Gx have the same cardinality, so there is a bijection rx : Fx → Gx,

rx ∈ Sn. The set P = {rx ∈ Sn | x ∈ E} is �nite, simply because it is a subset of Sn.
Now put ψ(x, q) = (x, rx(q)). Clearly ψ : U1 → U2 is a bijection, and the diagram obviously

commutes. Since P is �nite, ψ is a Gn-transformation.

Theorem 2.8. Let E ⊆ X. If there does not exist a �nitely additive, G-invariant measure

on X normalizing E, then En is Gn-paradoxical for some n ∈ N.

Proof. The idea of the following is to use lemma 2.6 to construct a Gn+1-transformation γ

such that γ(En+1) ⊆ En. It will then follow rather easily that En+1 is Gn+1-paradoxical.

By lemma 2.6 we can choose an element f ∈ d∞(E) ∩ C of the form

f =
m∑
i=1

λi(1Bi − 1Ai)

where each Ai ∼G Bi, and m is some natural number. Choose for each i a G-transformation

γi : Ai → Bi. Since C is open, there is an r > 0 such that

{g ∈ L∞(E) | ||f − g||∞ < r} ⊆ C.

For each λi it is possible to �nd a rational number qi, such that |λi− qi| < r
m . By the choice

of qi, the function

g =
m∑
i=1

qi(1Bi − 1Ai)
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is also in d∞ ∩ C. Further we may assume that every qi is positive, because otherwise we

could replace 1Bi−1Ai by 1Ai−1Bi . By multiplying g by a su�ciently large natural number,

we can assume that every qi is an integer, and we can also assume that g is bounded below

by 1. All in all we get

1 ≤ g =
n∑
i=1

1Bi − 1Ai (2.2)

where some of the terms 1Bi − 1Ai may occur multiple times (in which case n > m). Adding

1Ai + 1E\Ai
, i = 1, . . . , n to (2.2) yields the inequalities

n+ 1 ≤
n∑
i=1

1Bi + 1E\Ai
≤ 2n.

De�ne

h =
n∑
i=1

1Bi + 1E\Ai

and put U2 = {(x, q) ∈ E2n | q ≤ h(x)}. From the inequality n + 1 ≤ h we get En+1 ⊆ U2.

Further de�ne ϕ : En → E2n by

ϕ(x, i) =

{
(γi(x), 2i− 1), x ∈ Ai
(x, 2i), x ∈ E \Ai

We remark that x ∈ Ai if and only if γi(x) ∈ Bi. It can easily be checked that ϕ is injective.

If we denote the image of ϕ by U1 then ϕ is a G2n-transformation between En and U1.

Let π1 and π2 denote the projections from U1 and U2 to E. Now, by the construction of U1

and U2 we see that |π−1
1 (x)| = h(x) = |π−1

2 (x)| for every x ∈ E. By lemma 2.7 there exists a

G2n-transformation ψ from U1 to U2 such that the diagram commutes.

En
ϕ // U1

π1   A
AA

AA
AA

ψ // U2

π2~~}}
}}

}}
}

E

Let γ be the restriction of (ψϕ)−1 to En+1. Then γ is a Gn+1-transformation and γ(En+1) ⊆
En. Hence

En+1 ⊇ En ⊇ γ(En+1) ⊇ γ(En) ⊇ . . . ⊇ γn+1(En+1) ⊇ γn+1(En),

so the sets γi(En+1 \En), i = 0, . . . , n and γn+1(En+1) are all pairwise disjoint. If we de�ne
ρ1 = γn+1 and ρ2(x, i) = γi−1(x, n + 1), then ρ1, ρ2 are Gn+1-transformations with domain
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En+1, and they have disjoint images. Hence

ρ1(En+1) ∼Gn+1 En+1 ∼Gn+1 ρ2(En+1) and ρ1(En+1) ∩ ρ2(En+1) = ∅,

so En+1 is Gn+1-paradoxical.

Now we have done all the preparation for proving Tarski's theorem.

Theorem 2.9 (Tarski's theorem). Let G be a group acting on a set X, and let E ⊆ X.

Then E is not G-paradoxical if and only if there exists a �nitely additive, G-invariant measure

on X normalizing E.

Proof. If the measure exists, then the argument presented at the beginning of the chapter

shows that E can not be G-paradoxical. Suppose, on the other hand, that no �nitely additive,

G-invariant measure normalizing E exists. The previous theorem shows that En is Gn-

paradoxical for some n ∈ N, and by proposition 2.3 we conclude that E is G-paradoxical.

Combining Tarski's theorem with the strong form of the Banach-Tarski paradox we have the

following remarkable result:

Corollary 2.10. There does not exist a �nitely additive, isometry-invariant measure on R3

normalizing a bounded subset with non-empty interior.

Then what about R and R2? It turns out, surprisingly, that such measures exist and they

can even be chosen so that they extend the Lebesgue measure. That will be one of the main

subjects of the next chapter. Vitali's construction of a non-measurable set shows, however,

that such a measure can not be countably additive.
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CHAPTER 3

The absence of paradoxes

The purpose of this chapter is partly to prove that an analogy of the Banach-Tarski paradox

does not exist in the plane or on the real line and partly to study groups bearing a certain

kind of measure. The essential di�erence between the two-dimensional case and the three-

dimensional case is that the isometry group E2 is solvable, but E3 is not. The essential link

between the two subjects is Tarski's theorem, so in order to prove the absence of a paradox

we construct a �nitely additive measure normalizing the set, and the measure should be

invariant under the group action.

3.1 Measures in groups

The way we constructed paradoxical decompositions in chapter 1 was by �nding a paradoxical

decomposition of the group acting on the set and then transferring the decomposition to the

set. In much the same way our approach here will be to construct a measure on the group

and somehow transfer the measure to a measure on the set upon which the group acts. This

motivates the following de�nition.

De�nition 3.1. If G is a group and µ : P(G)→ [0,∞] is �nitely additive, left-invariant, i.e.

µ(gA) = µ(A) for all g ∈ G, A ⊆ G, and µ normalizes G, then µ is simply called a measure

on G. A group for which such a measure exists is called amenable.

If µ is a measure on G and ϕ is an isomorphism from G to H, then µ ◦ ϕ−1 is a measure on

H, so if G and H are isomorphic, then either both are amenable or neither of them is. An

application of Tarski's theorem gives the following characterization of amenable groups.

Corollary 3.2. A group is amenable if and only if it is not paradoxical.

As a corollary of proposition 1.8 we get:

Corollary 3.3. If an amenable group G acts on a set X then X is not G-paradoxical.

Proof. In the light of the preceding corollary this is just the contrapositive of proposition

1.8.
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The absence of paradoxes

Notice that this corollary only expresses the absence of paradoxicality of the whole set X

and not of subsets E ⊆ X.

Let L∞(G) denote the set of bounded real-valued functions on G. Recall from example 1.2

that G acts on L∞(G) by letting (g.f)(h) = f(g−1h), where g, h ∈ G, f ∈ L∞(G). When

G is an amenable group it is possible to construct an integral de�ned on L∞(G) taking real

values and satisfying:

(1) the integral is linear,

(2)
∫
f dµ ≥ 0, if f(g) ≥ 0 for all g ∈ G,

(3)
∫

1H dµ = µ(H) for every H ⊆ G,

(4)
∫
g.f dµ =

∫
f dµ for every g ∈ G.

For reasons of continuity the construction of the integral is omitted here but can be found in

appendix C.

3.2 Some amenable groups

The de�nition of an amenable group may seem intangible, but we will now show that a wide

class of well-known groups are amenable.

Proposition 3.4. Every �nite group is amenable.

Proof. The counting measure on a �nite group is a measure with the desired properties.

Proposition 3.5. A subgroup of an amenable group is amenable.

Proof. This is a consequence of corollary 1.7 and corollary 3.2, but a direct proof which does

not rely on the di�cult theorem of Tarski is actually quite simple: Suppose H is a subgroup

of G, and µ is a measure on G. Let M be a set consisting of exactly one representative from

each right coset with respect to H. De�ne

ν(A) = µ(A.M) = µ

( ⋃
m∈M

Am

)
, A ⊆ H.

It is easy to see that ν is �nitely additive, H-invariant and ν(H) = 1. We only show the

invariance property and leave the rest for the reader to check.

Let h ∈ H and A ⊆ H. Then

ν(hA) = µ

( ⋃
m∈M

hAm

)
= µ

(
h
⋃
m∈M

Am

)
= µ

( ⋃
m∈M

Am

)
= ν(A).
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3.2 Some amenable groups

Proposition 3.6. If N is a normal subgroup of an amenable group G, then the quotient

G/N is amenable.

Proof. Choose a measure µ on G. Each A ⊆ G/N can be written A = {hN | h ∈ H} for
some subset H ⊆ G. We de�ne ν : P(G/N)→ [0, 1] by

ν(A) = µ

(⋃
h∈H

hN

)
.

This is seen to be well-de�ned, i.e. not dependent of the choice of H in the representation

of A as {hN | h ∈ H}. The desired properties of ν follow from those of µ. We will only

demonstrate the invariance property. Suppose gN ∈ G/N and H ⊆ G. Since N is normal

gN.{hN | h ∈ H} = {gNhN | h ∈ H} = {ghN | h ∈ H}

showing that

ν(gN.A) = µ

(⋃
h∈H

ghN

)
= µ

(
g.
⋃
h∈H

hN

)
= µ

(⋃
h∈H

hN

)
= ν(A),

where A = {hN | h ∈ H}.

The next theorems are not as straightforward to prove.

Proposition 3.7. If N is a normal subgroup of G and both N and the quotient G/N are

amenable, then G is amenable.

Proof. Suppose µ1, µ2 are measures on N and G/N , respectively. For any A ⊆ G de�ne

fA : G→ R by fA(g) = µ1(N ∩ g−1A). If g1 and g2 are in the same coset with respect to N ,

say g2 = g1n, where n ∈ N , then

µ1(N∩g−1
2 A) = µ1(N∩(g1n)−1A) = µ1(N∩n−1g−1

1 A) = µ1(n−1(N∩g−1
1 A)) = µ1(N∩g−1

1 A)

showing fA(g2) = fA(g1). Therefore FA : G/N → R given by FA(gN) = fA(g) is well-de�ned.
Since 0 ≤ µ1 ≤ 1, F is bounded. We may now de�ne a measure ν on G by

ν(A) =
∫
FA dµ2.

We must check that ν is in fact a measure on G. Since FG(g) = 1G, ν(G) = 1. Finite

additivity of ν follows from the fact that FA∪B = FA+FB if A∩B = ∅. A simple computation

will show that fgA(h) = fA(g−1h), and thus FgA = gN.FA, and the invariance of the integral

de�ned by µ2 now gives ν(gA) = ν(A).
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The absence of paradoxes

Corollary 3.8. If G and H are amenable groups, then G ×H is amenable, and in general

any �nite product of amenable groups is amenable.

Proof. The latter follows from the �rst by induction. To prove amenability of G × H, let

G∗ = {(g, 1) | g ∈ G}. Then G∗ ' G, and so G∗ is amenable, and G∗ is normal in G ×H.

Since (G×H)/G∗ ' H, the amenability of G×H follows from the preceding proposition.

The next theorem requires some acquaintance with topology and is based on Tychono�'s

theorem: any product of compact spaces is compact in the product topology. We will not

prove Tychono�'s theorem here. For a proof see any standard textbook on general topology.

A directed set is a partially ordered set (D,≤) such that for any two elements α, β ∈ D there

exists an element γ ∈ D such that α ≤ γ and β ≤ γ. If D consists of subgroups of a certain

group G, then the natural ordering is the subgroup relation. A directed set of subgroups of a

group G is then a set D such that for any two subgroups Gα, Gβ in D there exists a subgroup

Gγ in D such that Gα ⊆ Gγ and Gβ ⊆ Gγ .

Proposition 3.9. If G is the union of a directed set of amenable subgroups, then G is

amenable.

Proof. Suppose G is the union of the directed set of subgroups {Gα | α ∈ I} and each Gα

is amenable. For each α ∈ I let µα be a �nitely additive, Gα-invariant measure on Gα with

µα(Gα) = 1.

Consider the space [0, 1]P(G) which by Tychono�'s theorem is compact in the product topol-

ogy. For α ∈ I we denote byMα the set of those �nitely additive µ : P(G)→ [0, 1] such that

µ(G) = 1 and µ is Gα-invariant, i.e. µ(gA) = µ(A) for every g ∈ Gα and A ⊆ G. By de�ning

µ(A) = µα(A∩Gα) we see that µ ∈Mα, so eachMα is non-empty. We will argue thatMα

is closed in [0, 1]P(G). For A ⊆ G we let πA : [0, 1]P(G) → [0, 1] denote the projection map,

i.e. πA(µ) = µ(A), which is continuous.

We proceed by showing that the complement ofMα is open. Suppose µ ∈ [0, 1]P(C) \Mα.

Then at least of one the following is true:

µ(G) 6= 1, µ(A ∪B) 6= µ(A) + µ(B), µ(gA) 6= µ(A)

for some A,B ⊆ G, g ∈ Gα, where A ∩B = ∅.

If µ(G) 6= 1, there is an open set O ⊆ [0, 1] such that µ(G) ∈ O and 1 /∈ O; take for example

O = [0, 1[ . Then π−1
G (O) is open, and µ ∈ π−1

G (O). By the choice of O, π−1
G (O) ∩Mα = ∅.

If µ(A ∪ B) 6= µ(A) + µ(B), choose ε > 0 such that |µ(A ∪ B)− (µ(A) + µ(B))| > ε. Then
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3.2 Some amenable groups

the sets

O1 = {x ∈ [0, 1] | |x− µ(A ∪B)| < ε/3},

O2 = {x ∈ [0, 1] | |x− µ(A)| < ε/3},

O3 = {x ∈ [0, 1] | |x− µ(B)| < ε/3}

are open in [0, 1], and hence π−1
A∪B(O1) ∩ π−1

A (O2) ∩ π−1
B (O3) is open in [0, 1]P(G), contains µ

and is contained in the complement ofMα.

In much the same way we can handle the last case. If µ(gA) 6= µ(A) then choose ε > 0 such

that |µ(gA)− µ(A)| > ε. If

O1 = {x ∈ [0, 1] | |x− µ(gA)| < ε/2},

O2 = {x ∈ [0, 1] | |x− µ(A)| < ε/2},

then π−1
gA(O1) ∩ π−1

A (O2) is open, contains µ and is contained in the complement ofMα.

Now that we have shown that eachMα is non-empty and closed, we can �nish the argument.

If Gα and Gβ are subgroups of Gγ then Mγ ⊆ Mα ∩ Mβ , so in particular Mα ∩ Mβ

is non-empty. Hence {Mα | α ∈ I} has the �nite intersection property. By compactness⋂
{Mα | α ∈ I} is non-empty, and any µ in this set is a �nitely additive, G-invariant

measure, showing the amenability of G.

Before showing that any abelian group is amenable, we turn to one speci�c group, the integers

(Z,+), and show that this group is amenable. The idea is inspired by the �nite case, so we

try to approximate the density of the set A ⊆ Z by measuring the density of �nite sections.

We use the notation `∞ for the real Banach space `∞(N) with supremum norm.

Theorem 3.10. The integers (Z,+) form an amenable group.

Proof. De�ne Wn = {k ∈ Z | −n ≤ k ≤ n}. Let A ⊆ Z, and consider for each n ∈ N the

number

fn(A) =
|A ∩Wn|
|Wn|

.

What we would like to do is to de�ne the measure of A to be the limit of fn(A) as n tends

to in�nity, but what if the limit does not always exists? An application of the Hahn-Banach

theorem will get us around the problem.

Let c denote the subspace of `∞ consisting of the convergent sequences. The limit function

L0 : c→ R de�ned by

L0(x) = lim
n→∞

xn, where x = (xn) ∈ c,
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The absence of paradoxes

is a linear functional on c, which is bounded above by the sublinear form p(x) = supxn.
By the Hahn-Banach theorem there is an extention of L0 to all of `∞, call it L, such that

−p(−x) ≤ L(x) ≤ p(x) for every x ∈ `∞.

Note that 0 ≤ fn(A) ≤ 1, so the sequence (fn(A))n∈N belongs to `∞. We may now de�ne

µ : P(Z)→ R by

µ(A) = L((fn(A))n∈N), for all A ⊆ Z.

We must check that µ is the desired measure. For x ∈ `∞ where xn ≥ 0 for all n ∈ N we

have −L(x) ≤ p(−x) ≤ 0, so L(x) ≥ 0. Hence µ(A) ≥ 0 for any A ⊆ Z.

Clearly µ(Z) = 1, and the additivity of µ follows from the additivity of L and the fact that

fn(A ∪ B) = fn(A) + fn(B) if A ∩ B = ∅. Since the sets A ∩Wn and (A + k) ∩Wn has a

di�erence in cardinality of at most 2k, we get

|fn(A)− fn(A+ k)| ≤ 2k
2n+ 1

→ 0 for n→∞.

so µ(A+ k) = µ(A), i.e. µ is translation invariant.

We can now show that any abelian group is amenable.

Theorem 3.11. Every abelian group is amenable.

Proof. Any group is the union of its �nitely generated subgroups, and the �nitely generated

subgroups form a directed set of subgroups. Hence by theorem 3.9 it su�ces to prove that

a �nitely generated abelian group is amenable. By the fundamental theorem of �nitely

generated abelian groups such a group is isomorphic to a product of a �nite group and Zn,
where n ∈ N ∪ {0} is the rank of the group. We have already shown that �nite groups and

Z are amenable. Now, a reference to corollary 3.8 completes the proof.

Corollary 3.12. Every solvable group is amenable.

Proof. This is a consequence of the preceding theorem combined with proposition 3.7 using

induction on the length of a subnormal series witnessing the solvability.

3.3 The real line and the plane

The isometry groups of R and R2 are solvable (see appendix for a proof), and hence by

corollary 3.12 they are amenable. By corollary 3.3, Rn is not En-paradoxical if n = 1, 2. This
is, of course, interesting in itself, but we are more interested in showing that no interval or

square is paradoxical. To prove this we will construct an isometry-invariant extension of the

Lebesgue measure de�ned on all subsets of Rn. As mentioned at the end of the last chapter,

Vitali's example shows that such a measure can not be countably additive, but all we need is
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3.3 The real line and the plane

�nite additivity, and this turns out to be obtainable. We will proceed via the Hahn-Banach

theorem.

Theorem 3.13. If G is an amenable group of isometries of Rn, then there exists a �nitely ad-

ditive, G-invariant measure measure de�ned on all subsets of Rn, which extends the Lebesgue

measure.

Proof. Let m denote the Lebesgue measure on Rn. Let L = V0 denote the vector space of

measurable, integrable functions f : Rn → R, and let V be the space of functions f : Rn → R
such that |f | ≤ f0 for some f0 ∈ L. Clearly V is a real vector space with L as a subspace.

Any group G of isometries acts on V by (g.f)(x) = f(g−1.x), where g ∈ G, f ∈ V , x ∈ Rn.

The action is linear

g.(λ1f1 + λ2f2) = λ1 g.f1 + λ2 g.f2.

It is well-known that L is stable under the action of G, i.e. g.f ∈ L if f ∈ L, so G also acts

on L.

De�ne a linear functional F0 on L by

F0(f0) =
∫
f0 dm, f0 ∈ L.

That is, F0 is integration with respect to Lebesgue measure. Since the Lebesgue integral is

invariant under isometries, F0 is G-invariant.

If f ∈ V and f0 ∈ L satisfy |f | ≤ f0, then for any f1 ∈ L such that f ≤ f1, we must have

−f0 ≤ f ≤ f1 so

F0(−f0) =
∫
−f0 dm ≤

∫
f1 dm = F0(f1).

Hence

inf{F0(f1) | f1 ∈ L and f ≤ f1}

is a real number not less than F0(−f0), and we may de�ne a sublinear form p on V by

p(f) = inf{F0(h) | h ∈ L and f ≤ h}.

It is easy to check that p(λf) = λp(f) for λ ≥ 0. To check p(f + g) ≤ p(f) + p(g), note that
if f ≤ f1 and g ≤ g1, then f + g ≤ f1 + g1. This shows the inequality in the following:

p(f + g) = inf{F0(h1) | h1 ∈ L and f + g ≤ h1}

≤ inf{F0(f1 + g1) | f1, g1 ∈ L and f ≤ f1, g ≤ g1}

= inf{F0(f1) | f1 ∈ L and f ≤ f1}+ inf{F0(g1) | g1 ∈ L and g ≤ g1}

= p(f) + p(g)

What is also important, and trivial to see, is that p is G-invariant, meaning p(g.f) = p(f).
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The absence of paradoxes

Now, by the Hahn-Banach theorem there exists a linear functional F : V → R that extends

F0, also bounded by p. But F need not be G-invariant.

For any f ∈ V de�ne ϕf : G→ R by ϕf (g) = F (g−1.f). Since

F (g−1.f) ≤ p(g−1.f) = p(f),

and

F (g−1.f) ≥ −p(−(g−1.f)) = −p(g−1.(−f)) = −p(−f),

we see that ϕf is bounded above by p(f) and below by −p(−f). In particular ϕf ∈ L∞(G),
so choosing a measure ν on G we may de�ne a function µ : P(Rn)→ R ∪ {∞} by

µ(A) =
∫
ϕ1A dν, if 1A ∈ V,

and µ(A) =∞ if 1A /∈ V . Here again 1A denotes the characteristic function of A. We claim

that µ is a �nitely additive, G-invariant measure, and that µ extends m.

µ is an extension of m: Let A be a Lebesgue measurable subset of Rn. If 1A ∈ V0, then

ϕ1A(g) = F (g−1.1A) = F0(g−1.1A) = F0(1A) = m(A),

and so ϕ1A is the constant function with value m(A). Using that ν(G) = 1 we get µ(A) =
m(A). If 1A /∈ V0, then 1A /∈ V and so µ(A) =∞ = m(A).

The following observation will be useful. Using the linearity of F and of g−1 ∈ G when acting

on elements in V a simple computation will show that

ϕλ1f1+λ2f2(g) = λϕf1(g) + λϕf2(g) (3.1)

for f1, f2 ∈ V, λ1, λ2 ∈ R, g ∈ G. If f ∈ V and f(x) ≥ 0 for every x ∈ Rn, then since

ϕ−f ≤ p(−f), ∫
ϕ−f dν ≤

∫
p(−f) dν = p(−f) · 1 ≤ 0,

and from this and (3.1), ∫
ϕf dν = −

∫
ϕ−f dν ≥ 0

so in particular µ(A) ≥ 0 for every A ⊆ Rn.

If A ∩ B = ∅ for A,B ⊆ Rn, then 1A∪B = 1A + 1B. This combined with (3.1) shows that µ

is �nitely additive.

If g, h ∈ G and f ∈ V , then

ϕg.f (h) = F (h−1(g.f)) = F ((g−1h)−1.f) = ϕf (g−1h) = (g.ϕf )(h),
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3.3 The real line and the plane

so the G-invariance of ν and the fact that 1gA = g.1A yield that

µ(gA) =
∫
ϕ1gA dν =

∫
ϕg.1A dν =

∫
g.ϕ1A dν =

∫
ϕ1A dν = µ(A).

This completes the proof, since µ is the desired measure.

Corollary 3.14. The Lebesgue on R and R2, respectively, has a �nitely additive, isometry-

invariant extension of to all sets.

Proof. It is a consequence of the previous theorem since E and E2 are solvable (cf. appendix

A) and hence amenable.

Corollary 3.15. If G is an amenable group of isometries of Rn, no bounded subset of Rn

with non-empty interior is G-paradoxical. In particular, no bounded subset of R or R2 with

non-empty interior is paradoxical using isometries.

Proof. Suppose A is a bounded subset of Rn with non-empty interior, and let µ be a �nitely

additive, isometry-invariant extension of the Lebesgue measure de�ned on all subsets of Rn.

Since A has non-empty interior, µ(A) > 0 and the boundedness of A ensures µ(A) < ∞. A

paradoxical decomposition of A would imply µ(A) = 2µ(A), but this is impossible.

Corollary 3.15 shows that no interval in R is E-paradoxical, and no square in R2 is E2-

paradoxical. Other paradoxical decompositions in R2 do exist, however. But these either

rely on groups that do not preserve distance (but they may still preserve area), use sets with

empty interior or use unbounded sets.
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APPENDIX A

The isometry groups of the Euclidean spaces

To every metric space M is associated the group of isometries consisting of the distance-

preserving bijections from M to itself. In the case of M = Rn we know exactly how these

bijections look. The isometry group of Rn is denoted by En and contains the subgroups Tn

of translations and On of orthogonal mappings. Any element f ∈ En can be written in the

form f = t ◦ A where t is a translation and A is an orthogonal map. Moreover, t and A are

uniquely determined by f . The map f 7→ A is thus a well-de�ned homomorphism from En
onto On with kernel Tn, so Tn / En and by the isomorphism theorem, En/Tn ' On.

Each element of A ∈ On has a representation as an orthogonal n×n-matrix with determinant

±1. The map A 7→ detA is a homomorphism from On onto {±1}, and the kernel is denoted

SOn. The matrix representing an element of SOn has determinant 1, and SOn is called the

special orthogonal group.

The composed map f 7→ detA is a homomorphism, and the kernel is denoted SEn. Hence

SEn is normal in En, and by the isomorphism theorem the quotient En/SEn is isomorphic to

{±1}, the cyclic group of order 2. Tn is contained in SEn, and since Tn is normal in En it is

also normal in SEn.

In the thesis we will need the following essential theorem about the Euclidean isometry

groups.

Theorem A.1. E1 and E2 are solvable, and En is not solvable for n ≥ 3.

Proof. Here we will only prove the �rst half of the theorem. That En is not solvable for n ≥ 3
is actually a consequence of lemma 1.11, since En contains a free subgroup of rank 2, but we

will not go into the details.

We have the following subnormal series

{id} / Tn / SEn / En

The factor groups are

1. En/SEn ' {±1}, which is cyclic of order two, hence abelian,
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2. SEn/Tn ' SOn, which is abelian in the case n = 1, 2,

3. Tn/{id} ' Tn which is abelian.

Since all the factor groups are abelian in the case n = 1, 2, we conclude that E1 and E2 are

solvable.

The crucial observation in the proof above is that SOn is abelian when n = 1, 2.
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APPENDIX B

The Hahn-Banach Theorem

The Hahn-Banach theorem is used several times throughout the thesis, so we will mention it

here for the sake of completeness. For more details and a proof consult for example [Rud].

De�nition B.1. A real function p : V → R on a real vector space V is called a sublinear

form if p(x+ y) ≤ p(x) + p(y) and p(λx) = λp(x) for each x, y ∈ V and λ ≥ 0.

Example B.2. An important example which is used several times in the thesis is the case

where V is the set L∞(X) of bounded real functions on a setX. If we de�ne p(f) = sup{f(x) |
x ∈ X}, for f ∈ L∞(X), then

p(f + g) = sup
x∈X

(f(x) + g(x)) ≤ sup
x∈X

f(x) + sup
x∈X

g(x) = p(f) + p(g)

and for α ≥ 0,
p(αf) = sup

x∈X
αf(x) = α sup

x∈X
f(x) = αp(f).

Hence p is a sublinear form on L∞(X).

There are several versions of the Hahn-Banach theorem. We are content with the following.

Theorem B.3 (The Hahn-Banach theorem). Suppose V0 is a subspace of real vector

space V and p : V → R is a sublinear form on V . If F0 : V0 → R is linear and F0(x) ≤ p(x)
on V0, then there exists a linear functional F : V → R such that

F (x) = F0(x) for x ∈ V0

and

−p(−x) ≤ F (x) ≤ p(x) for x ∈ V.
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APPENDIX C

Integration with �nitely additive probability measures

Pre-integrals

Let G be a group and let A be an algebra (not necessarily a σ-algebra) on G. Suppose µ

is a �nitely additive measure on G with µ(G) = 1. In the thesis we only consider the case

A = P(G), in which case things become much simpler, because we have no concerns about

measurability (and G-stability � see below).

Let `∞ = `∞(G,A) denote the Banach space of measurable, bounded functions f : G → R
with norm ||f ||∞ = sup{|f(g)| | g ∈ G}. Note that here we equip R with the algebra

generated by the open sets. We consider the class of simple functions S ⊆ `∞ which attain

only �nitely many values (negative values are allowed). We will need the following lemma.

Lemma C.1. S is dense in `∞.

Proof. Let f ∈ `∞ and ε > 0 be given. Since f is bounded, f(G) is contained in a compact

interval I. There exists a �nite covering of I by measurable subsets A1, . . . , AN of R with

diamAi < ε. We can assume, that Ai ∩ Aj = ∅ for i 6= j. Put Bi = Ai ∩ f(G). We can

also assume that each Bi is non-empty. Now, de�ne Gi = f−1(Bi) = f−1(Ai). Every Gi is

measurable, because Ai ∈ A, and f is measurable, so by choosing bi ∈ Bi the function

s =
N∑
i=1

bi1Gi

is simple. {Gi}Ni=1 partitions G and for g ∈ Gi both f(g) ∈ Bi and s(g) ∈ Bi, so since

diamBi ≤ diamAi < ε

we see that

||s− f ||∞ ≤ max
1≤i≤N

{diamBi} < ε.

as desired.
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Integration with �nitely additive probability measures

For the simple functions we can de�ne the pre-integral I : S → R by

I

(
N∑
i=1

bi1Gi

)
=

N∑
i=1

biµ(Gi).

We note that this is a �nite number because µ is a probability measure. The representation

of the simple function can be shown to be immaterial, and so I is well-de�ned. Clearly I

sati�es the well-known rules

I(s+ t) = I(s) + I(t) I(as) = aI(s)

for s, t ∈ S, a ∈ R and also I(s) ≥ if s(g) ≥ 0 for every g ∈ G.

Integrals

The pre-integral I : S → R satis�es |I(s)| ≤ ||s||∞, i.e. I is a contraction. Because of this I

is uniformly continuous. We are now in need of the following proposition

Proposition C.2 (Extension theorem). Let M0 be a dense subset of a metric space M

and let Y be a complete metric space. If f0 : M0 → Y is uniformly continuous, then there

exists a (unique) continuous extension f : M → Y of f0.

Proof. For any m ∈M let mn → m where each mn ∈M0. Since (mn) is a Cauchy sequence

and f0 is uniformly continuous, (f0(mn)) is a Cauchy sequence in Y . By completeness the

sequence converges to a y ∈ Y . De�ne f(m) = y. Note that y is independent of the choice of

(mn), so f is well-de�ned. From the construction it follows that f is continuous. This proves

the existence. Uniqueness is obvious.

Take M = `∞. The combination of lemma C.1 with the previous proposition allows us to

de�ne the integral of a function f ∈ `∞ ∫
f dµ

through the unique extension of the pre-integrals. Additivity and the like will follow from con-

tinuity. We note that since characteristic functions are simple we especially get the pleasant

rule ∫
1A dµ = µ(A)

for every A ∈ A.
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Translation invariance

A group G acts on itself by left translation. If gA ∈ A for every g ∈ G and A ∈ A, we say
that A is G-stable, and the action of G on itself extends to one on A. G also acts on `∞ by

(g.f)(x) = f(g−1.x), g, x ∈ G, f ∈ `∞.

Suppose that A is G-stable and that the measure µ is G-invariant, that is µ(gA) = µ(A) for
each g ∈ G, A ∈ A. Then the integral becomes G-invariant, that is∫

g.f dµ =
∫
f dµ, g ∈ G, f ∈ `∞.

We �rst prove this for characteristic functions, then simple functions, and the result is then

a consequence of lemma C.1. For A ∈ A we have g.1A = 1gA, so∫
g.1A dµ =

∫
1gA dµ = µ(gA) = µ(A) =

∫
1A dµ.

For a simple function the result is a consequence of the linearity of I. Now, let f ∈ `∞ be

any function. By lemma C.1 there is a sequence {sn} of simple functions that converges to

f . Each sn has an integral which is invariant under the action. Since the integral of f is the

limit of I(sn) as n tends to in�nity the result follows.

To sum up we know that whenever G is a group with a G-stable algebra A that has a �nitely

additive, G-invariant measure µ, it is possible to de�ne integration on `∞ with respect to µ,

and this integral will respect addition, scalar multiplication and positivity, i.e. if f is non-

negative then also the integral of f is non-negative. Further the integral of the characteristic

function of a measurable subset A gives the measure of A, and the integral is invariant under

the action of G on `∞.
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